Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (5): 497-506.DOI: 10.16819/j.1001-7216.2023.221201
• Research Papers • Previous Articles Next Articles
XU Huan1,#, ZHOU Tao2,#, SUN Yue1, WANG Mumei3, YANG Yachun2, MA Hui2, LI Hao2, XU Dawei1, ZHOU Hai3, YANG Jianbo2, NI Jinlong2,*()
Received:
2022-12-05
Revised:
2023-01-31
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email: About author:
First author contact:#These authors contributed equally to this work
徐欢1,#, 周涛2,#, 孙悦1, 王木妹3, 杨亚春2, 马卉2, 李浩2, 徐大伟1, 周海3, 杨剑波2, 倪金龙2,*()
通讯作者:
*email: 作者简介:
第一联系人:#共同第一作者
基金资助:
XU Huan, ZHOU Tao, SUN Yue, WANG Mumei, YANG Yachun, MA Hui, LI Hao, XU Dawei, ZHOU Hai, YANG Jianbo, NI Jinlong. Characterization and Gene Mapping of a Glume Lesion Mimic Mutant glmm1 in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(5): 497-506.
徐欢, 周涛, 孙悦, 王木妹, 杨亚春, 马卉, 李浩, 徐大伟, 周海, 杨剑波, 倪金龙. 水稻颖壳类病斑突变体glmm1的鉴定与基因定位[J]. 中国水稻科学, 2023, 37(5): 497-506.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.221201
引物名称 Primer name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
X1 | ACAACTGACCTACTCACCTAC | CAATGCAGGTGACATATTTTCAA |
X2 | TGCCTCATACAAATGAGAGAC | ATAAAAGTAGGACGGCTCTTC |
X3 | ACAGGTCACGAAGTACTGAA | GGGCTATTTATGTGTGCCTT |
X4 | CCTTATCTTGGTTTGGTCTTTT | CATCTGCCATCCTACCTGAA |
X5 | TTTTGACCGAGGGAGTACG | TCAGGTGACCCCACGACT |
X6 | AGAGGTGGCTTCGCTATTG | TTTGGGACGGAGGGAGTA |
Y1 | GGGCCGTCTGTCTCTAAA | CACGAAAAACCTTGACCA |
Y2 | AGGCCCAAGTCATTCAAC | CGCAAAGCATGAGACAAT |
Y3 | CCTACGTAAGAAGCCATCG | TCGGTTTAGAGGGGATTG |
Y4 | AGGCTCCATCAAACCAAC | ATTTCACATGCCCCTCAT |
Y5 | CGCTCACACAAGTTAATTGGA | GCGTTAAAACGTATGGACAG |
Y6 | GTAACTGGGAGTACAGTGGTAA | AAATTAAAGCGACAGAGATTTCC |
Table 1. Primer sequences of InDel markers for fine mapping of GLMM1.
引物名称 Primer name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
X1 | ACAACTGACCTACTCACCTAC | CAATGCAGGTGACATATTTTCAA |
X2 | TGCCTCATACAAATGAGAGAC | ATAAAAGTAGGACGGCTCTTC |
X3 | ACAGGTCACGAAGTACTGAA | GGGCTATTTATGTGTGCCTT |
X4 | CCTTATCTTGGTTTGGTCTTTT | CATCTGCCATCCTACCTGAA |
X5 | TTTTGACCGAGGGAGTACG | TCAGGTGACCCCACGACT |
X6 | AGAGGTGGCTTCGCTATTG | TTTGGGACGGAGGGAGTA |
Y1 | GGGCCGTCTGTCTCTAAA | CACGAAAAACCTTGACCA |
Y2 | AGGCCCAAGTCATTCAAC | CGCAAAGCATGAGACAAT |
Y3 | CCTACGTAAGAAGCCATCG | TCGGTTTAGAGGGGATTG |
Y4 | AGGCTCCATCAAACCAAC | ATTTCACATGCCCCTCAT |
Y5 | CGCTCACACAAGTTAATTGGA | GCGTTAAAACGTATGGACAG |
Y6 | GTAACTGGGAGTACAGTGGTAA | AAATTAAAGCGACAGAGATTTCC |
Fig. 1. Phenotypic comparison of WT and mutant glmm1. A and B, Phenotype of WT and glmm1 at seedling stage and maturity stage; C, D and E, Seeds of WT and glmm1; F and I, Early heading stage; G and J, Middle heading stage; H and K, Maturity stage. Bars, 15 cm (A, B), 1 cm (C, D, E), 4 cm (F, G, H, I, J, K), respectively.
