Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (1): 81-90.DOI: 10.16819/j.1001-7216.2024.230409
• Research Papers • Previous Articles Next Articles
YANG Qixin, LAI Fengxiang, HE Jiachun, WEI Qi, WANG Weixia, WAN Pinjun*(), FU Qiang*()
Received:
2023-04-27
Revised:
2023-09-15
Online:
2024-01-10
Published:
2024-01-16
Contact:
* email: 杨奇欣, 赖凤香, 何佳春, 魏琪, 王渭霞, 万品俊*(), 傅强*()
通讯作者:
* email: 基金资助:
YANG Qixin, LAI Fengxiang, HE Jiachun, WEI Qi, WANG Weixia, WAN Pinjun, FU Qiang. Hyperspectral Properties of Rice Varieties with Varying Resistance Under Brown Planthopper (Nilaparvata lugens) Infestation[J]. Chinese Journal OF Rice Science, 2024, 38(1): 81-90.
杨奇欣, 赖凤香, 何佳春, 魏琪, 王渭霞, 万品俊, 傅强. 不同抗感水稻品种对褐飞虱胁迫的高光谱响应特征[J]. 中国水稻科学, 2024, 38(1): 81-90.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.230409
抗性级别 Resistance level | 稻苗受害情况 Damage to rice seedlings |
---|---|
1(高抗,HR) | 第1叶轻微受害 The first leaf is slightly damaged |
3(抗,R) | 第1叶明显受害,叶片发黄、叶尖枯死 The first leaf is visibly affected, with yellowing leaf blade and death of the leaf tip |
5(中抗,MR) | 第1、2叶明显受害,叶片发黄、叶尖枯死 The 1st and 2nd leaves are visibly affected, with yellowing leaf blades and withering leaf tips |
7(感,S) | 第1、2、3叶明显受害,叶片发黄、叶尖枯死 The 1st, 2nd and 3rd leaves are visibly affected, with yellowing leaf blades and withering leaf tips |
9(高感,HS) | 稻株整体枯死 The rice plant is withering |
Table 1. Standard Seedbox Screening Technique (SSST) method is used to evaluate the resistance level of rice varieties to the brown planthopper.
抗性级别 Resistance level | 稻苗受害情况 Damage to rice seedlings |
---|---|
1(高抗,HR) | 第1叶轻微受害 The first leaf is slightly damaged |
3(抗,R) | 第1叶明显受害,叶片发黄、叶尖枯死 The first leaf is visibly affected, with yellowing leaf blade and death of the leaf tip |
5(中抗,MR) | 第1、2叶明显受害,叶片发黄、叶尖枯死 The 1st and 2nd leaves are visibly affected, with yellowing leaf blades and withering leaf tips |
7(感,S) | 第1、2、3叶明显受害,叶片发黄、叶尖枯死 The 1st, 2nd and 3rd leaves are visibly affected, with yellowing leaf blades and withering leaf tips |
9(高感,HS) | 稻株整体枯死 The rice plant is withering |
品种 Rice variety | 受害水平Damage rating | ||||
---|---|---|---|---|---|
1级 Level 1 | 3级 Level 3 | 5级 Level 5 | 7级 Level 7 | 9级 Level 9 | |
TN1 | 66 | 78 | 66 | 54 | 156 |
Mudgo | 96 | 120 | 192 | 6 | 6 |
RHT | 252 | 126 | 42 | 0 | 0 |
Table 2. Composition of hyperspectral data.
品种 Rice variety | 受害水平Damage rating | ||||
---|---|---|---|---|---|
1级 Level 1 | 3级 Level 3 | 5级 Level 5 | 7级 Level 7 | 9级 Level 9 | |
TN1 | 66 | 78 | 66 | 54 | 156 |
Mudgo | 96 | 120 | 192 | 6 | 6 |
RHT | 252 | 126 | 42 | 0 | 0 |
Fig. 2. Damage rating (A) and hyperspectral reflectance curve (B-D) of the three rice varieties under the brown planthopper (Nilaparvata lugens) infestation for different days. The dashed lines in diagram B-D indicate correlation coefficients, with blue lines above indicating bands with significant differences (P < 0.05)and black lines below indicating bands with significant correlations(P < 0.05), hyperspectral reflectance curves are averaged over all replicates.
