Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (5): 507-517.DOI: 10.16819/j.1001-7216.2023.220908
• Research Papers • Previous Articles Next Articles
YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua*()
Received:
2022-09-30
Revised:
2022-12-08
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email: 姚晓云, 陈春莲, 熊运华, 黄永萍, 彭志勤, 刘进, 尹建华*()
通讯作者:
*email: 基金资助:
YAO Xiaoyun, CHEN Chunlian, XIONG Yunhua, HUANG Yongping, PENG Zhiqing, LIU Jin, YIN Jianhua. Identification of QTL for Milling and Appearance Quality Traits in Rice (Oryza sativa L.)[J]. Chinese Journal OF Rice Science, 2023, 37(5): 507-517.
姚晓云, 陈春莲, 熊运华, 黄永萍, 彭志勤, 刘进, 尹建华. 水稻加工和外观品质性状QTL鉴定[J]. 中国水稻科学, 2023, 37(5): 507-517.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220908
性状 Trait | 环境 Environment | 亲本 Parent | 重组自交系群体 RIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
龙稻5 LD5 | 中优早8 ZYZ8 | 差值 Difference | 均值±标准误 Mean±SD | 变幅 Range | 峰度 Skewness | 偏度 Kurtosis | |||
糙米率 | E1 | 74.28 | 77.67 | 3.39 | 77.50±3.30 | 61.60−89.00 | −1.59 | 1.84 | |
BR | E2 | 80.65 | 77.15 | −3.50 | 78.42±2.51 | 61.70−83.60 | −2.17 | 1.62 | |
E3 | 79.65 | 78.65 | −1.00 | 76.93±2.18 | 68.98−80.90 | −0.80 | 0.63 | ||
精米率 | E1 | 72.36 | 58.06 | −14.30** | 58.29±5.82 | 41.90−78.90 | −0.26 | 0.69 | |
MR | E2 | 74.45 | 67.70 | −6.75* | 64.30±4.00 | 51.40−72.10 | −0.82 | 0.95 | |
E3 | 70.34 | 63.66 | −6.68** | 63.98±3.47 | 52.23−71.54 | −0.78 | 1.09 | ||
整精米率 | E1 | 52.72 | 39.74 | −12.98** | 39.97±13.02 | 11.70−78.30 | −0.17 | −0.62 | |
HR | E2 | 70.03 | 42.28 | −4.33* | 53.82±9.68 | 22.90−70.10 | −1.10 | 1.14 | |
E3 | 44.62 | 30.42 | −14.20** | 54.92±7.36 | 26.73−66.60 | −1.16 | 1.65 | ||
长宽比 | E1 | 2.01 | 2.76 | 0.75** | 2.00±0.11 | 1.60−2.61 | 0.45 | 0.09 | |
MLW | E2 | 2.15 | 2.80 | 0.65** | 2.12±0.09 | 1.82−2.75 | 0.30 | 0.10 | |
E3 | 2.23 | 2.65 | 0.42** | 2.17±0.21 | 1.64−2.69 | 0.50 | −0.03 | ||
垩白粒率 | E1 | 45.17 | 88.88 | 43.71** | 66.79±22.74 | 9.40−99.80 | −0.52 | −0.42 | |
PGWC | E2 | 17.59 | 44.21 | 26.62** | 52.71±20.04 | 8.20−98.40 | 0.11 | −0.42 | |
E3 | 10.60 | 27.50 | 16.90** | 31.39±21.04 | 5.57−96.79 | 1.10 | 0.78 | ||
垩白度 | E1 | 13.76 | 44.03 | 30.27** | 29.03±15.44 | 2.50−65.60 | 0.41 | −0.58 | |
DGWC | E2 | 3.75 | 11.20 | 7.45* | 17.96±9.97 | 2.60−51.70 | 1.05 | 0.99 | |
E3 | 1.20 | 15.17 | 13.97* | 8.92±7.59 | 1.57−46.00 | 2.06 | 1.27 |
Table 1. Milling and appearance quality traits of the parents and RIL populations.
性状 Trait | 环境 Environment | 亲本 Parent | 重组自交系群体 RIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
龙稻5 LD5 | 中优早8 ZYZ8 | 差值 Difference | 均值±标准误 Mean±SD | 变幅 Range | 峰度 Skewness | 偏度 Kurtosis | |||
糙米率 | E1 | 74.28 | 77.67 | 3.39 | 77.50±3.30 | 61.60−89.00 | −1.59 | 1.84 | |
BR | E2 | 80.65 | 77.15 | −3.50 | 78.42±2.51 | 61.70−83.60 | −2.17 | 1.62 | |
E3 | 79.65 | 78.65 | −1.00 | 76.93±2.18 | 68.98−80.90 | −0.80 | 0.63 | ||
精米率 | E1 | 72.36 | 58.06 | −14.30** | 58.29±5.82 | 41.90−78.90 | −0.26 | 0.69 | |
MR | E2 | 74.45 | 67.70 | −6.75* | 64.30±4.00 | 51.40−72.10 | −0.82 | 0.95 | |
E3 | 70.34 | 63.66 | −6.68** | 63.98±3.47 | 52.23−71.54 | −0.78 | 1.09 | ||
整精米率 | E1 | 52.72 | 39.74 | −12.98** | 39.97±13.02 | 11.70−78.30 | −0.17 | −0.62 | |
