Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (4): 375-385.DOI: 10.16819/j.1001-7216.2024.230603
• Research Papers • Previous Articles Next Articles
FU Rongtao1,2, CHEN Cheng1,2, WANG Jian1,2, ZHAO Liyu1, CHEN Xuejuan1, LU Daihua1,2,*()
Received:
2023-06-16
Revised:
2023-08-20
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: daihlfrt@126.com
伏荣桃1,2, 陈诚1,2, 王剑1,2, 赵黎宇1, 陈雪娟1, 卢代华1,2,*()
通讯作者:
*email: daihlfrt@126.com
基金资助:
FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens[J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385.
伏荣桃, 陈诚, 王剑, 赵黎宇, 陈雪娟, 卢代华. 转录组和代谢组联合分析揭示稻曲病菌的致病因子[J]. 中国水稻科学, 2024, 38(4): 375-385.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.230603
Sample | Raw reads | Raw bases(G) | Clean reads | Clean bases(G) | Error rate (%) | Q20 (%) | Q30 (%) | GC content (%) | Total mapped (%) |
---|---|---|---|---|---|---|---|---|---|
S1 | 47 859 198 | 7.21 | 47 509 820 | 7.17 | 0.02 | 97.99 | 94.33 | 57.34 | 45 977 524 (96.77%) |
S2 | 48 693 622 | 7.33 | 48 321 368 | 7.30 | 0.03 | 97.71 | 93.64 | 57.25 | 46 762 014 (96.77%) |
S3 | 48 928 150 | 7.37 | 48 570 976 | 7.33 | 0.03 | 97.77 | 93.79 | 57.28 | 46 907 398 (96.57%) |
CK1 | 47 241 470 | 7.08 | 46 561 454 | 7.03 | 0.03 | 97.49 | 93.31 | 56.62 | 45 375 848 (97.45%) |
CK2 | 46 356 766 | 6.95 | 45 750 132 | 6.91 | 0.03 | 97.76 | 93.96 | 56.55 | 44 648 578 (97.59%) |
CK3 | 47 564 308 | 7.12 | 46 926 056 | 7.09 | 0.03 | 97.91 | 94.21 | 56.13 | 45 579 618 (97.13%) |
Total | 286 643 514 | 43.06 | 283 639 806 | 42.83 |
Table 1. Statistical quality analysis of transcriptome sequencing data
Sample | Raw reads | Raw bases(G) | Clean reads | Clean bases(G) | Error rate (%) | Q20 (%) | Q30 (%) | GC content (%) | Total mapped (%) |
---|---|---|---|---|---|---|---|---|---|
S1 | 47 859 198 | 7.21 | 47 509 820 | 7.17 | 0.02 | 97.99 | 94.33 | 57.34 | 45 977 524 (96.77%) |
S2 | 48 693 622 | 7.33 | 48 321 368 | 7.30 | 0.03 | 97.71 | 93.64 | 57.25 | 46 762 014 (96.77%) |
S3 | 48 928 150 | 7.37 | 48 570 976 | 7.33 | 0.03 | 97.77 | 93.79 | 57.28 | 46 907 398 (96.57%) |
CK1 | 47 241 470 | 7.08 | 46 561 454 | 7.03 | 0.03 | 97.49 | 93.31 | 56.62 | 45 375 848 (97.45%) |
CK2 | 46 356 766 | 6.95 | 45 750 132 | 6.91 | 0.03 | 97.76 | 93.96 | 56.55 | 44 648 578 (97.59%) |
CK3 | 47 564 308 | 7.12 | 46 926 056 | 7.09 | 0.03 | 97.91 | 94.21 | 56.13 | 45 579 618 (97.13%) |
Total | 286 643 514 | 43.06 | 283 639 806 | 42.83 |
Fig. 3. GO and KEGG enrichment analysis of differentially expressed genes. A, The top 20 functional classes were significantly enriched in GO. B, The top 20 metabolic pathways of KEGG were significantly enriched.
