Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (3): 303-315.DOI: 10.16819/j.1001-7216.2024.230908
• Research Papers • Previous Articles Next Articles
ZHOU Tian1, WU Shaohua1, KANG Jianhong1,*(), WU Hongliang1, YANG Shenglong2,*(), WANG Xingqiang1, LI Yu3, HUANG Yufeng4
Received:
2023-09-18
Revised:
2024-02-01
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email: kangjianhong@163.com;
shlyangnx@163.com
周甜1, 吴少华1, 康建宏1,*(), 吴宏亮1, 杨生龙2,*(), 王星强1, 李昱3, 黄玉峰4
通讯作者:
*email: kangjianhong@163.com;
shlyangnx@163.com
基金资助:
ZHOU Tian, WU Shaohua, KANG Jianhong, WU Hongliang, YANG Shenglong, WANG Xingqiang, LI Yu, HUANG Yufeng. Effects of Planting Patterns on Starch Content and Activities of Key Starch Enzymes in Rice Grains[J]. Chinese Journal OF Rice Science, 2024, 38(3): 303-315.
周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.230908
年份 Year | 有机质 Organic matter(g/kg) | 全氮 Total N(g/kg) | 全磷 Total P(g/kg) | 碱解氮 Alkeline N(mg/kg) | 有效磷 Available P(mg/kg) | 速效钾 Available K(mg/kg) | pH值 pH value |
---|---|---|---|---|---|---|---|
2020 | 21.8 | 0.73 | 0.87 | 52.82 | 21.62 | 165.28 | 8.42 |
2021 | 20.5 | 0.70 | 0.98 | 53.91 | 22.58 | 160.51 | 8.37 |
Table 1. Basic physical and chemical properties of arable layer soil in the test site
年份 Year | 有机质 Organic matter(g/kg) | 全氮 Total N(g/kg) | 全磷 Total P(g/kg) | 碱解氮 Alkeline N(mg/kg) | 有效磷 Available P(mg/kg) | 速效钾 Available K(mg/kg) | pH值 pH value |
---|---|---|---|---|---|---|---|
2020 | 21.8 | 0.73 | 0.87 | 52.82 | 21.62 | 165.28 | 8.42 |
2021 | 20.5 | 0.70 | 0.98 | 53.91 | 22.58 | 160.51 | 8.37 |
Fig. 1. Changes of amylose content in rice grains under different planting methods Different lowercase letters indicate significant differences at the 0.05 level. FY4, Fuyuan 4; NJ28, Ningjing 28; NJ43, Ningjing 43; NJ50, Ningjing 50. Z1, Dry direct seeding; Z2, Watering after sowing; Z3, Transplanting. The same below.
淀粉 Starch | 处理 Treatment | a | b | k | R2 | Tmax (d) | Vmax (mg·g−1·d−1) | P (d) | |
---|---|---|---|---|---|---|---|---|---|
直链淀粉 Amylose | FY4 | Z1 | 19.281 | 58.589 | 0.349 | 0.991 | 11.663 | 1.682 | 17.959 |
Z2 | 19.473 | 60.270 | 0.362 | 0.988 | 11.323 | 1.762 | 17.392 | ||
Z3 | 18.647 | 62.991 | 0.360 | 0.999 | 11.508 | 1.678 | 17.612 | ||
NJ28 | Z1 | 20.567 | 35.813 | 0.304 | 0.992 | 11.771 | 1.563 | 18.998 | |
Z2 | 19.686 | 63.800 | 0.376 | 0.984 | 11.053 | 1.850 | 16.896 | ||
Z3 | 19.351 | 151.392 | 0.474 | 0.995 | 10.590 | 2.293 | 15.226 | ||
NJ43 | Z1 | 19.508 | 110.349 | 0.431 | 0.986 | 10.913 | 2.102 | 16.011 | |
Z2 | 19.580 | 93.890 | 0.385 | 0.984 | 11.798 | 1.885 | 17.505 | ||
Z3 | 18.487 | 58.831 | 0.382 | 0.993 | 10.667 | 1.766 | 16.419 | ||
NJ50 | Z1 | 19.405 | 33.744 | 0.309 | 0.994 | 11.388 | 1.499 | 18.498 | |
Z2 | 20.138 | 69.300 | 0.392 | 0.997 | 10.812 | 1.974 | 16.418 | ||
Z3 | 19.081 | 99.355 | 0.442 | 0.997 | 10.404 | 2.108 | 15.375 | ||
支链淀粉 Amylopectin | FY4 | Z1 | 48.446 | 13.557 | 0.149 | 0.983 | 17.496 | 1.805 | 32.242 |