HR | E2 | 70.03 | 42.28 | −4.33* | 53.82±9.68 | 22.90−70.10 | −1.10 | 1.14 | |
E3 | 44.62 | 30.42 | −14.20** | 54.92±7.36 | 26.73−66.60 | −1.16 | 1.65 | ||
长宽比 | E1 | 2.01 | 2.76 | 0.75** | 2.00±0.11 | 1.60−2.61 | 0.45 | 0.09 | |
MLW | E2 | 2.15 | 2.80 | 0.65** | 2.12±0.09 | 1.82−2.75 | 0.30 | 0.10 | |
E3 | 2.23 | 2.65 | 0.42** | 2.17±0.21 | 1.64−2.69 | 0.50 | −0.03 | ||
垩白粒率 | E1 | 45.17 | 88.88 | 43.71** | 66.79±22.74 | 9.40−99.80 | −0.52 | −0.42 | |
PGWC | E2 | 17.59 | 44.21 | 26.62** | 52.71±20.04 | 8.20−98.40 | 0.11 | −0.42 | |
E3 | 10.60 | 27.50 | 16.90** | 31.39±21.04 | 5.57−96.79 | 1.10 | 0.78 | ||
垩白度 | E1 | 13.76 | 44.03 | 30.27** | 29.03±15.44 | 2.50−65.60 | 0.41 | −0.58 | |
DGWC | E2 | 3.75 | 11.20 | 7.45* | 17.96±9.97 | 2.60−51.70 | 1.05 | 0.99 | |
E3 | 1.20 | 15.17 | 13.97* | 8.92±7.59 | 1.57−46.00 | 2.06 | 1.27 |
环境Environment | 性状Trait | 糙米率BR | 精米率MR | 整精米率HR | 长宽比MLW | 垩白粒率PGC |
---|---|---|---|---|---|---|
早稻 | 精米率MR * | 0.482** | ||||
E1 | 整精米率HR | 0.159* | 0.482** | |||
长宽比MLW | −0.191* | −0.021 | 0.019 | |||
垩白粒率PGWC | 0.125* | −0.63* | −0.025 | −0.303** | ||
垩白度DGWC | 0.118 | −0.216** | −0.042 | −0.315** | 0.929** | |
晚稻 | 精米率MR | 0.672** | ||||
E2 | 整精米率HR | 0.313** | 0.560** | |||
长宽比MLW | −0.136* | 0.007 | 0.019 | |||
垩白粒率PGWC | 0.075 | −0.222** | −0.233* | −0.335** | ||
垩白度DGWC | 0.333** | −0.261** | −0.285** | −0.310** | 0.927** | |
海南 | 精米率MR | 0.572** | ||||
E3 | 整精米率HR | 0.061 | 0.557** | |||
长宽比MLW | −0.120* | −0.029 | 0.077 | |||
垩白粒率PGWC | −0.281** | −0.282** | −0.252** | −0.300** | ||
垩白度DGWC | −0.299** | −0.252** | 0.166* | −0.278** | 0.938** |
Table 2. Correlation coefficients of the milling and appearance quality under multi-environments.
环境Environment | 性状Trait | 糙米率BR | 精米率MR | 整精米率HR | 长宽比MLW | 垩白粒率PGC |
---|---|---|---|---|---|---|
早稻 | 精米率MR * | 0.482** | ||||
E1 | 整精米率HR | 0.159* | 0.482** | |||
长宽比MLW | −0.191* | −0.021 | 0.019 | |||
垩白粒率PGWC | 0.125* | −0.63* | −0.025 | −0.303** | ||
垩白度DGWC | 0.118 | −0.216** | −0.042 | −0.315** | 0.929** | |
晚稻 | 精米率MR | 0.672** | ||||
E2 | 整精米率HR | 0.313** | 0.560** | |||
长宽比MLW | −0.136* | 0.007 | 0.019 | |||
垩白粒率PGWC | 0.075 | −0.222** | −0.233* | −0.335** | ||
垩白度DGWC | 0.333** | −0.261** | −0.285** | −0.310** | 0.927** | |
海南 | 精米率MR | 0.572** | ||||
E3 | 整精米率HR | 0.061 | 0.557** | |||
长宽比MLW | −0.120* | −0.029 | 0.077 | |||
垩白粒率PGWC | −0.281** | −0.282** | −0.252** | −0.300** | ||
垩白度DGWC | −0.299** | −0.252** | 0.166* | −0.278** | 0.938** |
性状 Trait | 位点 Locus | 标记 Marker | LOD值LOD value | 贡献率PVE / % | 加性效应Additive effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E1 | E2 | E3 | E1 | E2 | E3 | |||||
糙米率BR | qBR1 | RM6547−RM1198 | 2.91 | 6.67 | −0.93 | ||||||||
精米率MR | qMR2 | RM1358−RM324 | 2.79 | 5.00 | −1.91 | ||||||||
qMR7 | STS7.1−RM5481 | 3.90 | 11.78 | −1.27 | |||||||||
整精米率 | qHR2 | RM5897−RM5699 | 3.25 | 2.62 | 5.58 | 6.07 | 3.92 | 2.50 | |||||
HR | qHR4 | RM5688−RM471 | 2.52 | 3.10 | 8.41 | 11.80 | −5.25 | −4.01 | |||||
qHR7 | RM1135−RM11 | 4.01 | 11.68 | −2.51 | |||||||||
qHR10 | RM5620−R10M40 | 2.93 | 9.48 | 2.25 | |||||||||
qHR11 | STS11.5−RM144 | 2.73 | 7.93 | 2.06 | |||||||||
长宽比 | qMLW1 | RI02519−RM259 | 2.98 | 8.98 | −0.07 | ||||||||
MLW | qMLW2 | RM1361−MM1065 | 4.12 | 4.77 | 0.07 | ||||||||