指数名称 Name of the index | 计算公式 Calculation formula | TN1 | Mudgo | RHT | 品种合并 Merge analysis |
---|---|---|---|---|---|
SIPI | (R800−R445)/(R800+R680) | −0.7978 | −0.5510 | −0.4826 | −0.7053 |
SR605/760 | (R605/R760) | 0.7847 | 0.5539 | 0.4829 | 0.6885 |
PSNDb | (R800−R635)/(R800+R635) | −0.7774 | −0.5494 | −0.4731 | −0.6924 |
680 nm(最敏感光波) 680 nm(Most sensitive light wave) | 0.7265 | 0.5217 | 0.4556 | 0.6456 |
Table 3. Correlation coefficient between the vegetation index of rice varieties and the days of brown planthopper infestation.
指数名称 Name of the index | 计算公式 Calculation formula | TN1 | Mudgo | RHT | 品种合并 Merge analysis |
---|---|---|---|---|---|
SIPI | (R800−R445)/(R800+R680) | −0.7978 | −0.5510 | −0.4826 | −0.7053 |
SR605/760 | (R605/R760) | 0.7847 | 0.5539 | 0.4829 | 0.6885 |
PSNDb | (R800−R635)/(R800+R635) | −0.7774 | −0.5494 | −0.4731 | −0.6924 |
680 nm(最敏感光波) 680 nm(Most sensitive light wave) | 0.7265 | 0.5217 | 0.4556 | 0.6456 |
Fig. 3. Changes of mean reflectance and vegetation index SIPI of rice varieties with various resistance at 680 nm under the brown planthopper (Nilaparvata lugens) infestation. Different letters indicate significant difference among different days of BPH infestation(P < 0.05).
叶位 Leaf position in rice plant | 稻株部位 Rice plant part | TN1 | Mudgo | RHT |
---|---|---|---|---|
第1叶The first leaf | 叶鞘Sheath | 2 | 3 | 11 |
叶片Leaf blade | 2 | 3 | 11 | |
第2叶The 2nd leaf | 叶鞘Sheath | 5 | 8 | 17 |
叶片Leaf blade | 5 | 8 | 17 | |
第3叶The 3rd leaf | 叶鞘Sheath | 11 | >18 | >18 |
叶片Leaf blade | 11 | >18 | >18 |
Table 4. Shortest days when the vegetation index SIPI of different parts of rice varieties shows significant changes. d
叶位 Leaf position in rice plant | 稻株部位 Rice plant part | TN1 | Mudgo | RHT |
---|---|---|---|---|
第1叶The first leaf | 叶鞘Sheath | 2 | 3 | 11 |
叶片Leaf blade | 2 | 3 | 11 | |
第2叶The 2nd leaf | 叶鞘Sheath | 5 | 8 | 17 |
叶片Leaf blade | 5 | 8 | 17 | |
第3叶The 3rd leaf | 叶鞘Sheath | 11 | >18 | >18 |
叶片Leaf blade | 11 | >18 | >18 |
RF模型输入层 RF model input layer | 实测级别(级) Real level(grade) | 预测级别(级) Level of prediction (level) | |||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 准确率 Accuracy/% | ||
指数SIPI Index SIPI | 1 | 17 | 9 | 1 | 0 | 0 | 63.0 |
3 | 4 | 14 | 2 | 0 | 0 | 70.0 | |
5 | 0 | 3 | 18 | 0 | 0 | 85.7 | |
7 | 0 | 0 | 5 | 0 | 2 | 0.0 | |
9 | 0 | 0 | 2 | 0 | 8 | 80.0 | |
总计Total | 67.1 | ||||||
全波段光谱反射率 Full band spectral reflectance | 1 | 26 | 1 | 0 | 0 | 0 | 96.3 |
3 | 0 | 19 | 1 | 0 | 0 | 95.0 | |
5 | 0 | 2 | 19 | 0 | 0 | 90.1 | |
7 | 0 | 0 | 3 | 0 | 4 | 0.0 | |
9 | 0 | 0 | 1 | 0 | 9 | 90.0 | |
总计Total | 85.9 |
Table 5. Confusion matrix of the test set that was predicted by random forest models with SIPI and full spectral reflectance.