Z2 | 48.867 | 13.600 | 0.148 | 0.986 | 17.636 | 1.808 | 32.482 | ||
Z3 | 48.586 | 14.583 | 0.153 | 0.988 | 17.515 | 1.858 | 31.876 | ||
NJ28 | Z1 | 48.904 | 11.363 | 0.133 | 0.984 | 18.273 | 1.626 | 34.794 | |
Z2 | 48.251 | 11.170 | 0.136 | 0.981 | 17.744 | 1.641 | 33.900 | ||
Z3 | 49.631 | 10.515 | 0.126 | 0.978 | 18.673 | 1.563 | 36.111 | ||
NJ43 | Z1 | 49.095 | 13.104 | 0.149 | 0.988 | 17.268 | 1.829 | 32.014 | |
Z2 | 48.175 | 13.414 | 0.157 | 0.984 | 16.537 | 1.891 | 30.532 | ||
Z3 | 48.335 | 13.457 | 0.156 | 0.990 | 16.663 | 1.885 | 30.748 | ||
NJ50 | Z1 | 47.257 | 13.003 | 0.152 | 0.986 | 16.876 | 1.796 | 31.332 | |
Z2 | 47.700 | 11.823 | 0.143 | 0.979 | 17.273 | 1.705 | 32.638 | ||
Z3 | 48.211 | 12.563 | 0.142 | 0.981 | 17.822 | 1.711 | 33.296 | ||
总淀粉 Total starch | FY4 | Z1 | 66.844 | 16.092 | 0.184 | 0.985 | 15.100 | 3.075 | 27.041 |
Z2 | 67.423 | 15.195 | 0.179 | 0.985 | 15.201 | 3.017 | 27.476 | ||
Z3 | 65.970 | 17.278 | 0.190 | 0.989 | 14.997 | 3.134 | 26.561 | ||
NJ28 | Z1 | 68.074 | 13.013 | 0.167 | 0.982 | 15.365 | 2.842 | 28.522 | |
Z2 | 66.912 | 12.886 | 0.171 | 0.978 | 14.948 | 2.860 | 27.797 | ||
Z3 | 66.476 | 13.017 | 0.175 | 0.976 | 14.664 | 2.908 | 27.220 | ||
NJ43 | Z1 | 68.097 | 14.407 | 0.180 | 0.986 | 14.821 | 3.064 | 27.027 | |
Z2 | 67.562 | 16.166 | 0.187 | 0.987 | 14.882 | 3.159 | 26.632 | ||
Z3 | 66.240 | 14.337 | 0.184 | 0.989 | 14.472 | 3.047 | 26.413 | ||
NJ50 | Z1 | 65.880 | 14.527 | 0.183 | 0.986 | 14.623 | 3.014 | 26.630 | |
Z2 | 66.152 | 14.768 | 0.189 | 0.979 | 14.246 | 3.126 | 25.871 | ||
Z3 | 65.444 | 14.938 | 0.188 | 0.978 | 14.382 | 3.076 | 26.070 |
Table 2. Characteristic parameters of starch component accumulation in rice grains under different planting patterns
淀粉 Starch | 处理 Treatment | a | b | k | R2 | Tmax (d) | Vmax (mg·g−1·d−1) | P (d) | |
---|---|---|---|---|---|---|---|---|---|
直链淀粉 Amylose | FY4 | Z1 | 19.281 | 58.589 | 0.349 | 0.991 | 11.663 | 1.682 | 17.959 |
Z2 | 19.473 | 60.270 | 0.362 | 0.988 | 11.323 | 1.762 | 17.392 | ||
Z3 | 18.647 | 62.991 | 0.360 | 0.999 | 11.508 | 1.678 | 17.612 | ||
NJ28 | Z1 | 20.567 | 35.813 | 0.304 | 0.992 | 11.771 | 1.563 | 18.998 | |
Z2 | 19.686 | 63.800 | 0.376 | 0.984 | 11.053 | 1.850 | 16.896 | ||
Z3 | 19.351 | 151.392 | 0.474 | 0.995 | 10.590 | 2.293 | 15.226 | ||
NJ43 | Z1 | 19.508 | 110.349 | 0.431 | 0.986 | 10.913 | 2.102 | 16.011 | |
Z2 | 19.580 | 93.890 | 0.385 | 0.984 | 11.798 | 1.885 | 17.505 | ||
Z3 | 18.487 | 58.831 | 0.382 | 0.993 | 10.667 | 1.766 | 16.419 | ||
NJ50 | Z1 | 19.405 | 33.744 | 0.309 | 0.994 | 11.388 | 1.499 | 18.498 | |
Z2 | 20.138 | 69.300 | 0.392 | 0.997 | 10.812 | 1.974 | 16.418 | ||
Z3 | 19.081 | 99.355 | 0.442 | 0.997 | 10.404 | 2.108 | 15.375 | ||
支链淀粉 Amylopectin | FY4 | Z1 | 48.446 | 13.557 | 0.149 | 0.983 | 17.496 | 1.805 | 32.242 |
Z2 | 48.867 | 13.600 | 0.148 | 0.986 | 17.636 | 1.808 | 32.482 | ||
Z3 | 48.586 | 14.583 | 0.153 | 0.988 | 17.515 | 1.858 | 31.876 | ||
NJ28 | Z1 | 48.904 | 11.363 | 0.133 | 0.984 | 18.273 | 1.626 | 34.794 | |