qMLW3.1 | STS3.8−R3M30 | 6.90 | 9.65 | 12.89 | 22.63 | 23.07 | 17.3 | 0.13 | 0.13 | 0.12 | |||
qMLW3.2 | RM3199−RM1352 | 6.76 | 5.81 | 13.61 | 11.55 | 0.09 | 0.09 | ||||||
qMLW5 | R5M13−RM3476 | 5.45 | 8.71 | 10.33 | 15.27 | 0.08 | 0.10 | ||||||
qMLW6 | RM6395−RM5814 | 2.92 | 4.99 | 6.51 | 8.54 | −0.09 | −0.08 | ||||||
qMLW8 | RM1376−RM4085 | 4.08 | 3.33 | 0.09 | |||||||||
qMLW10 | R10M40−STS10.3 | 7.02 | 14.47 | 0.11 | |||||||||
qMLW11 | STS11.2−RM21 | 3.42 | 3.60 | 3.12 | 5.87 | 5.44 | 7.78 | 0.06 | 0.06 | 0.07 | |||
qMLW12 | RM7120−STS12.2 | 6.58 | 7.67 | −0.08 | |||||||||
垩白粒率 | qPGWC1 | RM1361.1−RM6321 | 2.82 | 7.32 | −9.28 | ||||||||
PGWC | qPGWC2 | STS2.4−RM13603 | 4.28 | 12.02 | −9.24 | ||||||||
qPGWC3 | RM468−RM7000 | 3.24 | 2.93 | 9.75 | 5.94 | −5.81 | −4.96 | ||||||
qPGWC4 | STS4.2−R4M13 | 2.58 | 7.59 | 5.66 | |||||||||
qPGWC6.1 | RM190−RM587 | 3.70 | 11.53 | −8.86 | |||||||||
qPGWC6.2 | RM3827−RM1340 | 3.38 | 10.53 | 6.72 | |||||||||
qPGWC7 | RM3555−RM1306 | 3.14 | 3.70 | 5.30 | 11.87 | −7.32 | −7.02 | ||||||
qPGWC10 | RM6737−RM5620 | 2.62 | 6.07 | −6.13 | |||||||||
qPGWC11 | STS11.2−RM1124 | 3.89 | 4.61 | −6.93 | |||||||||
垩白度 | qDGWC1 | RM428−RM323 | 2.85 | 6.94 | 2.08 | ||||||||
DGWC | qDGWC2 | STS2.4−RM13603 | 4.62 | 11.53 | −6.28 | ||||||||
qDGWC3.1 | STS3.3−STS3.4 | 2.55 | 21.25 | 8.23 | |||||||||
qDGWC3.2 | MM3778−RM3513 | 2.59 | 6.13 | −3.25 | |||||||||
qDGWC6.1 | RM190−RM587 | 5.51 | 9.61 | −6.14 | |||||||||
qDGWC6.2 | RM1340−R6M44 | 2.87 | 4.20 | 4.50 | 10.31 | 4.90 | 2.56 | ||||||
qDGWC7 | RM3555−RM1306 | 2.67 | 3.23 | 6.94 | 7.84 | −3.44 | −2.20 | ||||||
qDGWC10 | RM467−RM6737 | 2.53 | 5.71 | −3.16 | |||||||||
qDGWC11 | STS11.2−RM1124 | 2.49 | 3.53 | 6.02 | 11.71 | 3.86 | −3.29 |
Table 3. Putative QTLs for milling and appearance quality traits detected under multi-environments.
性状 Trait | 位点 Locus | 标记 Marker | LOD值LOD value | 贡献率PVE / % | 加性效应Additive effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E1 | E2 | E3 | E1 | E2 | E3 | |||||
糙米率BR | qBR1 | RM6547−RM1198 | 2.91 | 6.67 | −0.93 | ||||||||
精米率MR | qMR2 | RM1358−RM324 | 2.79 | 5.00 | −1.91 | ||||||||
qMR7 | STS7.1−RM5481 | 3.90 | 11.78 | −1.27 | |||||||||
整精米率 | qHR2 | RM5897−RM5699 | 3.25 | 2.62 | 5.58 | 6.07 | 3.92 | 2.50 | |||||
HR | qHR4 | RM5688−RM471 | 2.52 | 3.10 | 8.41 | 11.80 | −5.25 | −4.01 | |||||
qHR7 | RM1135−RM11 | 4.01 | 11.68 | −2.51 | |||||||||
qHR10 | RM5620−R10M40 | 2.93 | 9.48 | 2.25 | |||||||||
qHR11 | STS11.5−RM144 | 2.73 | 7.93 | 2.06 | |||||||||
长宽比 | qMLW1 | RI02519−RM259 | 2.98 | 8.98 | −0.07 | ||||||||
MLW | qMLW2 | RM1361−MM1065 | 4.12 | 4.77 | 0.07 | ||||||||
qMLW3.1 | STS3.8−R3M30 | 6.90 | 9.65 | 12.89 | 22.63 | 23.07 | 17.3 | 0.13 | 0.13 | 0.12 | |||
qMLW3.2 | RM3199−RM1352 | 6.76 | 5.81 | 13.61 | 11.55 | 0.09 | 0.09 | ||||||
qMLW5 | R5M13−RM3476 | 5.45 | 8.71 | 10.33 | 15.27 | 0.08 | 0.10 | ||||||
qMLW6 | RM6395−RM5814 | 2.92 | 4.99 | 6.51 | 8.54 | −0.09 | −0.08 | ||||||
qMLW8 | RM1376−RM4085 | 4.08 | 3.33 | 0.09 | |||||||||
qMLW10 | R10M40−STS10.3 | 7.02 | 14.47 | 0.11 | |||||||||
qMLW11 | STS11.2−RM21 | 3.42 | 3.60 | 3.12 | 5.87 | 5.44 | 7.78 | 0.06 | 0.06 | 0.07 | |||
qMLW12 | RM7120−STS12.2 | 6.58 | 7.67 | −0.08 | |||||||||
