To reveal the effects of chilling at the booting stage on rice dry matter production, 30 main rice cultivars (lines) in Heilongjiang Province were selected and subjected to chilling stress (17°C cold water irrigation) for 20 days. The results showed that the filled grain number per hill, seed setting rate, 1000-grain weight, and grain yield of all cultivars decreased under cold water irrigation at booting stage. The materials were classified as grades 1, 3, 5, 7 and 9 according to relative seed setting rate. Most of them belonged to grades 7 and 9, accounting for 30% of the total, while the fewest cultivars belonged to grade 1, occupying 10%. The cold water stress decreased dry matter accumulation from heading to maturity and its ratio, crop growth rate, net assimilation rate, filled grain number per square centimeter leaf area, harvest index, leaf area index, leaf basic angle of flag leaf, drooping angle of flag leaf, drooping angle of second leaf from top, drooping angle of third leaf from top. However, the cold water stress increased the ratio of leaf area of top three leaves. The correlation analysis results showed that the relative seed setting rate was significantly positively correlated with the cold water response indices(CRI) of harvest index after heading(r=0.96**), grain yield(r=0.91**),filled grain number per square centimeter leaf area(r=0.84**), and dry matter accumulation(r=0.48**); this rate was also positively correlated with the CRI of crop growth rate(r=0.44*), net assimilation rate(r=0.44*), and ratio of dry matter accumulation from heading to maturity(r=0.43*). In conclusion, the reduction of rice dry matter production under cold water stress during early grain filling largely varied with rice cultivar. The cold tolerant germplasm was insensitive to cold water stress in dry matter accumulation, ratio of dry matter accumulation from heading to maturity, crop growth rate, net assimilation, filled grain number per square centimeter leaf area, harvest index after heading, which might be attributed to its important morphological specificity and physiological mechanism in maintaining grain yield under cold water stress at the booting stage.