材料 Material | 株高 Plant height / cm | 穗长 Panicle length/cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate / % | 千粒重 1000-grain weight / g |
---|---|---|---|---|---|---|
野生型WT | 92.06±4.24 | 20.59±1.43 | 5.6±2.2 | 535.8±62.9 | 42.07±8.41 | 20.23±0.14 |
glmm1 | 85.45±3.02** | 18.86±1.41** | 5.2±1.2 | 408.2±72.4** | 29.21±9.50** | 16.84±0.27** |
Table 2. Agronomic traits of the wild type (WT) and glmm1.
材料 Material | 株高 Plant height / cm | 穗长 Panicle length/cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate / % | 千粒重 1000-grain weight / g |
---|---|---|---|---|---|---|
野生型WT | 92.06±4.24 | 20.59±1.43 | 5.6±2.2 | 535.8±62.9 | 42.07±8.41 | 20.23±0.14 |
glmm1 | 85.45±3.02** | 18.86±1.41** | 5.2±1.2 | 408.2±72.4** | 29.21±9.50** | 16.84±0.27** |
杂交组合 Cross | 野生型 Wild type | 突变体 Mutant | 分离比 Segregation ratio | χ23:1 |
---|---|---|---|---|
glmm1/L422 | 1499 | 501 | 2.99:1 | 0.003 |
Table 3. Genetic analysis of the lesion mimic trait on glumes of glmm1.
杂交组合 Cross | 野生型 Wild type | 突变体 Mutant | 分离比 Segregation ratio | χ23:1 |
---|---|---|---|---|
glmm1/L422 | 1499 | 501 | 2.99:1 | 0.003 |
基因注释号 | 功能注释 | 基因符号 |
---|---|---|
基因注释号 Gene annotation | 功能注释 Function note | 基因名称 Gene name |
LOC_Os02g51100 | 砷泵驱动ATP酶 Arsenical pump-driving ATPase | |
LOC_Os02g51110 | 水通道蛋白 Aquaporin protein | Lsi1 |
LOC_Os02g51119 | 表达蛋白 Expressed protein | |
LOC_Os02g51130 | 含有糖基转移酶8结构域的蛋白质 Glycosyl transferase 8 domain containing protein | |
LOC_Os02g51140 | 富氮蛋白 N-rich protein | |
LOC_Os02g51150 | 鞘脂C4-羟化酶SUR2 Sphingolipid C4-hydroxylase SUR2 | |
LOC_Os02g51160 | 水解酶,作用于C-N Hydrolase, acting on carbon-nitrogen | |
LOC_Os02g51164 | 表达蛋白Expressed protein | |
LOC_Os02g51170 | 表达蛋白Expressed protein | |
LOC_Os02g51180 | Cullin蛋白 Cullin protein | OsCUL3a |
Table 4. Gene annotation of candidate region
基因注释号 | 功能注释 | 基因符号 |
---|---|---|
基因注释号 Gene annotation | 功能注释 Function note | 基因名称 Gene name |
LOC_Os02g51100 | 砷泵驱动ATP酶 Arsenical pump-driving ATPase | |
LOC_Os02g51110 | 水通道蛋白 Aquaporin protein | Lsi1 |
LOC_Os02g51119 | 表达蛋白 Expressed protein | |
LOC_Os02g51130 | 含有糖基转移酶8结构域的蛋白质 Glycosyl transferase 8 domain containing protein | |
LOC_Os02g51140 | 富氮蛋白 N-rich protein | |
LOC_Os02g51150 | 鞘脂C4-羟化酶SUR2 Sphingolipid C4-hydroxylase SUR2 | |
LOC_Os02g51160 | 水解酶,作用于C-N Hydrolase, acting on carbon-nitrogen | |
LOC_Os02g51164 | 表达蛋白Expressed protein | |
LOC_Os02g51170 | 表达蛋白Expressed protein | |
LOC_Os02g51180 | Cullin蛋白 Cullin protein | OsCUL3a |