Z2 | 48.251 | 11.170 | 0.136 | 0.981 | 17.744 | 1.641 | 33.900 | ||
Z3 | 49.631 | 10.515 | 0.126 | 0.978 | 18.673 | 1.563 | 36.111 | ||
NJ43 | Z1 | 49.095 | 13.104 | 0.149 | 0.988 | 17.268 | 1.829 | 32.014 | |
Z2 | 48.175 | 13.414 | 0.157 | 0.984 | 16.537 | 1.891 | 30.532 | ||
Z3 | 48.335 | 13.457 | 0.156 | 0.990 | 16.663 | 1.885 | 30.748 | ||
NJ50 | Z1 | 47.257 | 13.003 | 0.152 | 0.986 | 16.876 | 1.796 | 31.332 | |
Z2 | 47.700 | 11.823 | 0.143 | 0.979 | 17.273 | 1.705 | 32.638 | ||
Z3 | 48.211 | 12.563 | 0.142 | 0.981 | 17.822 | 1.711 | 33.296 | ||
总淀粉 Total starch | FY4 | Z1 | 66.844 | 16.092 | 0.184 | 0.985 | 15.100 | 3.075 | 27.041 |
Z2 | 67.423 | 15.195 | 0.179 | 0.985 | 15.201 | 3.017 | 27.476 | ||
Z3 | 65.970 | 17.278 | 0.190 | 0.989 | 14.997 | 3.134 | 26.561 | ||
NJ28 | Z1 | 68.074 | 13.013 | 0.167 | 0.982 | 15.365 | 2.842 | 28.522 | |
Z2 | 66.912 | 12.886 | 0.171 | 0.978 | 14.948 | 2.860 | 27.797 | ||
Z3 | 66.476 | 13.017 | 0.175 | 0.976 | 14.664 | 2.908 | 27.220 | ||
NJ43 | Z1 | 68.097 | 14.407 | 0.180 | 0.986 | 14.821 | 3.064 | 27.027 | |
Z2 | 67.562 | 16.166 | 0.187 | 0.987 | 14.882 | 3.159 | 26.632 | ||
Z3 | 66.240 | 14.337 | 0.184 | 0.989 | 14.472 | 3.047 | 26.413 | ||
NJ50 | Z1 | 65.880 | 14.527 | 0.183 | 0.986 | 14.623 | 3.014 | 26.630 | |
Z2 | 66.152 | 14.768 | 0.189 | 0.979 | 14.246 | 3.126 | 25.871 | ||
Z3 | 65.444 | 14.938 | 0.188 | 0.978 | 14.382 | 3.076 | 26.070 |
变量 Variable | 作用因子 Effect of factors | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficients | 间接通径系数 Indirect path coefficients | |||||
---|---|---|---|---|---|---|---|---|---|
合计 Total | AGP | UGP | SSS | GBSS | SBE | ||||
直连淀粉 Amylose | AGP | 0.703 | 0.337 | 0.366 | −0.015 | 0.054 | 0.239 | 0.088 | |
UDPG | 0.118 | 0.191 | −0.073 | −0.008 | 0.040 | −0.037 | −0.068 | ||
SSS | 0.283 | 0.225 | 0.058 | 0.036 | 0.047 | 0.062 | −0.086 | ||
GBSS | 0.939 | 0.489 | 0.450 | 0.347 | −0.094 | 0.134 | 0.064 | ||
SBE | 0.355 | 0.545 | −0.190 | 0.142 | −0.193 | −0.209 | 0.071 | ||
支链淀粉 | AGP | 0.011 | 0.010 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | |
Amylopectin | UDPG | 0.132 | 0.214 | −0.082 | −0.009 | 0.045 | −0.041 | −0.076 | |
SSS | 0.081 | 0.064 | 0.017 | 0.010 | 0.013 | 0.018 | −0.025 | ||
GBSS | 0.248 | 0.129 | 0.119 | 0.091 | −0.025 | 0.035 | 0.017 | ||
SBE | 0.458 | 0.702 | −0.244 | 0.183 | −0.249 | −0.270 | 0.091 | ||
总淀粉 Total starch | AGP | 0.498 | 0.239 | 0.259 | −0.011 | 0.038 | 0.169 | 0.062 | |
UDPG | 0.096 | 0.156 | −0.060 | −0.007 | 0.032 | −0.030 | −0.055 | ||
SSS | 0.082 | 0.065 | 0.017 | 0.010 | 0.014 | 0.018 | −0.025 | ||
GBSS | 0.302 | 0.157 | 0.145 | 0.111 | −0.030 | 0.043 | 0.020 | ||
SBE | 0.367 | 0.563 | −0.196 | 0.146 | −0.199 | −0.216 | 0.073 |
Table 3. Path analysis of starch content and key enzymes of starch synthesis 21 days after flowering in 2020 and 2021
变量 Variable | 作用因子 Effect of factors | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficients | 间接通径系数 Indirect path coefficients | |||||