垩白粒率 | qPGWC1 | RM1361.1−RM6321 | 2.82 | 7.32 | −9.28 | ||||||||
PGWC | qPGWC2 | STS2.4−RM13603 | 4.28 | 12.02 | −9.24 | ||||||||
qPGWC3 | RM468−RM7000 | 3.24 | 2.93 | 9.75 | 5.94 | −5.81 | −4.96 | ||||||
qPGWC4 | STS4.2−R4M13 | 2.58 | 7.59 | 5.66 | |||||||||
qPGWC6.1 | RM190−RM587 | 3.70 | 11.53 | −8.86 | |||||||||
qPGWC6.2 | RM3827−RM1340 | 3.38 | 10.53 | 6.72 | |||||||||
qPGWC7 | RM3555−RM1306 | 3.14 | 3.70 | 5.30 | 11.87 | −7.32 | −7.02 | ||||||
qPGWC10 | RM6737−RM5620 | 2.62 | 6.07 | −6.13 | |||||||||
qPGWC11 | STS11.2−RM1124 | 3.89 | 4.61 | −6.93 | |||||||||
垩白度 | qDGWC1 | RM428−RM323 | 2.85 | 6.94 | 2.08 | ||||||||
DGWC | qDGWC2 | STS2.4−RM13603 | 4.62 | 11.53 | −6.28 | ||||||||
qDGWC3.1 | STS3.3−STS3.4 | 2.55 | 21.25 | 8.23 | |||||||||
qDGWC3.2 | MM3778−RM3513 | 2.59 | 6.13 | −3.25 | |||||||||
qDGWC6.1 | RM190−RM587 | 5.51 | 9.61 | −6.14 | |||||||||
qDGWC6.2 | RM1340−R6M44 | 2.87 | 4.20 | 4.50 | 10.31 | 4.90 | 2.56 | ||||||
qDGWC7 | RM3555−RM1306 | 2.67 | 3.23 | 6.94 | 7.84 | −3.44 | −2.20 | ||||||
qDGWC10 | RM467−RM6737 | 2.53 | 5.71 | −3.16 | |||||||||
qDGWC11 | STS11.2−RM1124 | 2.49 | 3.53 | 6.02 | 11.71 | 3.86 | −3.29 |
性状 Trait | 染色体i Chr.i | 区间 Marker interval | 染色体j Chr.j | 区间 Marker interval | LOD值 LOD value | 贡献率 PVE /% | 上位性效应 Epistasis effect |
---|---|---|---|---|---|---|---|
糙米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 1 | RI02500−RM259 | 4.85 | 7.42 | 1.32 |
BR | 3(qDGWC3.1) | R3M10−STS3.3 | 4 | RM5688−RM471 | 6.25 | 2.59 | −4.18 |
3(qDGWC3.1) | R3M10−STS3.3 | 9 | RM7390−RM6051 | 5.21 | 6.96 | 1.69 | |
8 | RM6208−RM3395 | 1 | RM1198−RM1361.1 | 5.94 | 2.64 | 4.05 | |
整精米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 5 | R5M13−RM3476 | 6.24 | 3.16 | 7.79 |
HR | 3(qDGWC3.1) | STS3.3−STS3.4 | 11 | RM167−STS11.1 | 5.86 | 9.53 | −3.89 |
4 | RM5688−RM471 | 6(qPGWC6.2) | RM6395−RM5814 | 4.31 | 12.16 | 8.67 | |
长宽比 | 1 | RM1361.1−RM6321 | 10 | RM3451−RM590 | 4.55 | 6.66 | 0.10 |
MLW | 5 | R5M13−RM3476 | 8 | RM8018−RM1376 | 4.88 | 12.06 | 0.10 |
垩白粒率 | 1 | RM6547−R1M47 | 8 | RM3571−RM3754 | 4.53 | 11.37 | 10.85 |
DGWC | 1 | RM3240−R1M37 | 11 | RM5599−RM167 | 4.51 | 3.20 | −8.30 |
2 | STS2.4−RM13603 | 4 | STS4.3−RM348 | 4.44 | 16.16 | −8.10 | |
6 | RM587−RM217 | 2 | RM300.1−STS2.3 | 4.59 | 14.79 | 8.60 | |
6(qPGWC6.2) | R6M14−RM3827 | 3 | RM3513.1−RM1350 | 5.56 | 3.46 | 14.03 | |
6(qPGWC6.2) | R6M14−RM3827 | 5 | R5M13−RM3476 | 5.69 | 3.52 | 14.24 | |
7(qPGWC7) | RM3555−RM1306 | 3 | RM3513.1−RM1350 | 5.77 | 9.10 | 9.39 | |
7(qPGWC7) | RM3555−RM1306 | 4 | RM5688−RM471 | 4.84 | 9.41 | −9.21 | |
垩白度 | 3(qDGWC3.1) | R3M10−STS3.3 | 1 | RM3240−R1M37 | 5.84 | 4.31 | −4.94 |
PGWC | 3(qDGWC3.1) | STS3.3−STS3.4 | 4 | RM5688−RM471 | 7.83 | 5.11 | 8.82 |
3(qDGWC3.1) | STS3.3−STS3.4 | 12 | RM101−STS12.1 | 6.21 | 4.55 | −7.83 | |
4 | RM5688−RM471 | 6(qDGWC6.2) | R6M14−RM3827 | 5.84 | 4.46 | −7.55 | |
7(qDGWC7) | RM3555−RM1306 | 1 | RM6547−R1M47 | 5.57 | 4.23 | −3.77 | |
7(qDGWC7) | RM3555−RM1306 | 2 | RM1361.3−MM1065 | 4.98 | 3.80 | −3.78 | |
12 | RM7120−STS12.2 | 8 | RM6976−RM1345 | 6.35 | 3.54 | −5.01 | |
12 | STS12.2−RM1226 | 11(qDGWC11) | RM21−STS11.4 | 4.20 | 6.09 | −9.88 |
Table 4. QTLs with epistasis effects for milling and appearance quality detected in RILs population.
