Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (5): 516-524.DOI: 10.16819/j.1001-7216.2024.231010
• Research Papers • Previous Articles Next Articles
LÜ Yang1,3, LIU Congcong3, YANG Longbo3, CAO Xinglan3, WANG Yueying2, TONG Yi2, Mohamed Hazman4,5, QIAN Qian1,2,3, SHANG Lianguang3,*(), GUO Longbiao2,6,*()
Received:
2023-10-26
Revised:
2023-12-08
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: shanglianguang@caas.cn; guolongbiao@caas.cn
吕阳1,3, 刘聪聪3, 杨龙波3, 曹兴岚3, 王月影2, 童毅2, Mohamed Hazman4,5, 钱前1,2,3, 商连光3,*(), 郭龙彪2,6,*()
通讯作者:
*email: shanglianguang@caas.cn; guolongbiao@caas.cn
基金资助:
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao. Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis[J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524.
吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.231010
染色体 Chromosome | SNP覆盖距离 Coverage distance of SNP (bp) | SNP覆盖率 Coverage rate of SNP (%) | SNP数 SNP numbers |
---|---|---|---|
1 | 43,268,496 | 99.99 | 434,147 |
2 | 35,935,088 | 99.99 | 365,162 |
3 | 36,404,657 | 99.97 | 346,548 |
4 | 35,500,209 | 99.99 | 329,291 |
5 | 29,953,155 | 99.98 | 274,538 |
6 | 31,245,818 | 99.99 | 334,152 |
7 | 29,680,533 | 99.94 | 326,003 |
8 | 28,440,061 | 99.99 | 312,782 |
9 | 22,902,397 | 99.52 | 249,843 |
10 | 23,201,787 | 99.98 | 286,539 |
11 | 29,016,815 | 99.99 | 370,492 |
12 | 27,529,160 | 99.99 | 304,698 |
合计All | 373,078,176 | 99.94 | 3,934,195 |
Table 1. Distribution of SNPs for association analysis
染色体 Chromosome | SNP覆盖距离 Coverage distance of SNP (bp) | SNP覆盖率 Coverage rate of SNP (%) | SNP数 SNP numbers |
---|---|---|---|
1 | 43,268,496 | 99.99 | 434,147 |
2 | 35,935,088 | 99.99 | 365,162 |
3 | 36,404,657 | 99.97 | 346,548 |
4 | 35,500,209 | 99.99 | 329,291 |
5 | 29,953,155 | 99.98 | 274,538 |
6 | 31,245,818 | 99.99 | 334,152 |
7 | 29,680,533 | 99.94 | 326,003 |
8 | 28,440,061 | 99.99 | 312,782 |
9 | 22,902,397 | 99.52 | 249,843 |
10 | 23,201,787 | 99.98 | 286,539 |
11 | 29,016,815 | 99.99 | 370,492 |
12 | 27,529,160 | 99.99 | 304,698 |
合计All | 373,078,176 | 99.94 | 3,934,195 |
Fig. 1. Population structures analysis of 190 Asian cultivated rice accessions A, Principal component analysis; B, Phylogenetic trees; C, Population structure distribution.
Fig. 3. Genome-wide association analysis of leaf width phenotypic ratio Q for 190 Asian rice accessions A and C are Manhattan plot and QQ plot of GWAS using FarmCPU model respectively; B and D are Manhattan plot and QQ plot of GWAS using MLM model respectively; The legend of Manhattan plot is SNP density.