转录因子 Transcription factor family | 上调 Up-regulated | 下周 Down-regulated | 合计 Total |
---|---|---|---|
bZIP transcription factor | 8 | 3 | 11 |
C6 transcription factor | 7 | 16 | 23 |
MADS-box | 1 | 0 | 1 |
C2H2 | 0 | 5 | 5 |
bHLH | 1 | 2 | 3 |
homeobox | 1 | 1 | 2 |
Zinc finger transcription factor | 1 | 1 | 2 |
GATA | 1 | 2 | 3 |
PHD | 0 | 1 | 1 |
Fungal specific transcription factor | 6 | 12 | 18 |
APSES | 1 | 1 | 2 |
binuclear zinc transcription factor | 1 | 1 | 2 |
transcription factor tos4 | 0 | 1 | 1 |
TFIII | 3 | 3 | 6 |
hoxa13 | 1 | 0 | 1 |
SipA3 | 1 | 1 | 2 |
G6G8.4 | 0 | 1 | 1 |
RNA polymerase II | 1 | 0 | 1 |
CCAAT | 0 | 1 | 1 |
activating transcription factor 7a | 1 | 1 | 2 |
atf21 | 1 | 0 | 1 |
Zn2Cys6 | 1 | 0 | 1 |
vib-1 | 1 | 0 | 1 |
Total | 38 | 53 | 91 |
Table 2. Transcription factors change of U. virens after infection
转录因子 Transcription factor family | 上调 Up-regulated | 下周 Down-regulated | 合计 Total |
---|---|---|---|
bZIP transcription factor | 8 | 3 | 11 |
C6 transcription factor | 7 | 16 | 23 |
MADS-box | 1 | 0 | 1 |
C2H2 | 0 | 5 | 5 |
bHLH | 1 | 2 | 3 |
homeobox | 1 | 1 | 2 |
Zinc finger transcription factor | 1 | 1 | 2 |
GATA | 1 | 2 | 3 |
PHD | 0 | 1 | 1 |
Fungal specific transcription factor | 6 | 12 | 18 |
APSES | 1 | 1 | 2 |
binuclear zinc transcription factor | 1 | 1 | 2 |
transcription factor tos4 | 0 | 1 | 1 |
TFIII | 3 | 3 | 6 |
hoxa13 | 1 | 0 | 1 |
SipA3 | 1 | 1 | 2 |
G6G8.4 | 0 | 1 | 1 |
RNA polymerase II | 1 | 0 | 1 |
CCAAT | 0 | 1 | 1 |
activating transcription factor 7a | 1 | 1 | 2 |
atf21 | 1 | 0 | 1 |
Zn2Cys6 | 1 | 0 | 1 |
vib-1 | 1 | 0 | 1 |
Total | 38 | 53 | 91 |
Fig. 4. Analysis of differentially expressed genes involved in important metabolic pathways A, Mitophagy pathway; B, Secondary metabolic pathway; C, Amino acid metabolic pathway.
Fig. 5. Differential metabolite analysis A, Volcanic map of differential metabolites; B, The top 20 metabolic pathways of KEGG were significantly enriched.
Fig. 7. Integrated analysis of differentially expressed gene and differentially accumulated metabolite data A, Venn diagram; B, Metabolic pathway analysis.