---|---|---|---|---|---|---|---|---|---|
合计 Total | AGP | UGP | SSS | GBSS | SBE | ||||
直连淀粉 Amylose | AGP | 0.703 | 0.337 | 0.366 | −0.015 | 0.054 | 0.239 | 0.088 | |
UDPG | 0.118 | 0.191 | −0.073 | −0.008 | 0.040 | −0.037 | −0.068 | ||
SSS | 0.283 | 0.225 | 0.058 | 0.036 | 0.047 | 0.062 | −0.086 | ||
GBSS | 0.939 | 0.489 | 0.450 | 0.347 | −0.094 | 0.134 | 0.064 | ||
SBE | 0.355 | 0.545 | −0.190 | 0.142 | −0.193 | −0.209 | 0.071 | ||
支链淀粉 | AGP | 0.011 | 0.010 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | |
Amylopectin | UDPG | 0.132 | 0.214 | −0.082 | −0.009 | 0.045 | −0.041 | −0.076 | |
SSS | 0.081 | 0.064 | 0.017 | 0.010 | 0.013 | 0.018 | −0.025 | ||
GBSS | 0.248 | 0.129 | 0.119 | 0.091 | −0.025 | 0.035 | 0.017 | ||
SBE | 0.458 | 0.702 | −0.244 | 0.183 | −0.249 | −0.270 | 0.091 | ||
总淀粉 Total starch | AGP | 0.498 | 0.239 | 0.259 | −0.011 | 0.038 | 0.169 | 0.062 | |
UDPG | 0.096 | 0.156 | −0.060 | −0.007 | 0.032 | −0.030 | −0.055 | ||
SSS | 0.082 | 0.065 | 0.017 | 0.010 | 0.014 | 0.018 | −0.025 | ||
GBSS | 0.302 | 0.157 | 0.145 | 0.111 | −0.030 | 0.043 | 0.020 | ||
SBE | 0.367 | 0.563 | −0.196 | 0.146 | −0.199 | −0.216 | 0.073 |
年份 Year | 处理 Treatment | 穗长 Panicle length (cm) | 穗粒数 Grain number per panicle | 千粒重 1000-grain weight (g) | 结实率 Seed setting rate (%) | 产量 Yield (kg/666.7m2) | |
---|---|---|---|---|---|---|---|
2020 | FY4 | Z1 | 16.51±0.59 b | 96.50±23.50 b | 26.29±1.19 a | 93.65±6.56 a | 655.40±154.50 c |
Z2 | 14.50±0.80 c | 83.67±33.76 c | 25.36±5.16 b | 90.44±2.55 b | 661.40±72.60 b | ||
Z3 | 19.67±3.07 a | 159.00±44.40 a | 24.23±1.34 c | 72.19±12.28 c | 808.80±60.40 a | ||
NJ28 | Z1 | 18.40±2.00 a | 99.14±14.86 c | 28.06±7.25 a | 88.90±0.28 b | 699.30±107.40 b | |
Z2 | 17.67±0.27 b | 115.50±20.10 b | 26.30±0.81 b | 91.77±2.31 a | 565.40±318.90 c | ||
Z3 | 17.13±0.13 b | 122.38±8.62 a | 25.70±0.50 c | 86.31±2.69 c | 890.10±132.60 a | ||
NJ43 | Z1 | 15.00±0.30 c | 94.00±12.60 c | 25.38±0.47 a | 87.59±2.14 b | 546.40±20.00 b | |
Z2 | 15.62±3.58 b | 106.00±28.40 b | 26.37±3.46 a | 89.81±0.53 a | 515.60±266.10 c | ||
Z3 | 17.00±0.25 a | 145.80±5.27 a | 26.20±2.11 a | 80.66±6.43 c | 738.80±97.50 a | ||
NJ50 | Z1 | 15.71±3.49 c | 97.86±13.74 c | 29.56±0.75 a | 93.43±1.88 a | 622.20±225.20 b | |
Z2 | 16.67±4.33 b | 107.00±85.80 b | 26.50±3.39 b | 89.88±6.62 c | 544.00±212.90 c | ||
Z3 | 19.75±0.25 a | 155.50±16.90 a | 26.30±2.09 b | 92.60±2.30 b | 898.00±138.20 a | ||
2021 | FY4 | Z1 | 17.10±0.60 b | 95.00±11.20 c | 25.51±1.89 b | 94.48±0.40 a | 664.45±93.35 c |
Z2 | 17.89±0.41 ab | 115.67±23.47 b | 27.03±0.12 a | 95.91±8.40 a | 687.12±33.93 b | ||
Z3 | 19.69±2.39 a | 107.89±22.09 a | 24.76±0.45 c | 86.74±6.53 b | 821.10±73.10 a | ||
NJ28 | Z1 | 19.77±0.27 a | 113.23±23.37 b | 28.52±0.99 a | 92.17±4.03 a | 740.42±11.62 b | |
Z2 | 15.24±4.43 c | 119.40±22.93 a | 28.68±0.14 a | 93.92±6.76 a | 752.63±133.19 a | ||
Z3 | 17.47±2.03 b | 103.94±27.46 c | 27.60±0.60 a | 92.64±3.68 a | 636.07±161.31 c | ||