性状 Trait | 染色体i Chr.i | 区间 Marker interval | 染色体j Chr.j | 区间 Marker interval | LOD值 LOD value | 贡献率 PVE /% | 上位性效应 Epistasis effect |
---|---|---|---|---|---|---|---|
糙米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 1 | RI02500−RM259 | 4.85 | 7.42 | 1.32 |
BR | 3(qDGWC3.1) | R3M10−STS3.3 | 4 | RM5688−RM471 | 6.25 | 2.59 | −4.18 |
3(qDGWC3.1) | R3M10−STS3.3 | 9 | RM7390−RM6051 | 5.21 | 6.96 | 1.69 | |
8 | RM6208−RM3395 | 1 | RM1198−RM1361.1 | 5.94 | 2.64 | 4.05 | |
整精米率 | 3(qDGWC3.1) | STS3.3−STS3.4 | 5 | R5M13−RM3476 | 6.24 | 3.16 | 7.79 |
HR | 3(qDGWC3.1) | STS3.3−STS3.4 | 11 | RM167−STS11.1 | 5.86 | 9.53 | −3.89 |
4 | RM5688−RM471 | 6(qPGWC6.2) | RM6395−RM5814 | 4.31 | 12.16 | 8.67 | |
长宽比 | 1 | RM1361.1−RM6321 | 10 | RM3451−RM590 | 4.55 | 6.66 | 0.10 |
MLW | 5 | R5M13−RM3476 | 8 | RM8018−RM1376 | 4.88 | 12.06 | 0.10 |
垩白粒率 | 1 | RM6547−R1M47 | 8 | RM3571−RM3754 | 4.53 | 11.37 | 10.85 |
DGWC | 1 | RM3240−R1M37 | 11 | RM5599−RM167 | 4.51 | 3.20 | −8.30 |
2 | STS2.4−RM13603 | 4 | STS4.3−RM348 | 4.44 | 16.16 | −8.10 | |
6 | RM587−RM217 | 2 | RM300.1−STS2.3 | 4.59 | 14.79 | 8.60 | |
6(qPGWC6.2) | R6M14−RM3827 | 3 | RM3513.1−RM1350 | 5.56 | 3.46 | 14.03 | |
6(qPGWC6.2) | R6M14−RM3827 | 5 | R5M13−RM3476 | 5.69 | 3.52 | 14.24 | |
7(qPGWC7) | RM3555−RM1306 | 3 | RM3513.1−RM1350 | 5.77 | 9.10 | 9.39 | |
7(qPGWC7) | RM3555−RM1306 | 4 | RM5688−RM471 | 4.84 | 9.41 | −9.21 | |
垩白度 | 3(qDGWC3.1) | R3M10−STS3.3 | 1 | RM3240−R1M37 | 5.84 | 4.31 | −4.94 |
PGWC | 3(qDGWC3.1) | STS3.3−STS3.4 | 4 | RM5688−RM471 | 7.83 | 5.11 | 8.82 |
3(qDGWC3.1) | STS3.3−STS3.4 | 12 | RM101−STS12.1 | 6.21 | 4.55 | −7.83 | |
4 | RM5688−RM471 | 6(qDGWC6.2) | R6M14−RM3827 | 5.84 | 4.46 | −7.55 | |
7(qDGWC7) | RM3555−RM1306 | 1 | RM6547−R1M47 | 5.57 | 4.23 | −3.77 | |
7(qDGWC7) | RM3555−RM1306 | 2 | RM1361.3−MM1065 | 4.98 | 3.80 | −3.78 | |
12 | RM7120−STS12.2 | 8 | RM6976−RM1345 | 6.35 | 3.54 | −5.01 | |
12 | STS12.2−RM1226 | 11(qDGWC11) | RM21−STS11.4 | 4.20 | 6.09 | −9.88 |
Fig. 2. Genotyping of the major QTL, qChlak7, located on the chromosome target regions using the extreme lines. A and B indicate the distribution of chalkiness from different genotypes; C, Identification and validation of the major QTL qChlak7 were using the extreme lines; Gray bar and white bars indicate Longdao 5(LD5) and Zhongyouzao 8(ZYZ8) genotypes, respectively; G1-G7 represent for seven genotypes of RIL population lines, n represent for the number of each genotype; White and gray bars indicate chalky grain percentage and chalkiness degree of the seven genotypes, respectively; CK is control value(LD5). **Significant difference between the genotype and CK(P<0.01); ns, No significant difference(P>0.05).
编号 Number | 基因号 Gene ID | 基因功能 Gene function |
---|---|---|
ORF1 | LOC_Os07g48510 | 硫氧还蛋白,抗氧化、抗凋亡和调节转录因子活性 Thioredoxin, resistance transcription factor |
ORF2 | LOC_Os07g48596 | MYB家族转录因子 MYB transcription factor |
ORF3 | LOC_Os07g48660 | bZIP转录因子蛋白结构域 bZIP transcription factor domain containing protein |
ORF4 | LOC_Os07g48680 | 锌指蛋白,含C3HC4型结构域 Zinc finger, C3HC4 type domain containing protein |
ORF5 | LOC_Os07g48730 | 酪氨酸蛋白激酶(PTK)的结构域含蛋白 Tyrosine protein kinase domain containing protein |
ORF6 | LOC_Os07g48830* | 半乳糖醇合酶,糖基转移酶结构域含蛋白 Galactinol synthase, glycosyl transferase domain containing protein |
ORF7 | LOC_Os07g48840* | 丝氨酸/苏氨酸蛋白磷酸酶(MAPK)家族蛋白 Ser/Thr protein phosphatase family protein |
ORF8 | LOC_Os07g48850* | PPR重复序列蛋白,水稻胚乳发育相关基因OsFLO18 PPR repeat containing protein,endosperm development OsFLO18 |
ORF9 | LOC_Os07g48870 | MYB家族转录因子 MYB family transcription factor |
ORF10 | LOC_Os07g49000 | DNAJ热休克蛋白N端结构域 DNAJ heat shock N-terminal domain-containing protein |
ORF11 | LOC_Os07g49030 | 锌指蛋白,RING/FYVE/PHD型结构域含蛋白 Zinc finger, RING/FYVE/PHD-finger family protein |
Table 5. Analysis of key candidate genes in major QTL qChlak7 target region.