[1] | 陈旭, 邱结华, 熊萌, 舒亚洲, 黄世文, 寇艳君. 稻曲病研究进展[J]. 中国稻米, 2019, 25(5): 30-36. |
Chen X, Qiu J H, Xiong M, Shu Y Z, Huang S W, Kou Y J. Research progress of rice false smut[J]. China Rice, 2019, 25(5): 30-36. (in Chinese with English abstract) | |
[2] | Sun W X, Fan J, Fang A F, Li Y J, Tariqjaveed M, Li D Y. Ustilaginoidea virens: Insights into an emerging rice pathogen[J]. Annual Review of Phytopathology, 2020, 58: 363-385. |
[3] | Wang X, Wang J, Lai D, Wang W, Dai J, Zhou L. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls[J]. Toxins, 2017, 9: 54. |
[4] | Meng J J, Sun W B, Mao Z L, Dan X, Wang X, Lu S, Yang L, Zhou L, Zhang G. Main ustilaginoidins and their distribution in rice false smut balls[J]. Toxins, 2015, 7(10): 4023-4034. |
[5] | 薛守宇, 朱涛, 李冰冰, 李涛涛. 转录组和代谢组联合分析在植物中的应用研究[J]. 山西农业大学学报, 2022, 42(3): 1-13. |
Xue S Y, Zhu T, Li B B, Li T T. Application research of combined transcriptome with metabolome in plants[J]. Journal of Shanxi Agricultural University, 2022, 42(3): 1-13. (in Chinese with English abstract) | |
[6] | Cai X Z, Chen M Y, Lu Y P, Guo Z J, Zeng Z H, Liao J, Zeng H. Metabolomics and transcriptomics unravel the mechanism of browning resistance in Agaricus bisporus[J]. PLoS ONE, 2022, 17(3): e0255765. |
[7] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
Wang Y N, Chen J J, Bian Q Q, Hu L L, Zhang L, Yin Y M, Qiao S C, Cao G Z, Kang Z H, Yang Y F. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweet potato under shade stress[J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798. (in Chinese with English abstract) | |
[8] | Zhang Y, Xiao J L, Yang K, Wang Y Q, Tian Y, Liang Z Z. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt[J]. PLoS One, 2022, 17(8): e0272702. |
[9] | Chao J, Jin J, Wang D, Han Y, Zhu R S, Zhu Y G. Cytological and transcriptional dynamics analysis of host plant revealed stage specific biological processes related to compatible rice Ustilaginoidea virens interaction[J]. PLoS One, 2014, 9: e91391. |
[10] | Fu R T, Chen C, Wang J, Liu Y, Zhao LY, Lu D H. Transcription profiling of rice panicle in response to crude toxin extract of Ustilaginoidea virens[J]. Frontiers in Microbiology, 2022, 13: 701489. |
[11] | Fu RT, Chen C, Wang J, Liu Y, Zhao L Y, Lu D H. Diversity analysis of the rice false smut pathogen Ustilaginoidea virens in Southwest China[J]. Journal of Fungi, 2022, 8: 1204. |
[12] | Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency[J]. Annals of Statistics, 2001, 29: 1165-1188. |
[13] | Goldman S J, Taylor R, Zhang Y, Jin S. Autophagy and the degradation of mitochondria[J]. Mitochondrion, 2010, 10: 309-315. |
[14] | Cairns G, Thumiah-Mootoo M, Burelle Y, Khacho M. Mitophagy: A new player in stem cell biology[J]. Biology (Basel), 2020, 9: 481. |
[15] | Zhong K, Li X, Le X, Kong X, Zhang H, Zheng X, Wang P, Zhang Z. Mo Dnm1 dynamin mediating peroxisomal and mitochondrial fission in complex with MoFis1 and MoMdv1 is important for development of functional appressorium in Magnaporthe oryzae[J]. PLoS Pathology, 2016, 12: e1005823. |
[16] | Chen Y, Zuo R F, Zhu Q, Sun Y, Li M Y, Dong Y H. MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae[J]. Fungal Genetics and Biology, 2014, 67: 51-57. |
[17] | 李莉, 赵越, 马君兰. 苯丙氨酸代谢途径关键酶: PAL、C4H、4CL研究新进展[J]. 生物信息学, 2007(4): 187-189. |
Li L, Zhao Y, Ma J L. Recent progress on key enzymes: PAL, C4H, 4CL of phenylalanine metabolism pathway[J]. Chinese Journal of Bioinformatics, 2007(4): 187-189. (in Chinese with English abstract) | |