序号 Num. | QTLs | 染色体 Chr. | 物理区间 Position(bp) | 模型 Model |
---|---|---|---|---|
1 | qN1.1 | 1 | 16,711,341−17,842,922 | FarmCPU |
2 | qN1.3 | 1 | 29,450,332−29,850,332 | FarmCPU |
3 | qN2.1 | 2 | 5,202,109−5,634,866 | FarmCPU |
4 | qN2.2 | 2 | 15,469,192−16,276,088 | FarmCPU |
5 | qN2.3 | 2 | 21,668,095−22,329,457 | FarmCPU |
6 | qN2.4 | 2 | 23,110,299−23,510,309 | FarmCPU |
7 | qN3.1 | 3 | 19,114,795−19,514,795 | FarmCPU |
8 | qN4.1 | 4 | 12,844,649−13,244,649 | FarmCPU, MLM |
9 | qN4.2 | 4 | 17,659,810−18,662,950 | FarmCPU |
10 | qN4.3 | 4 | 23,336,187−23,790,593 | FarmCPU |
11 | qN4.4 | 4 | 24,729,681−25,129,681 | FarmCPU |
12 | qN4.5 | 4 | 26,074,465−26,474,465 | FarmCPU |
13 | qN4.6 | 4 | 30,147,389−30,547,389 | FarmCPU |
14 | qN5.1 | 5 | 2,757,529−3,157,612 | FarmCPU, MLM |
15 | qN5.2 | 5 | 16,539,268−16,939,268 | FarmCPU |
16 | qN6.1 | 6 | 1,047,084−1,447,087 | FarmCPU |
17 | qN6.2 | 6 | 7,235,155−7,635,155 | FarmCPU |
18 | qN6.3 | 6 | 10,994,434−12,207,057 | FarmCPU |
19 | qN6.4 | 6 | 14,631,833−15,031,833 | FarmCPU |
20 | qN6.5 | 6 | 22,830,458−23,230,458 | FarmCPU |
21 | qN7.1 | 7 | 10,738,028−11,138,028 | FarmCPU |
22 | qN7.2 | 7 | 21,982,893−22,382,893 | FarmCPU |
23 | qN7.3 | 7 | 24,335,116−24,735,851 | FarmCPU, MLM |
24 | qN7.4 | 7 | 26,393,603−27,493,824 | FarmCPU, MLM |
25 | qN8.1 | 8 | 832,784−1,288,754 | FarmCPU |
26 | qN8.2 | 8 | 5,296,217−5,696,240 | FarmCPU |
27 | qN8.3 | 8 | 11,161,050−11,771,793 | FarmCPU, MLM |
28 | qN8.4 | 8 | 12,948,612−13,348,782 | FarmCPU |
29 | qN8.5 | 8 | 18,290,616−18,717,167 | FarmCPU |
30 | qN8.6 | 8 | 22,921,397−23,321,397 | FarmCPU |
31 | qN9.1 | 9 | 18,943,064−19,344,087 | FarmCPU, MLM |
32 | qN10.1 | 10 | 502,390−902,390 | FarmCPU, MLM |
33 | qN10.2 | 10 | 6,859,536−7,259,536 | FarmCPU |
34 | qN10.3 | 10 | 21,015,655−21,415,655 | FarmCPU |
35 | qN11.1 | 11 | 5,033,674−5,433,674 | FarmCPU |
36 | qN11.2 | 11 | 18,939,513−19,339,513 | FarmCPU |
37 | qN11.3 | 11 | 26,603,335−27,005,127 | FarmCPU |
38 | qN12.1 | 12 | 14,101,046−14,501,052 | FarmCPU |
39 | qN12.2 | 12 | 16,046,475−16,446,475 | FarmCPU |
Table 2. Candidate QTLs from GWAS analysis
序号 Num. | QTLs | 染色体 Chr. | 物理区间 Position(bp) | 模型 Model |
---|---|---|---|---|
1 | qN1.1 | 1 | 16,711,341−17,842,922 | FarmCPU |
2 | qN1.3 | 1 | 29,450,332−29,850,332 | FarmCPU |
3 | qN2.1 | 2 | 5,202,109−5,634,866 | FarmCPU |
4 | qN2.2 | 2 | 15,469,192−16,276,088 | FarmCPU |
5 | qN2.3 | 2 | 21,668,095−22,329,457 | FarmCPU |
6 | qN2.4 | 2 | 23,110,299−23,510,309 | FarmCPU |
7 | qN3.1 | 3 | 19,114,795−19,514,795 | FarmCPU |
8 | qN4.1 | 4 | 12,844,649−13,244,649 | FarmCPU, MLM |
9 | qN4.2 | 4 | 17,659,810−18,662,950 | FarmCPU |
10 | qN4.3 | 4 | 23,336,187−23,790,593 | FarmCPU |
11 | qN4.4 | 4 | 24,729,681−25,129,681 | FarmCPU |
12 | qN4.5 | 4 | 26,074,465−26,474,465 | FarmCPU |
13 | qN4.6 | 4 | 30,147,389−30,547,389 | FarmCPU |
14 | qN5.1 | 5 | 2,757,529−3,157,612 | FarmCPU, MLM |
15 | qN5.2 | 5 | 16,539,268−16,939,268 | FarmCPU |
16 | qN6.1 | 6 | 1,047,084−1,447,087 | FarmCPU |
17 | qN6.2 | 6 | 7,235,155−7,635,155 | FarmCPU |
18 | qN6.3 | 6 | 10,994,434−12,207,057 | FarmCPU |
19 | qN6.4 | 6 | 14,631,833−15,031,833 | FarmCPU |
20 | qN6.5 | 6 | 22,830,458−23,230,458 | FarmCPU |
21 | qN7.1 | 7 | 10,738,028−11,138,028 | FarmCPU |
22 | qN7.2 | 7 | 21,982,893−22,382,893 | FarmCPU |
23 | qN7.3 | 7 | 24,335,116−24,735,851 | FarmCPU, MLM |
24 | qN7.4 | 7 | 26,393,603−27,493,824 | FarmCPU, MLM |
25 | qN8.1 | 8 | 832,784−1,288,754 | FarmCPU |
26 | qN8.2 | 8 | 5,296,217−5,696,240 | FarmCPU |
27 | qN8.3 | 8 | 11,161,050−11,771,793 | FarmCPU, MLM |
28 | qN8.4 | 8 | 12,948,612−13,348,782 | FarmCPU |