RF模型输入层 RF model input layer | 实测级别(级) Real level(grade) | 预测级别(级) Level of prediction (level) | |||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 准确率 Accuracy/% | ||
指数SIPI Index SIPI | 1 | 17 | 9 | 1 | 0 | 0 | 63.0 |
3 | 4 | 14 | 2 | 0 | 0 | 70.0 | |
5 | 0 | 3 | 18 | 0 | 0 | 85.7 | |
7 | 0 | 0 | 5 | 0 | 2 | 0.0 | |
9 | 0 | 0 | 2 | 0 | 8 | 80.0 | |
总计Total | 67.1 | ||||||
全波段光谱反射率 Full band spectral reflectance | 1 | 26 | 1 | 0 | 0 | 0 | 96.3 |
3 | 0 | 19 | 1 | 0 | 0 | 95.0 | |
5 | 0 | 2 | 19 | 0 | 0 | 90.1 | |
7 | 0 | 0 | 3 | 0 | 4 | 0.0 | |
9 | 0 | 0 | 1 | 0 | 9 | 90.0 | |
总计Total | 85.9 |
[1] | 胡国文, 唐启义, 马巨法, 唐健, 朱敏. 中国褐飞虱的分布和为害[J]. 昆虫知识, 1997(1): 50-51+61. |
Hu G W, Tang Q Y, Ma J F, Tang J, Zhu M. Distribution and damage of brown planthopper in China[J]. Chinese Bulletin of Entomology, 1997, 34(1): 50-51+61. (in Chinese) | |
[2] | Denno R F, Roderick G K. Population biology of planthoppers[J]. Annual Review of Entomology, 1990. 35(1): 489-520. |
[3] | Horgan F G, Jauregui A, Peñalver C A, Crisol M E, Bernal C C. Changes in reflectance of rice seedlings during planthopper feeding as detected by digital camera: Potential applications for high-throughput phenotyping[J]. PLoS One, 2020. 15(8): e0238173. |
[4] | Liu Z Y, Wu H F, Huang J F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010. 72(2): 99-106. |
[5] | 孙红, 李民赞, 周志艳, 刘刚, 罗锡文. 基于光谱技术的水稻稻纵卷叶螟受害区域检测[J]. 光谱学与光谱分析, 2010, 30(4): 1080-1083. |
Sun H, Li M Z, Zhou Z Y, Liu G, Luo X W. Monitoring of cnaphalocrocis medinalis guenee based on canopy reflectance[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 1080-1083. (in Chinese with English abstract) | |
[6] | 石晶晶, 刘占宇, 张莉丽, 周湾, 黄敬峰. 基于支持向量机(SVM)的稻纵卷叶螟危害水稻高光谱遥感识别[J]. 中国水稻科学, 2009, 23(3): 331-334. |
Shi J J, Liu Z Y, Zhang L L, Zhou W, Huang J F. Hyperspectral recognition of rice damaged by rice leaf roller based on support vector machine[J]. Chinese Journal of Rice Science, 2009, 23(3): 331-334. (in Chinese with English abstract) | |
[7] | Huang J, Liao H, Zhu Y, Sun J., Sun Q, Liu X. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis)[J]. Computers and Electronics in Agriculture, 2012, 82: 100-107. |
[8] | 黄建荣, 孙启花, 刘向东. 稻纵卷叶螟危害后水稻叶片的光谱特征[J]. 中国农业科学, 2010, 43(13): 2679-2687. |
Huang J R, Sun Q H, Liu X D. Spectral characteristics of rice leaves damaged by rice leaf roller[J]. Scientia Agricultura Sinica, 2010, 43(13): 2679-2687. (in Chinese with English abstract) | |
[9] | Liu T, Shi T, Zhang H, Wu C. Detection of rise damage by leaf folder (Cnaphalocrocis medinalis) using unmanned aerial vehicle based hyperspectraldata[J]. Sustainability, 2020, 12(22): 9343. |
[10] | Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners[J]. Phytopathology, 2001. 91(3). |
[11] | Tian L, Xue B, Wang Z, Li D, Yao X, Cao Q, Zhu Y, Cao W, Cheng T. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection[J]. Remote Sensing of Environment, 2021, 257: 112350. |
[12] | 郑志雄, 齐龙, 马旭, 朱小源, 汪文娟. 基于高光谱成像技术的水稻叶瘟病病害程度分级方法[J]. 农业工程学报, 2013. 29(19): 138-144. |
Zheng Z X, Qi L, Ma X, Zhu X Y, Wang W J. Grading method of rice leaf blast using hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 138-144. (in Chinese with English abstract) | |
[13] | Alisaac E, Behmann J, Kuska M T, Dehne H W, Mahlein A K. Hyperspectral quantification of wheat resistance to Fusarium head blight: Comparison of two Fusarium species[J]. European Journal of Plant Pathology, 2018. 152(4): 869-884. |