[18] | Goodwin S, McPherson J D, McCombie W R. Coming of age: Ten years of next-generation sequencing technology[J]. Nature Reviews Genetics, 2016, 17(6): 333-351. |
[19] | Pirih N, Kunej T. Toward a taxonomy for multi-omics science terminology development for whole genome study approaches by omics technology and hierarchy[J]. Omics, 2017, 21(1): 1-16. |
[20] | 屈劲松, 王毓富, 王睿, 刘月冉, 谷丽凡, 周鹏, 阴伟晓, 罗朝喜. 稻曲病菌bZIP转录因子UvbZIP12的功能研究[J]. 植物病理学报, 2022, 52(4): 555-564. |
Qu J S, Wang Y F, Wang R, Liu Y R, Gu L F, Zhou P, Yin W X, Luo C X. Functional study on bZIP transcription factor UvbZIP12 in Ustilaginoidea virens[J]. Acta Phytopathologica Sinica, 2022, 52(4): 555-564. (in Chinese with English abstract) | |
[21] | 曹健, 刘沙玉, 王地广, 柳志强. 胶孢炭疽菌C6型转录因子Cgctf1的功能分析[J]. 生物学杂志, 2022, 39(6): 41-46. |
Cao J, Liu S Y, Wang D G, Liu Z Q. Functional analysis of C6-type transcription factor Cgctf1 in Colletotrichum gloeosporioides[J]. Journal of Biology, 2022, 39(6): 41-46. (in Chinese with English abstract) | |
[22] | Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V. Oxidative stress-induced autophagy in plants: The role of mitochondria[J]. Plant Physiology and Biochemistry, 2012, 59: 11-19. |
[23] | Rohde J, Heitman J, Cardenas M E. The TOR kinases link nutrient sensing to cell growth[J]. Journal of Biological Chemistry, 2001, 276(13): 9583-9586. |
[24] | Ding J L, Peng Y J, Chu X L, Feng M G, Ying S H. Autophagy-related gene Bb ATG11 is indispensable for pexophagy and mitophagy, and contributes to stress response, conidiation and virulence in the insect mycopathogen Beauveria bassiana[J]. Environmental Microbiology, 2018, 20: 3309-3324. |
[25] | Kou Y, He Y, Qiu J, Shu Y, Yang F, Deng Y, Naqvi N I. Mitochondrial dynamics and mitophagy are necessary for proper invasive growth in rice blast[J]. Molecular Plant Pathology, 2019, 20: 1147-1162. |
[26] | Meng S, Jagernath J S, Luo C X, Shi H B, Kou Y J. MoWhi2 mediates mitophagy to regulate conidiation and pathogenesis in Magnaporthe oryzae[J]. International Journal of Molecular Sciences, 2022, 23(10): 5311. |
[27] | Donofrio N M, Oh Y, Lundy R, Pan H, Brown D E, Jeong J S, Coughlan S J, Mitchell T K, Dean R A. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea[J]. Fungal Genetics and Biology, 2006, 43(9): 605-617. |
[28] | Chen Y, Zuo R, Zhu Q, Liu X, Chen X, Wang Y, Zhang X, Li L, Zhang Y, Han J, Xu J, Li H, Li M, Li S, Wang J, Liang G, Xu X, Zhang Z. Mo Lys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae[J]. Fungal Genetics and Biology, 2014, 67: 51-57. |
[29] | Du Y, Zhang H, Hong L, Wang Y, Chen X, Li S, Zhang Z. Acetolactate synthases MoIlv2 and MoIlv6 are required for infection related morphogenesis in Magnaporthe oryzae[J]. Molecular Plant Pathology, 2013, 14(9): 870-884. |
[1] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[2] | FU Rongtao, WANG Jian, CHEN Cheng, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Transcriptome Analysis of Young Rice Panicles in Early Response to Exposure to Mycotoxin of Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2022, 36(5): 447-458. |
[3] | Hui DING, Mi-na YU, Ya-hui WANG, Jun-jie YU, Xiao-le YIN, Hui-wen BO, Xing HUANG, Yong-feng LIU. Molecular Characterization of Ustilaginoidea virens T-DNA Insertion Mutant B2510 [J]. Chinese Journal OF Rice Science, 2016, 30(5): 541-551. |
[4] | Ya-hui WANG, Yong-feng LIU, Fan LU, Mi-na YU, Lei HUANG, Meng-ting ZHENG, Jun-jie YU, Xiao-le YIN. Molecular Characterization of T-DNA Integration into Ustilaginoidea virens Mutant B1464 [J]. Chinese Journal OF Rice Science, 2015, 29(3): 311-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||