29 | qN8.5 | 8 | 18,290,616−18,717,167 | FarmCPU |
30 | qN8.6 | 8 | 22,921,397−23,321,397 | FarmCPU |
31 | qN9.1 | 9 | 18,943,064−19,344,087 | FarmCPU, MLM |
32 | qN10.1 | 10 | 502,390−902,390 | FarmCPU, MLM |
33 | qN10.2 | 10 | 6,859,536−7,259,536 | FarmCPU |
34 | qN10.3 | 10 | 21,015,655−21,415,655 | FarmCPU |
35 | qN11.1 | 11 | 5,033,674−5,433,674 | FarmCPU |
36 | qN11.2 | 11 | 18,939,513−19,339,513 | FarmCPU |
37 | qN11.3 | 11 | 26,603,335−27,005,127 | FarmCPU |
38 | qN12.1 | 12 | 14,101,046−14,501,052 | FarmCPU |
39 | qN12.2 | 12 | 16,046,475−16,446,475 | FarmCPU |
Fig. 4. Haplotype analysis and haplotype combination analysis of candidate genes OsNR1.2 and OsNAC42 A and C are the haplotype analysis results of OsNR1.2; B and D are the haplotype analysis results of OsNAC42; E is the haplotype combination analysis result of OsNR1.2 and OsNAC42; Different letters in graphs C, D, and E indicate significant differences among groups at P<0.05.
[1] | Shang L G, Li X X, He H Y, Yuan Q L, Song Y N, Wei Z R, Lin H, Hu M, Zhao F L, Zhang C, Li Y H, Gao H S, Wang T Y, Liu X P, Zhang H, Zhang Y, Cao S M, Yu X M, Zhang B T, Zhang Y, Tan Y Q, Qin M, Ai C, Yang Y X, Zhang B, Hu Z Q, Wang H R, Lü Y, Wang Y X, Ma J, Wang Q, Lu H W, Wu Z, Liu S L, Sun Z Y, Zhang H L, Guo L B, Li Z C, Zhou Y F, Li J Y, Zhu Z F, Xiong G S, Ruan J, Qian Q. A super Pan-genomic landscape of rice[J]. Cell Research, 2022, 32(10): 878-896. |
[2] | Tao Y F, Zhao X R, Mace E, Henry R, Jordan D. Exploring and exploiting pan-genomics for crop improvement[J]. Molecular Plant, 2019, 12(2): 156-169. |
[3] | Zhang M M, Wang Y, Chen X, Xu F Y, Ding M, Ye W X, Kawai Y, Toda Y, Hayashi Y, Suzuki T, Zeng H Q, Xiao L, Xiao X, Xu J, Guo S W, Yan F, Shen Q R, Xu G H, Kinoshita T, Zhu Y Y. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communications, 2021, 12(1): 735. |
[4] | Du Q G, Yang J, Syed Muhammad Sadiq S, Yang R X, Yu J J, Li W X. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. Journal of Integrative Agriculture, 2021, 20(8): 2043-2055. |
[5] | Fan X R, Naz M, Fan X R, Xuan W, Miller A J, Xu G H. Plant nitrate transporters: From gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475. |
[6] | Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, Jiang X Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176. |
[7] | Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46(6): 652-656. |
[8] | Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice[J]. Nature Communications 2018, 9: 851. |
[9] | Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834. |
[10] | Wang Q, Nian J Q, Xie X Z, Yu H, Zhang J, Bai J T, Dong G J, Hu J, Bai B, Chen L C, Xie Q J, Feng J, Yang X L, Peng J L, Chen F, Qian Q, Li J Y, Zuo J R. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications, 2018, 9: 735. |
[11] | Wang Q, Su Q M, Nian J Q, Zhang J, Guo M, Dong G J, Hu J, Wang R S, Wei C S, Li G W, Wang W, Guo H S, Lin S Y, Qian W F, Xie X Z, Qian Q, Chen F, Zuo J R. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant, 2021, 14(6): 1012-1023. |
[12] | Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications, 2019, 10: 5207. |
[13] | Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J] Trends in Plant Science, 2004, 9(12): 597-605. |
[14] | Lü Y, Ma J, Wang Y Y, Wang Q, Lu X L, Hu H T, Qian Q, Guo L B, Shang L G. Loci and natural alleles for low-nitrogen-induced growth response revealed by the genome-wide association study analysis in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2021, 12: 770736. |
[15] | Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. |