[14] | Zhang J, Yang Y, Feng X, Xu H, Chen J, He Y. Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network[J]. Frontiers in Plant Science, 2020, 11(821). |
[15] | 薛来震, 徐磊, 谭晔, 刘向东. 不同品种水稻受褐飞虱危害后的光谱特征[J]. 南京农业大学学报, 2015. 38(5): 796-803. |
Xue L Z, Xu L, Tan Y, Liu X D. Spectral characteristics of different rice cultivars damaged by the brown planthopper Nilaparvata lugens[J]. Journal of Nanjing Agricultural University, 2015. 38(5): 796-803. (in Chinese with English abstract) | |
[16] | 孙启花. 褐飞虱和稻纵卷叶螟为害后水稻的光谱特征[D]. 南京: 南京农业大学, 2010. |
Sun Q H. Spectral characteristics of rice damaged by Nilaparvata lugens(Stål) and Cnaphalocrocis medinalis(Guenée)[D], Nanjing: Nanjing Agricultural University, 2010. (in Chinese with English abstract) | |
[17] | Yang C M, Cheng C H, Chen R K. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder[J]. Crop Science, 2007. 47(1): 329-335. |
[18] | 孙启花, 刘向东. 褐飞虱危害在水稻植株光谱反射率上的表现[J]. 中国水稻科学, 2010, 24(2): 203-209. |
Sun Q H, Liu X D. Spectral characteristics of the damaged rice plant by brown planthopper, Nilaparvata lugens[J]. Chinese Journal of Rice Science, 2010, 24(2): 203-209. (in Chinese with English abstract) | |
[19] | Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. |
[20] | 黄敬峰, 王福民, 王秀珍, 刘飞. 水稻高光谱遥感实验与机理研究[M]. 杭州: 浙江大学出版社, 2010. |
Huang J F, Wang F M, Wang X Z, Liu F. Experiment and Mechanism of Rice Hyperspectral Remote Sensing[M]. Hangzhou: Zhejiang Universisty Press, 2010. (in Chinese) | |
[21] | Penuelas J B. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[J]. Photosynthetica, 1995, 31: 221-230. |
[22] | Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress[J]. International Journal of Remote Sensing, 1994, 15(3): 697-703. |
[23] | Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves[J]. International Journal of Remote Sensing, 1998: 657-675. |
[24] | 魏勤, 陈仕军, 黄炜斌, 马光文, 陶春华. 利用随机森林回归的现货市场出清价格预测方法[J]. 中国电机工程学报, 2021, 41(4): 1360-1367. |
Wei Q, Chen S J, Huang W B, Ma G W, Tao C H. Forecasting method of clearing price in spot market by random forest regression[J]. Proceedings of the CSEE, 2021, 41(4): 1360-1367. (in Chinese with English abstract) | |
[25] | Joseph V R. Optimal ratio for data splitting[J]. Statistical Analysis and Data Mining, 2022, 15(4): 531-538. |
[26] | 梁子超, 李智炜, 赖铿, 林卓琛, 李铁钢, 张晋昕. 10折交叉验证用于预测模型泛化能力评价及其R软件实现[J]. 中国医院统计, 2020, 27(4): 289-292. |
Liang Z C, Li Z W, Lai K, Lin Z C, Li T G, Zhang J X. Application of 10-fold cross-validation in the evaluation of generalization ability of prediction models and the realization in R[J]. Chinese Journal of Hospital Statistics, 2020, 27(4): 289-292. | |
[27] | Speiser J L, Miller M E, Tooze J, Edward I. A Comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93-101. |
[28] | Elliott N, Mirik M, Yang Z, Jones D, Phoofolo M, Catana V, Giles K, Michels G J. Airborne remote sensing to detect greenbug stress to wheat[J]. Southwestern Entomologist, 2009, 34(3): 205-211. |
[29] | 邱白晶, 陈国平, 程麒文. 水稻白背飞虱虫害的冠层光谱特性与虫量反演[J]. 农业机械学报, 2008(9): 92-95+99. |
Qiu B J, Chen G P, Cheng Q W. Canopy spectral reflectance feature of rice infected with Sogatella furcifera and insect number inversion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008(9): 92-95+99. (in Chinese with English abstract) | |