编号 Number | 基因号 Gene ID | 基因功能 Gene function |
---|---|---|
ORF1 | LOC_Os07g48510 | 硫氧还蛋白,抗氧化、抗凋亡和调节转录因子活性 Thioredoxin, resistance transcription factor |
ORF2 | LOC_Os07g48596 | MYB家族转录因子 MYB transcription factor |
ORF3 | LOC_Os07g48660 | bZIP转录因子蛋白结构域 bZIP transcription factor domain containing protein |
ORF4 | LOC_Os07g48680 | 锌指蛋白,含C3HC4型结构域 Zinc finger, C3HC4 type domain containing protein |
ORF5 | LOC_Os07g48730 | 酪氨酸蛋白激酶(PTK)的结构域含蛋白 Tyrosine protein kinase domain containing protein |
ORF6 | LOC_Os07g48830* | 半乳糖醇合酶,糖基转移酶结构域含蛋白 Galactinol synthase, glycosyl transferase domain containing protein |
ORF7 | LOC_Os07g48840* | 丝氨酸/苏氨酸蛋白磷酸酶(MAPK)家族蛋白 Ser/Thr protein phosphatase family protein |
ORF8 | LOC_Os07g48850* | PPR重复序列蛋白,水稻胚乳发育相关基因OsFLO18 PPR repeat containing protein,endosperm development OsFLO18 |
ORF9 | LOC_Os07g48870 | MYB家族转录因子 MYB family transcription factor |
ORF10 | LOC_Os07g49000 | DNAJ热休克蛋白N端结构域 DNAJ heat shock N-terminal domain-containing protein |
ORF11 | LOC_Os07g49030 | 锌指蛋白,RING/FYVE/PHD型结构域含蛋白 Zinc finger, RING/FYVE/PHD-finger family protein |
[1] | 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展[J]. 中国农业科学, 2016, 49: 4267-4283. |
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality[J]. Scientia Agricultura Sinica, 2016, 49: 4267-4283. (in Chinese with English abstract) | |
[2] | 程式华. 中国水稻育种百年发展与展望[J]. 中国稻米, 2021, 27(4):1-6. |
Cheng S H. One-hundred years’ development and prospect of rice breeding in China[J]. China Rice, 2021, 27(4): 1-6. (in Chinese with English abstract) | |
[3] | 周立军, 江玲, 翟虎渠, 万建民. 水稻垩白的研究现状与改良策略[J]. 遗传, 2009, 31(6): 563-572. |
Zhou LJ, Jiang L, Zhai H Q, Wang J M. Current status and strategies for improvement of rice grain chalkiness[J]. Hereditas, 2009, 31(6): 563-572. (in Chinese with English abstract) | |
[4] | 邱先进, 袁志华, 何文静, 刘环, 徐建龙, 邢丹英. 水稻垩白性状遗传育种研究进展[J]. 植物遗传资源学报, 2014, 15(5): 992-998. |
Qiu X J, Yuan Z H, He W J, Liu H, Xu J L, Xing D Y. Progress in genetic and breeding research on rice chalkiness[J]. Journal of Plant Genetic Resources, 2014, 15(5): 992-998. (in Chinese with English abstract) | |
[5] | Peng B, Wang L Q, Fan C C, Jiang G H, Luo L J, Li Y B, He Y Q. Comparative mapping of chalkiness components in rice using five populations across two environments[J]. BMC Genetics, 2014, 15: 1. |
[6] | Gao F Y, Zeng L H, Qiu L, Lu X J, Ren J S, Wu X T, Su X W, Gao Y M, Ren G J. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2016, 15(8): 1693-1702. |
[7] | Yun P, Zhu Y, Wu B, Gao G J, Sun P, Zhang Q L, He Y Q. Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice[J]. Molecular Breeding, 2016, 36: 162. |
[8] | Ren D Y, Rao Y C, Huang L C, Leng Y J, Hu J, Lu M, Zhang G H, Zhu L, Gao Z, Dong G J, Guo L B, Qian Q, Zeng D L. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.)[J]. Rice, 2016, 9: 4. |
[9] | Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P B, Yao J L, Zhou Z Q, Chen J X, Liu R J, Cheng S Y, Zhang H, Zheng Y Y, Lou G M, Chen P L, Wan S S, Zhou M S, Li Y H, Gao G J, Zhang Q L, Li X H, Lian X M, He Y Q. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality[J]. The Plant Cell, 2022, 36(5): 1912-1932. |
[10] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[11] | 邱先进, 袁志华, 陈凯, 杜斌, 何文静, 杨隆维, 徐建龙, 邢丹英, 吕文恺. 用全基因组关联分析解析籼稻垩白的遗传基础[J] .作物学报, 2015, 41(7): 1007-1016. |
Qiu X J, Yuan Z H, Chen K, Du B, He W J, Yang L W, Xu J L, Xing D Y, Lu W K. Genetic dissection of grain chalkiness in indica mini-core germplasm using genome-wide association method[J]. Acta Agronmica Sinca, 2015, 41(7): 1007-1016. (in Chinese with English abstract) | |
[12] | Wang E, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1370-1374. |
[13] | Cai Y C, Li S F, Jiao G A, Sheng Z H, Wu Y W, Shao G N, Xie L H, Peng C, Xu J F, Tang S Q, Wei X J, Hu P S. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling[J]. Plant Biotechnology Journal, 2018, 16(11): 1878-1891. |
[14] | Zhu A K, Zhang Y X, Zhang Z H, Wang B F, Xue P, Cao Y R, Chen Y Y, Li Z H, Liu Q E, Cheng S H, Cao L Y. Genetic dissection of for a quantitative trait locus for percentage of chalky grain in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2018, 9: 1173. |