[16] | Shang L G, He W C, Wang T Y, Yang Y X, Xu Q, Zhao X J, Yang L B, Zhang H, Li X X, Lü Y, Chen W, Cao S, Wang X M, Zhang B, Liu X P, Yu X M, He H Y, Wei H, Leng Y, Shi C L, Guo M L, Zhang Z P, Zhang B T, Yuan Q L, Qian H G, Cao X L, Cui Y, Zhang Q Q, Dai X F, Liu C C, Guo L B, Zhou Y F, Zheng X M, Ruan J, Cheng Z K, Pan W H, Qian Q. A complete assembly of the rice Nipponbare reference genome[J]. Molecular Plant, 2023, 16(8): 1232-1236. |
[17] | Lv Y, Ma J, Wei H, Xiao F, Wang Y Y, Jahan N, Hazman M, Qian Q, Shang L G, Guo L B. Combining GWAS, genome-wide domestication and a transcriptomic analysis reveals the loci and natural alleles of salt tolerance in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2022, 13: 912637. |
[18] | Gao H S, Zhang C, He H Y, Liu T J, Zhang B, Lin H, Li X X, Wei Z R, Yuan Q L, Wang Q, Yu C Y, Shang L G. Loci and alleles for submergence responses revealed by GWAS and transcriptional analysis in rice[J]. Molecular Breeding, 2020, 40(8): 75. |
[19] | Liu N, Xue Y D, Guo Z Y, Li W H, Tang J H. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels[J]. Frontiers in Plant Science, 2016, 27(7): 1046. |
[20] | Yu J, Zhao W G, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage[J]. International Journal of Molecular Sciences, 2018, 19(10): 3145 |
[21] | Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain[J]. Fly, 2012, 6(2): 80-92. |
[22] | Chang C C, Chow C C, Tellier L, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: Rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4: 7. |
[23] | Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664. |
[24] | Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. |
[25] | Yin L L, Zhang H H, Tang Z S, Xu J Y, Yin D, Zhang Z W, Yuan X H, Zhu M J, Zhao S H, Li X Y, Liu X L. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study[J]. Genomics Proteomics & Bioinformatics, 2021, 19(4): 619-628. |
[26] | Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 348-U110. |
[27] | Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models[J]. Biometrical Journal, 2008, 50(3): 346-363. |
[28] | Han M L, Lü Q Y, Zhang J, Wang T, Zhang C X, Tan R J, Wang Y L, Zhong L Y, Gao Y Q, Chao Z F, Li Q Q, Chen G Y, Shi Z, Lin H X, Chao D Y. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice[J]. Molecular Plant, 2022, 15(1): 167-178. |
[29] | Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42- activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications, 2019, 10: 5279. |
[30] | Yu J, Zao W G, He Q, Kim T S, Park Y J. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage[J]. Molecular Genetics and Genomics, 2017, 292(6): 1391-1403. |
[31] | Huang X H, Wei X H, Sang T, Zhao Q A, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q A, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42(11): 961-U76. |
[32] | Huang X H, Yang S H, Gong J Y, Zhao Q, Feng Q, Zhan Q L, Zhao Y, Li W J, Cheng B Y, Xia J H, Chen N, Huang T, Zhang L, Fan D L, Chen J Y, Zhou C C, Lu Y Q, Weng Q J, Han B. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622): 629. |
[33] | Liu H J, Yan J B. Crop genome-wide association study: A harvest of biological relevance[J]. Plant Journal, 2019, 97(1): 8-18. |
[34] | Yang Y X, Zhang C, Zhu D, He H Y, Wei Z R, Yuan Q L, Li X X, Gao X, Zhang B, Gao H S, Wang B, Cao S M, Wang T Y, Li Y H, Yu X M, Guo L B, Hu G J, Qian Q, Shang L G. Identifying candidate genes and patterns of heat-stress response in rice using a genome-wide association study and transcriptome analyses[J]. Crop Journal, 2022, 10(6): 1633-1643. |
[1] |
YANG Jie, YANG Changdeng, ZENG Yuxiang, HOU Yuxuan, CHEN Tianxiao, LIANG Yan.