NJ43 | Z1 | 16.43±1.87 b | 104.39±25.41 c | 28.08±1.23 a | 85.94±3.15 b | 635.63±111.84 b | |
Z2 | 15.56±2.34 b | 110.39±23.21 a | 26.41±0.58 b | 94.62±0.20 a | 705.33±77.33 a | ||
Z3 | 19.60±0.20 a | 109.43±7.57 b | 26.60±0.31 b | 82.87±11.06 c | 620.88±46.42 c | ||
NJ50 | Z1 | 17.84±1.56 b | 98.35±24.65 c | 29.87±1.94 a | 94.66±4.91 b | 701.67±115.88 c | |
Z2 | 17.70±2.30 b | 102.91±39.29 b | 28.66±0.46 c | 96.90±5.76 a | 728.63±94.04 b | ||
Z3 | 19.40±1.80 a | 110.04±55.76 a | 29.27±0.36 b | 91.67±0.31 c | 738.93±26.27 a | ||
品种 Variety(V) | NS | NS | ** | NS | NS | ||
种植方式Growing method(G) | ** | NS | NS | ** | NS | ||
品种×种植方式V×G | NS | NS | NS | NS | NS |
Table 4. Effects of different planting methods on grain yield and its component factors
年份 Year | 处理 Treatment | 穗长 Panicle length (cm) | 穗粒数 Grain number per panicle | 千粒重 1000-grain weight (g) | 结实率 Seed setting rate (%) | 产量 Yield (kg/666.7m2) | |
---|---|---|---|---|---|---|---|
2020 | FY4 | Z1 | 16.51±0.59 b | 96.50±23.50 b | 26.29±1.19 a | 93.65±6.56 a | 655.40±154.50 c |
Z2 | 14.50±0.80 c | 83.67±33.76 c | 25.36±5.16 b | 90.44±2.55 b | 661.40±72.60 b | ||
Z3 | 19.67±3.07 a | 159.00±44.40 a | 24.23±1.34 c | 72.19±12.28 c | 808.80±60.40 a | ||
NJ28 | Z1 | 18.40±2.00 a | 99.14±14.86 c | 28.06±7.25 a | 88.90±0.28 b | 699.30±107.40 b | |
Z2 | 17.67±0.27 b | 115.50±20.10 b | 26.30±0.81 b | 91.77±2.31 a | 565.40±318.90 c | ||
Z3 | 17.13±0.13 b | 122.38±8.62 a | 25.70±0.50 c | 86.31±2.69 c | 890.10±132.60 a | ||
NJ43 | Z1 | 15.00±0.30 c | 94.00±12.60 c | 25.38±0.47 a | 87.59±2.14 b | 546.40±20.00 b | |
Z2 | 15.62±3.58 b | 106.00±28.40 b | 26.37±3.46 a | 89.81±0.53 a | 515.60±266.10 c | ||
Z3 | 17.00±0.25 a | 145.80±5.27 a | 26.20±2.11 a | 80.66±6.43 c | 738.80±97.50 a | ||
NJ50 | Z1 | 15.71±3.49 c | 97.86±13.74 c | 29.56±0.75 a | 93.43±1.88 a | 622.20±225.20 b | |
Z2 | 16.67±4.33 b | 107.00±85.80 b | 26.50±3.39 b | 89.88±6.62 c | 544.00±212.90 c | ||
Z3 | 19.75±0.25 a | 155.50±16.90 a | 26.30±2.09 b | 92.60±2.30 b | 898.00±138.20 a | ||
2021 | FY4 | Z1 | 17.10±0.60 b | 95.00±11.20 c | 25.51±1.89 b | 94.48±0.40 a | 664.45±93.35 c |
Z2 | 17.89±0.41 ab | 115.67±23.47 b | 27.03±0.12 a | 95.91±8.40 a | 687.12±33.93 b | ||
Z3 | 19.69±2.39 a | 107.89±22.09 a | 24.76±0.45 c | 86.74±6.53 b | 821.10±73.10 a | ||
NJ28 | Z1 | 19.77±0.27 a | 113.23±23.37 b | 28.52±0.99 a | 92.17±4.03 a | 740.42±11.62 b | |
Z2 | 15.24±4.43 c | 119.40±22.93 a | 28.68±0.14 a | 93.92±6.76 a | 752.63±133.19 a | ||
Z3 | 17.47±2.03 b | 103.94±27.46 c | 27.60±0.60 a | 92.64±3.68 a | 636.07±161.31 c | ||
NJ43 | Z1 | 16.43±1.87 b | 104.39±25.41 c | 28.08±1.23 a | 85.94±3.15 b | 635.63±111.84 b | |
Z2 | 15.56±2.34 b | 110.39±23.21 a | 26.41±0.58 b | 94.62±0.20 a | 705.33±77.33 a | ||
Z3 | 19.60±0.20 a | 109.43±7.57 b | 26.60±0.31 b | 82.87±11.06 c | 620.88±46.42 c | ||
NJ50 | Z1 | 17.84±1.56 b | 98.35±24.65 c | 29.87±1.94 a | 94.66±4.91 b | 701.67±115.88 c | |