[30] | 陈鹏程, 张建华, 李眉眉, 雷勇辉. 土耳其斯坦叶螨为害棉叶的生理变化及光谱特征分析[J]. 昆虫知识, 2007, 44(1): 61-65. |
Chen P C, Zhang J F, Li M M, Lei Y H. Physiological change and hyperspectral character analysis of cotton leaves infested by Tetranychus turkestani[J]. Chinese Journal of Applied Entomology, 2007, 44(1): 61-65. (in Chinese with English abstract) | |
[31] | Riedell W E, Blackmer T M. Leaf reflectance spectra of cereal aphid-damaged wheat[J]. Crop Science, 1999, 39: 1835-1840. |
[32] | 吴达科, 马承伟, 杜尚丰. 支持向量机在斑潜蝇虫害叶片光谱分析中的应用[J]. 农业机械学报, 2007(10): 87. |
Wu D K, Ma C W, Du S W. Classification visible spectra of leafminer-infected leaves by support vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(10): 87. (in Chinese with English abstract) | |
[33] | Lu Y, Li X, Li W, Shen T, He Z, Zhang M, Zhang H, Sun Y, Liu F. Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics[J]. Spectrochim Acta A: Molecular and Biomolecular Spectroscupy, 2021, 257: 119759. |
[34] | Huang H, Shi G, He H, Duan Y, Luo F. Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning[J]. IEEE Transactions on Cybernetics, 2020. 50(6): 2604-2616. |
[35] | 张敏, 郭涛, 刘轲, 黄平, 喻君, 刘仕川, 刘泳伶, 李源洪. 基于高光谱植被指数的水稻LAI遥感估算[J]. 西南农业学报, 2022, 35(11): 1-10. |
Zhang M, Guo T, Liu K, Huang P, Yu J, Liu S C, Liu Y L, Li Y G. Estimating rice LAI in using remotely sensed hyperspectral vegetation index[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(11): 2651-2658. (in Chinese with English abstract) | |
[36] | 李娜. 基于多源遥感数据的玉米典型虫害监测研究[D]. 哈尔滨: 东北农业大学, 2012. |
Li N. Research on corn bober monitoring base on multi-source remote sensing data[D]. Harbin: Northeast agricultural university, 2012. (in Chinese with English abstract) | |
[37] | Qiu Z, Chen J, Zhao Y, Zhu S, He Y, Zhang C. Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network[J]. Applied Sciences, 2018, 8(2): 212. |
[38] | 徐元统. 基于高光谱的水稻品种鉴别系统设计与实现[D]. 哈尔滨: 黑龙江大学, 2019. |
Xu Y T. Design and implementation of rice variety identification system based on hyperspectral[D]. Harbin: Heilongjiang University, 2019. (in Chinese with English abstract) | |
[39] | Hao Y, Geng P, Wu W, Wen Q, Rao M. Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics[J]. Molecules, 2019, 24(24): 4568. |
[40] | Zhang J, Feng X, Wu Q, Yang G, Tao M, Yang Y, He Y. Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep learning[J]. Plant Methods, 2022, 18(1): 49. |
[41] | Cao Y, Yuan P, Xu H, Martinez-Ortega J F, Feng J, Zhai Z. Detecting asymptomatic infections of rice bacterial leaf blight using hyperspectral imaging and 3-dimensional convolutional neural network with spectral dilated convolution[J]. Frontiers in Plant Science, 2022, 13: 963170. |
[1] | CHENG Ling, HUANG Fugang, QIU Yipu, WANG Xinyi, SHU Wan, QIU Yongfu, LI Fahuo. Genetic Analysis and Identification of Brown Planthopper Resistance Gene in indica Rice Accession 570011 [J]. Chinese Journal OF Rice Science, 2023, 37(3): 244-252. |
[2] | Yinhua MA, Pingfang LI, Wenjing DONG, Songwang YI, Fang YANG, Bo DU, Chenzhong JIN. Mechanism Analysis of Rice Resistance Protein OsRRK1 Againstthe Brown Planthopper [J]. Chinese Journal OF Rice Science, 2020, 34(6): 512-519. |
[3] | Yongsheng ZHU, Jianlin BAI, Hongguang XIE, Fangxi WU, Xi LUO, Shenfei JIANG, Wei HE, Liping CHEN, Qiuhua CAI, Huaan XIE, Jianfu ZHANG. Breeding Restore Lines of Hybrid Rice by Pyramiding Genes for Resistance to White Backed Planthoppers and Brown Planthoppers [J]. Chinese Journal OF Rice Science, 2019, 33(5): 421-428. |