[15] | Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G, Liu S J, Zhang L J, Wang J K, Wan J M. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2009, 118(3): 581-590. |
[16] | Guo T, Liu X L, Wan X Y, Weng J F, Liu S J, Liu X, Chen M J, Li J J, Su N, Wu F Q, Cheng Z J, Guo X P, Lei C L, Wang J L, Jiang L, Wan J M. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2011, 53(8): 598-607. |
[17] | Gao Y, Liu C L, Li Y Y, Zhang A P, Dong G J, Xie L H, Zhang B, Ruan B P, Hong K, Xue D W, Zeng D L, Guo L B, Qian Q, Gao Z Y. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice, 2016, 9: 41. |
[18] | 王小雷, 刘杨, 孙晓棠, 欧阳林娟, 潘锦龙, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 朱昌兰. 不同环境下稻米品质性状QTL的检测及稳定性分析[J]. 中国水稻科学, 2020, 34(1): 17-27. |
Wang X L, Liu Y, Sun Y, Sun X T, Oyang L J, Pan J L, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Hu L F, Xu J, He H H, Zhu C L. Identification and stability analysis of QTL for grain quality traits under multiple environments in rice[J]. Chinese Journal of Rice Science, 2020, 34(1): 17-27. (in Chinese with English abstract) | |
[19] | 杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波. 不同生态地点下稻米外观品质性状的QTL定位分析[J]. 中国水稻科学, 2011, 25(1): 43-51. |
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Yang J B. Identification of QTLs for rice appearance quality traits across different ecological sites[J]. Chinese Journal of Rice Science, 2011, 25(1): 43-51. (in Chinese with English abstract) | |
[20] | Zhao X Q, Daygon V D, McNally K L, Hamilton R S, Xie F M, Reinke R F, Fitzgerald M A. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and Applied Genetics, 2016, 129: 141-153. |
[21] | 彭强, 李佳丽, 张大双, 姜雪, 邓茹月, 吴健强, 朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255. |
Peng Q, Li J L, Zhang D S, Jiang X, Deng R Y, Wu J Q, Zhu S S. QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments[J]. Acta Agronomica Sinica, 2018, 44(8): 1248-1255. (in Chinese with English abstract) | |
[22] | 陈喜娜, 袁泽科, 胡珍珍, 赵全志, 孙红正. 利用QTL-Seq定位粳稻整精米率QTL[J]. 中国水稻科学, 2021, 35(5): 449-454. |
Chen X N, Yuan Z K, Hu Z Z, Zhao Q Z, Sun H Z. QTL-seq mapping of head rice rate QTLs in japonica rice[J]. Chinese Journal of Rice Science, 2021, 35(5): 449-454. (in Chinese with English abstract) | |
[23] | 刘进, 姚晓云, 刘丹, 余丽琴, 李慧, 王棋, 王嘉宇, 黎毛毛. 不同生态环境下水稻穗部性状QTL鉴定[J]. 中国水稻科学, 2019, 33 (2): 124-134. |
Liu J, Yao X Y, Liu D, Yu L Q, Li H, Wang Q, Wang J Y, Li M M. Identification of QTL for panicle traits under multiple environments in rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2019, 33(2): 124-134. (in Chinese with English abstract) | |
[24] | Wang J K, Li H H, Zhang L Y,. Meng L. QTL IciMapping 4.2[OE/OL]. http://www.isbreeding.net. |
[25] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1: 72-84. |
[26] | Zheng T Q, Xu J L, Li Z K, Zhai H Q, Wan J M. Genomic regions associated with milling quality and grain shape identified in a set of random introgression lines of rice (Oryza sativa L.)[J]. Plant Breeding, 2007, 126: 158-163. |
[27] | 方雅洁, 朱亚军, 吴志超, 陈凯, 申聪聪, 石英尧, 徐建龙. 全基因组关联定位籼稻种质资源外观和加工品质QTL[J]. 作物学报, 2018, 44(1): 32-42. |
Fang Y J, Zhu Y J, Wu Z C, Chen K, Shen C C, Shi Y Y, Xu J L. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm[J]. Acta Agronomica Sinica, 2018, 44(1): 32-42. (in Chinese with English abstract) | |
[28] | 李一博, 赵雷. 水稻品品质性状的遗传改良及其关键科学问题[J]. 生命科学, 2016, 28(10): 1168-1179. |
Li Y B, Zhao L. Genetic improvement and key scientific questions of grain quality traits in rice[J]. Chinese Bulletin of Life Sciences, 2016, 28(10): 1168-1179. (in Chinese with English abstract) | |
[29] | 吉志军, 尤娟, 王龙俊, 王绍华, 杜永林, 张国发, 王强盛, 丁艳锋. 不同基因型水稻稻米加工品质和外观品质的生态型差异[J]. 南京农业大学学报, 2005, 28(4): 16-20. |
Ji Z J, You J, Wang L J, Wang SH, Du Y L, Zhang Q S, Ding Y F. Ecotype differences in milling qualities and appearance qualities of different rice genotypes[J]. Journal of Nanjing Agricultural University, 2005, 28(4): 16-20. (in Chinese with English abstract) | |
[30] | 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4):822-833. |
Wang Y X, Yang L X. Response of rice quality to major climate change factors[J]. Journal of Agro-Environment Science, 2020, 39(4): 822-833. (in Chinese with English abstract) | |