Z2 | 17.70±2.30 b | 102.91±39.29 b | 28.66±0.46 c | 96.90±5.76 a | 728.63±94.04 b | ||
Z3 | 19.40±1.80 a | 110.04±55.76 a | 29.27±0.36 b | 91.67±0.31 c | 738.93±26.27 a | ||
品种 Variety(V) | NS | NS | ** | NS | NS | ||
种植方式Growing method(G) | ** | NS | NS | ** | NS | ||
品种×种植方式V×G | NS | NS | NS | NS | NS |
[1] | 朱德峰, 张玉屏, 陈惠哲, 王亚梁. 中国水稻栽培技术发展与展望[J]. 中国稻米, 2021, 27(4): 45-49. |
Zhu D F, Zhang Y P, Chen H Z, Wang Y L. Development and prospect of rice cultivation techniques in China[J]. China Rice, 2021, 27(4): 45-49. (in Chinese with English abstract) | |
[2] | 吴汉, 吴含, 钱娜, 柯健, 郭爽爽. 江淮地区不同灌溉与种植方式对水稻产量及水分利用效率的影响[J]. 灌溉排水学报, 2022, 41(6): 39-46. |
Wu H, Wu H, Qian N, Ke J, Guo S S. Effects of different irrigation and plantingpatterns on rice yield and water use efficiency in Jianghuai region[J]. Journal of Irrigation and Drainage, 2022, 41(6): 39-46. (in Chinese with English abstract) | |
[3] | Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China[J]. Agronomy for Sustainable Development, 2015, 35(1): 285-294. |
[4] | 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望[J]. 中国农业科学, 2021, 54(7): 1301-1321. |
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation with Chinese characteristics[J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. (in Chinese with English abstract) | |
[5] | 轧宗杰, 卢树昌, 侯琨. 水稻旱直播栽培发展现状、问题及应用前景[J]. 作物杂志, 2020(2): 9-15. |
Gan Z J, Lu S C, Hou K. Development status, problems and application prospect of dry direct seeding cultivation of rice[J]. Crops, 2020, 36(2): 9-15. (in Chinese with English abstract) | |
[6] | 唐荣莉, 唐兴隆, 张巫军, 段秀建, 李经勇, 姚雄. 丘陵山区单季中稻不同种植方式的经济与生态可持续性评估[J]. 中国生态农业学报, 2023, 31(1): 90-101. |
Tang R L, Tang X L, Zhang W J, Duan X J, Li J Y, Yao X. Evaluation of economic and ecological sustainability of different planting patterns of single cropping medium rice in hilly and mountainous areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 90-101. (in Chinese with English abstract) | |
[7] | 匡炜, 魏征, 戴力, 赵杨, 梁玉刚, 罗先富, 张玉烛, 方宝华. 不同种植方式对双季稻生育期及产量的影响[J]. 华北农学报, 2022, 37(6): 142-149. |
Kuang W, Wei Z, Dai L, Zhao Y, Liang Y G, Luo X F, Zhang Y C, Fang B H. Effects of different planting patterns on growth period and yield of double cropping rice[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(6): 142-149. (in Chinese with English abstract) | |
[8] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
Zhang X L, Tao W, Gao G Q, Chen L, Guo Hi, Zhang H, Tang M Y, Liang T F. Effects of direct seeding cultivation on growth period, lodging resistance and yield benefit of double cropping early rice[J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. (in Chinese with English abstract) | |
[9] | 孙永健, 郑洪帧, 徐徽, 杨志远, 贾现文, 程洪彪, 马均. 机械旱直播方式促进水稻生长发育提高产量[J]. 农业工程学报, 2014, 30(20): 10-18. |
Sun Y J, Zheng H F, Xu H, Jerry Y, Jia X W, Cheng H B, Ma J. Mechanical dry direct seeding promotes the growth and development of rice and increases its yield.[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 10-18. (in Chinese with English abstract) | |