[4] | Haoyu JIANG, Gai ZENG, Ming HAO, Xianggui HUANG, Yinghui XIAO. Identification of Brown Planthopper Resistance Genes in Broad-spectrum Blast Resistant Rice Germplasm 75-1-127 and Its Molecular Marker-Assisted Selection Breeding [J]. Chinese Journal OF Rice Science, 2019, 33(3): 227-234. |
[5] | Hai-peng WANG, Xiao-xi HUANG, Yue-yang LIANG, Jun ZHU, Cui-xia ZHANG, Xiu-mei WANG, Chang-wei GONG, Ai-ping ZHENG, Qi-ming DENG, Shuang-cheng LI, Ling-xia WANG, Ping LI, Shi-quan WANG. Development and Identification of Insect Resistant Transgenic Rice with Cry30Fa1 Gene [J]. Chinese Journal OF Rice Science, 2016, 30(3): 256-264. |
[6] | XU Hongxing1,2, ZHENG Xusong2, YANG Yajun2, WANG Xin2, FU Qiang3, YE Gongyin1*, . PCRDGGE Analysis of the Bacterial Community in Different Populations of Rice Brown Planthopper, Nilaparvata lugens Stl [J]. Chinese Journal of Rice Science, 2014, 28(2): 217-222. |
[7] | XIN Ming-Yue, YIN Hong *,Zhang Tao , ZHANG Mei-Ling. Estimation of Rice Absorbed Photosynthetically Active Radiation by Hyperspectral Remote Sensing [J]. Chinese Journal of Rice Science, 2011, 25(4): 443-446. |
[8] | PENG Dai-liang,HUANG Jing-feng,SUN Hua-sheng,WANG Fu-min. County Level Rice Yield Estimation Based on Combination of Terra and Aqua MODIS EVIs [J]. Chinese Journal of Rice Science, 2010, 24(5): 516-522 . |
[9] | HOU Li-yuan,YU Ping,XU Qun,YUAN Xiao-ping,YU Han-yong,WANG Yi-ping,WANG Cai-hong,WAN Guo,PENG Suo-tang,WEI Xing-hua . Genetic Analysis and Preliminary Mapping of Two Recessive Resistance Genes in Rice to Brown Planthopper, Nilaparvata lugens [J]. Chinese Journal of Rice Science, 2010, 24(4): 367-371 . |
[10] | ZHOU Tong#,WU Li-juan#,WANG Ying,CHENG Zhao-bang,JI Ying-hua,FAN Yong-jian,ZHOU Yi-jun*. Preliminary Report on the Transmission of Rice BlackStreaked Dwarf Virus from Frozen Infected Leaves to Rice by Insect Vector Small Brown Planthopper (Laodelphax striatellus) [J]. Chinese Journal of Rice Science, 2010, 24(4): 425-428 . |
[11] | LIANG Yun-tao,#,WANG Chun-lian,#, LAI Feng-xiang, LIU Pi-qing,WANG Jian,FU Qiang,ZHAO Kai-jun. Development of STS Marker KC1 for Brown Planthopper Resistance Gene Bph18(t) and Marker Assisted Selection Efficiency [J]. Chinese Journal of Rice Science, 2010, 24(3): 244-250 . |
[12] | SUN Qihua,LIU Xiangdong*. Spectral Characteristics of the Damaged Rice Plant by Brown Planthopper, Nilaparvata lugens [J]. Chinese Journal of Rice Science, 2010, 24(2): 203-209 . |
[13] | SHI Jingjing,LIU Zhanyu,ZHANG Lili,ZHOU Wan,HUANG Jingfeng. Hyperspectral Recognition of Rice Damaged by Rice Leaf Roller Based on Support Vector Machine [J]. Chinese Journal of Rice Science, 2009, 23(3): 331-334 . |
[14] | QIAO Hui ,LIU Fang ,LUO Ju ,LAI Fengxiang ,FU Qiang ,WANG Hua di ,DAI De jiang . Fitness of the Small Brown Planthopper (Laodelphax striatellus) on Different Plants [J]. Chinese Journal of Rice Science, 2009, 23(1): 71-71~78 . |
[15] | ZHANG Hao,YAO Xu-guo,ZHANG Xiao-bin,ZHU Li-li,YE Shao-ting,ZHENG Ke-feng,HU Wei-qun. Measurement of Rice Leaf Chlorophyll and Seed Nitrogen Contents by Using Multi-Spectral Imagine [J]. Chinese Journal of Rice Science, 2008, 22(5): 555-558 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||