[31] | Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments[J]. Theoretical and Applied Genetics, 2005, 110: 1334-134. |
[32] | 李进波, 戚华雄. 水稻灌浆期间高温对水稻外观品质的影响[J]. 湖北农业科学, 2019, 58(22): 28-30, 53. |
Li J B, Qi H X. Effects on appearance quality of rice under high temperature during grain filling stage[J]. Hubei Agricultural Sciences, 2019, 58(22): 28-30, 53. (in Chinese with English abstract) | |
[33] | 徐富贤, 刘茂, 周兴兵, 郭晓艺, 张林, 蒋鹏, 朱永川, 熊洪. 长江上游高温伏旱区气象因子对杂交中稻产量与稻米品质的影响[J]. 应用与环境生物学报, 2020, 26(1): 106-116. |
Xu F X, Liu M, Zhou X B, Guo X Y, Zhang L, Jiang P, Zhu Y C, Xiong H. Effects of meteorological factors on yield and quality of mid-season hybrid rice in a high temperature and drought area in the upper reaches of the Yangtze River[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 106-116. (in Chinese with English abstract) | |
[34] | 王东明, 陶冶, 朱建国, 刘钢, 朱春梧. 稻米外观与加工品质对大气CO2浓度升高的响应[J]. 中国水稻科学, 2019, 33(4): 338-346. |
Wang D M, Tao Z, Zhu J G, Liu G, Zhu C W. Responses of rice appearance and processing quality to elevated atmospheric CO2 concentration[J]. Chinese Journal of Rice Science, 2019, 33(4): 338-346. (in Chinese with English abstract) | |
[35] | 吴海兵, 刘道红, 钟鸣, 汪友元. 气候因子对稻米品质形成及其影响机制的研究进展[J]. 湖北农业科学, 2019, 58(2): 13-18. |
Wu H B, Liu D H, Zhong M, Wang Y Y. Research progress of climate factor on quality formation and influence mechanism in rice[J]. Hubei Agricultural Sciences, 2019, 58(2): 13-18. (in Chinese with English abstract) | |
[36] | 李承欣, 王敬国, 刘化龙, 孙健, 王江旭, 赵宏伟, 邹德堂. 水、旱条件下稻米品质相关性状的QTL定位及其与环境互作分析[J]. 农业生物技术学报, 2016, 24(10): 1491-1499. |
Li C H, Wang J G, Liu H L, Sun J, Wang J X, Zhao H W, Zou D T. QTL mapping and QTL × environment interaction analysis of grain quality-related traits in rice under water-and dry-cultivation conditions[J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1491-1499. (in Chinese with English abstract) | |
[37] | 翁建峰, 万向元, 郭涛, 江玲, 翟虎渠, 万建民. 利用CSSL群体研究稻米加工品质相关QTL表达的稳定性[J]. 中国农业科学, 2007, 40(10): 2128-2135. |
Weng J F, Wan X Y, Guo T, Jiang L, Zhai H Q, Wan J M. Stability analysis of QTL for milling quality of rice (Oryza stativa L.) using CSSL population[J]. Scientia Agricultura Sinica, 2007, 40(10): 2128-2135. (in Chinese with English abstract) | |
[38] | Zhao X Q, Daygon V D, McNally K L, Hamilton R S, Xie F M, Reinke R F, Fitzgerald M A. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and Applied Genetics, 2016, 129: 141-153. |
[39] | 胡霞, 石瑜敏, 贾倩, 徐琴, 王韵, 陈凯, 孙勇, 朱苓华, 徐建龙, 黎志康. 影响水稻穗部性状及籽粒碾磨品质的 QTL 及其环境互作分析[J]. 作物学报, 2011, 37(7): 1175-1185. |
Hu X, Shi Y M, Jia Q, Xu Q, Wang Y, Chen K, Sun Y, Zhu L H, Xu J L, Li Z K. Analyses of QTLs for rice panicle and milling quality traits and their interaction with environment[J]. Acta Agronomica Sinica, 2011, 37(7): 1175-1185. (in Chinese with English abstract) | |
[40] | 周勇, 高云, 朱松松, 朱金燕, 王军, 裔传灯, 仲维功, 梁国华. 基于染色体单片段代换系的水稻糙米率QTL的定位[J]. 华北农学报, 2013, 28(6): 1-5. |
Zhou Y, Gao Y, Zhu S S, Zhu J J, Wang J, Yi C D, Zhong W G, Liang G H. QTL Mapping of brown rice rate using chromosome single segment substituted lines in rice[J]. Acta Agriculturae Boreall-sinica, 2013, 28(6): 1-5. (in Chinese with English abstract) | |
[41] | 王小雷, 刘杨, 孙晓棠, 欧阳林娟, 潘锦龙, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 朱昌兰. 不同环境下稻米品质性状QTL的检测及稳定性分析[J]. 中国水稻科学, 2020, 34(1): 17-27. |
Wang X L, Liu Y, Sun Y, Sun X T, Oyang L J, Pan J L, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Hu L F, Xu J, He H H, Zhu C L. Identification and stability analysis of QTL for grain quality traits under multiple environments in rice[J]. Chinese Journal of Rice Science, 2020, 34(1): 17-27. (in Chinese with English abstract) | |
[42] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39:623-630. |
[43] | Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. |
[44] | Qiu X J, Chen K, Lü W K, Ou X X, Zhu Y J, Xing D Y, Yang L W, Fan F J, Yang J, Xu J L, Zheng T Q, Li Z K. Examining two sets of introgression lines reveals background independent and stably expressed QTL that improve grain appearance quality in rice[J]. Theoretical and Applied Genetics, 2017, 130: 951-967. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||