[10] | Verma D K, Srivastav P P. Isolation, modification, and characterization of rice starch with emphasis on functional properties and industrial application: A review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(24): 6577-6604. |
[11] | Gilbert R G, Witt T, Hasjim J. What is being learned about starch properties from multiple-level characterization[J]. Cereal Chemistry, 2013, 90(4): 312-325. |
[12] | 彭立功, 龚静, 兰艳, 王锦, 隋晓东, 丁春邦, 李天. 水分胁迫对宜香优2115籽粒淀粉合成及产量的影响[J]. 华北农学报, 2021, 36(5): 77-86. |
Peng L G, Gong J, Lan Y, Wang J, Sui X D, Ding C B, Li T. Effects of water stress on starch synthesis and yield of Yixiangyou 2115[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 77-86. (in Chinese with English abstract) | |
[13] | 赵宏伟, 吕艳超, 许晶, 夏楠, 贾琰, 邹德堂. 施氮量对盐胁迫下寒地粳稻籽粒淀粉积累及相关酶活性的影响. 东北农业大学学报, 2015, 46(8): 1-8. |
Zhao H W, Lu Y C, Xu J, Xia N, Jia J, Zou D T. Effects of nitrogen application rate on grain starch accumulation and related enzyme activities of japonica rice under salt stress[J]. Journal of Northeast Agricultural University, 2015, 46(8): 1-8. (in Chinese with English abstract) | |
[14] | 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J]. 作物学报, 2001(2): 201-206. |
Cheng F M, Jiang D, Wu P, Shi C H. Changes of starch synthase and characteristics of temperature effect during grain filling in early indica rice[J]. Acta Agronomica Sinica, 2001(2): 201-206. | |
[15] | Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize[J]. Plant Physiology (Bethesda), 1988, 86(4): 1013-1019. |
[16] | Nakamura Y N I O, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains[J]. Plant Cell Physiology, 1989, 30(6): 833-839. |
[17] | 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究[J]. 作物学报, 1997(3): 338-344. |
Li T G, Shen B, Chen N, Luo Y K. Study on the role of Q enzyme in the formation of rice grain chalkiness[J]. Acta Agronomica Sinica, 1997, 23(3): 338-344. (in Chinese with English abstract) | |
[18] | 雷振山, 李猛, 卫云飞, 季新, 刘娟, 王付娟, 刘秋员. 不同种植方式对豫南地区优质食味粳稻产量及品质的影响[J]. 河南农业科学, 2023, 52(2): 12-20. |
Lei Z S, Li M, Wei Y F, Ji X, Liu J, Wang F J, Liu Q J. Effects of different planting patterns on yield and quality of high-quality taste japonica rice in southern Henan[J]. Journal of Henan Agricultural Sciences, 2023, 52(2): 12-20. (in Chinese with English abstract) | |
[19] | 胡雅杰, 薛建涛, 吴培, 李娈, 丛舒敏, 余恩唯, 倪嘉颢, 张洪程. 施氮量和直播密度对稻米食味品质和淀粉结构的影响[J]. 中国粮油学报, 2022, 37(2): 7-13. |
Hu Y J, Xue J T, Wu P, Li L, Cong S M, Yu E W, Ni J H, Zhang H C. Effects of nitrogen application rate and direct seeding density on eating quality and starch structure of rice[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(2): 7-13. (in Chinese with English abstract) | |
[20] | Wang W, Peng S, Liu H, Tao Y, Huang J, Cui K, Nie L. The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: A review[J]. Field Crop Research, 2017, 214: 310-320. |
[21] | 刘东华. 干旱胁迫对稻谷品质性状及W_X基因表达的影响[D]. 武汉: 华中农业大学, 2014. |