Research Progress in Mining and Utilization of Rice Blast Resistance Genes [J]. Chinese Journal OF Rice Science, 2024, 38(6): 591-603. |
[2] |
FENG Xiangqian, WANG Aidong, HONG Weiyuan, LI Ziqiu, QIN Jinhua, ZHAN Lichuan, CHEN Lipeng, ZHANG Yunbo, WANG Danying, CHEN Song.
Research Progress in Rice Yield Estimation Method Based on Low-altitude Unmanned Aerial Vehicle Remote Sensing [J]. Chinese Journal OF Rice Science, 2024, 38(6): 604-616. |
[3] |
YE Miao, MAO Yuxin, ZHANG Dehai, KANG Yuying, YUAN Rong, ZHANG Zujian.
Advances in Leaf and Canopy Eco-physiological Characteristics of High Photosynthetic Efficiency Rice Varieties and Their Regulation Mechanisms by Nitrogen [J]. Chinese Journal OF Rice Science, 2024, 38(6): 617-626. |
[4] |
WANG Qing, WANG Yanru, ZHANG Xiuli, LÜ Qiming .
Sequence Variation Analysis of the Parthenogeny-inducing Gene BBM1 in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 627-637. |
[5] |
ZHONG Zhihu, QIN Lu, LI Zhili, YANG Zhen, HE Xiaopeng, CAI Yicong.
Genome-wide Identification and Comprehensive Analysis of IDD Gene Family in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 638-652. |
[6] |
LI Wei, XU Xia, BIAN Ying, ZHANG Xiaobo, FAN Jiongjiong, CHENG Benyi, YANG Shihua, WU Jianli, WEI Xin, ZENG Bo, GONG Junyi.
Cytoplasmic Source Analysis of Sterile Lines from 5460 Three-line Hybrid Rice Varieties [J]. Chinese Journal OF Rice Science, 2024, 38(6): 653-664. |
[7] |
DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng.
Mapping of qChalk8 Controlling Chalky Rice Rate in japonica Rice by Combining QTL-Seq with Molecular Markers [J]. Chinese Journal OF Rice Science, 2024, 38(6): 665-671. |
[8] |
LIU Junfeng, MOU Jingyi, ZHAO Hongyan, GUO Shimeng, LI Yimeng, LIANG Chao, ZHOU Chanchan, WANG Shu, HUANG Yuancai.
Effects of Nitrogen Application Practice and Row Spacing on Yield and Nitrogen Use Efficiency in japonica Rice With Different Panicle Types [J]. Chinese Journal OF Rice Science, 2024, 38(6): 672-684. |
[9] |
WU Xiang, ZHANG Yikai, ZHANG Peng, MA Xinling, CHEN Yulin, CHEN Huizhe, ZHANG Yuping, XIANG Jing, WANG Yaliang, WANG Zhigang, LI Liangtao.
Effects of 2,4-Epibrassinolide on Root Growth and Physiological Characteristics of Rice Seedlings Raised in Biochar Substrate [J]. Chinese Journal OF Rice Science, 2024, 38(6): 685-694. |
[10] |
YAO Shu, CHEN Tao, ZHAO Chunfang, ZHOU Lihui, ZHAO Ling, LIANG Wenhua, HAO Lei, LU Kai, ZHU Zhen, ZHAO Qingyong, GUAN Ju, WANG Cailin, ZHANG Yadong.
Analysis on Appearance and Cooking Taste Quality Characteristics of Different Types of japonica Rice in Jianghuai Rice-growing Area [J]. Chinese Journal OF Rice Science, 2024, 38(6): 709-718. |
[11] | WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan. Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[12] | XU Yongqiang, XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu. Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[13] | HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong. Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[14] | YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming. Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[15] | JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian. Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||