Liu D H. Effects of drought stress on grain quality traits and Wendy X gene expression in rice[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract) | |
[22] | 陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干-湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达[J]. 中国农业科学, 2015, 48(7): 1288-1299. |
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Light dry-wet alternate irrigation after anthesis increased the expression of genes related to starch synthesis in rice grains[J]. Scientia Agricultura Sinica, 2015, 48(7): 1288-1299. (in Chinese with English abstract) | |
[23] | 王维, 蔡一霞, 蔡昆争, 张建华, 杨建昌, 朱庆森. 水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响[J]. 作物学报, 2006(7): 972-979. |
Wang W, Cai Y X, Cai K Z, Zhang J H, Yang J C, Zhu Q S. Effects of Water stress on Grain filling and activities of key enzymes in starch synthesis of greedy green rice[J]. Acta Agronomica Sinica, 2006(7): 972-979. (in Chinese with English abstract) | |
[24] | 韩燕, 徐亚楠, 宋吉青, 柳斌辉, 韩伟, 斋藤信, 白文波. 轻度干热风条件下喷施复合寡糖提高冬小麦叶片生理活性和籽粒淀粉合成关键酶活性[J]. 植物营养与肥料学报, 2022, 28(12): 2324-2333. |
Han Y, Xu Y N, Song J Q, Liu B H, Han W, Saito S, Bai W B. Spraying compound oligosaccharides under mild dry and hot air conditions increased the physiological activities of winter wheat leaves and the activities of key enzymes in grain starch synthesis. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2324-2333. (in Chinese with English abstract) | |
[25] | 王春雨, 余华清, 何艳, 郭长春, 张绍文, 杨志远, 马均. 播栽方式与施氮量对杂交籼稻氮肥利用特征及产量的影响[J]. 中国生态农业学报, 2017, 25(12): 1792-1801. |
Wang C Y, Yu H Q, He Y, Guo C C, Zhang S W, Yang Z Y, Ma J. Effects of sowing methods and nitrogen application rates on nitrogen utilization characteristics and yield of Indica Hybrid Rice[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1792-1801. (in Chinese with English abstract) | |
[26] | 唐志强, 张丽颖, 何娜, 马作斌, 赵明珠, 王昌华, 郑文静, 银永安, 王辉. 机械旱直播对水稻生育进程、光合特性及产量的影响[J]. 作物杂志, 2021(5): 87-94. |
Tang Z Q, Zhang L Y, He N, Ma Z B, Zhao M Z, Wang C H, Zheng W J, Yin Y A, Wang H. Effects of mechanical dry direct seeding on growth process, photosynthetic characteristics and yield of rice[J]. Crops, 2021, (5): 87-94. (in Chinese with English abstract) | |
[27] | 徐令旗, 郭晓红, 张佳柠, 赵洋, 李晓蕾, 刘绍峰, 崔致远, 安懿亮, 吕艳东. 不同有机肥对旱直播水稻品质的影响[J]. 华北农学报, 2022, 37(1): 137-146. |
Xu L Q, Guo X H, Zhang J N, Zhao Y, Li X L, Liu S F, Cui Z Y, An Y L, Lü Y D. Effects of different organic fertilizers on the quality of dry direct seeding rice[J]. Acta Agriculturae Boreali-Sinica, 2022, 37 (1): 137-146. (in Chinese with English abstract) | |
[28] | 徐令旗, 郭晓红, 兰宇辰, 崔致远, 张佳柠, 吕艳东. 不同有机肥对旱直播水稻干物质积累和产量的影响[J]. 华北农学报, 2021, 36(2): 188-195 |
Xu L Q, Guo X H, Lan Y C, Cui Z Y, Zhang J N, Lu Y D. Effects of different organic fertilizers on dry matter accumulation and yield of dry direct seeding rice[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 188-195. (in Chinese with English abstract) |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||