Fig. 4. Scanning electron microscopy observation of rice glumes and leaves. A, C, I and K, Phenotypic characteristics of panicles and leaves of WT and glmm1 at the early heading stage; B, D, J and L, SEM of panicles and leaves of WT and glmm1 at the early heading stage; E, G, M and O, Phenotypic characteristics of panicles and leaves of WT and glmm1 at the ripening stage, respectively;F, H, N and P, SEM of panicles and leaves of WT and glmm1 at the ripening stage. Bars: 4 cm (A, C, E, G, I, K, M, O),40 μm (B, D, F, H, J, L, N, P). The red arrow indicates phytolith and silica cells.
Fig. 5. Determination of total silicon content of the wild type (WT) and its mutant glmm1. A, Glume; B, Leaf. ** mean difference between WT and glmm1 is significant at 0.01 level (t-test, n=3).
[1] | 孙志广, 代慧敏, 陈庭木, 李景芳, 迟铭, 周振玲, 刘艳, 刘金波, 徐波, 邢运高, 杨波, 李健, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻类病斑突变体lmm7的鉴定与基因定位[J]. 中国水稻科学, 2022, 36(4): 357-366. |
Sun Z G, Dai H M, Chen T M, Li J F, Chi M, Zhou Z L, Liu Y, Liu J B, Xu B, Xing Y G, Yang B, Li J, Lu B G, Fang Z W, Wang B X, Xu D Y. Phenotypic identification and gene mapping of a lesion mimic mutant lmm7 in rice[J]. Chinese Journal of Rice Science, 2022, 36(4): 357-366. (in Chinese with English abstract) | |
[2] | Kelly D, Vatsa A, Mayham W, Kazic T. Extracting complex lesion phenotypes in Zea mays [J]. Machine Vision and Applications, 2016, 27(1): 145-156. |
[3] | Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomics, 2008, 279(6): 605-619. |
[4] | Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J]. PLoS Pathogens, 2015, 11(2): e1004629. |
[5] | Shen X, Liu H, Yuan B, Li X, Xu C, Wang S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis[J]. Plant, Cell & Environment, 2011, 34(2): 179-191. |
[6] | Zeng L, Yin Z, Chen J, Leung H, Wang G L. Fine genetic mapping and physical delimitation of the lesion mimic gene Spl11 to a 160-kb DNA segment of the rice genome[J]. Molecular Genet Genomics, 2002, 268(2): 253-261. |
[7] | Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q, Cao Z, Zhao C, Cheng S, Cao L. Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice[J]. The Plant Journal, 2018, 95(5): 877-891. |
[8] | 焦然, 徐娜, 胡娟, 宋周琳, 胡佳青, 饶玉春, 王跃星. 水稻类病变突变体性状及分子机理研究进展[J]. 中国水稻科学, 2018, 32(3): 285-295. |
Jiao R, Xu N, Hu J, Song Z L, Hu J Q, Rao Y C, Wang Y X. Advances in traits of lesion mimic mutants and its molecular mechanisms in rice[J]. Chinese Journal of Rice Science, 2018, 32(3): 285-295. (in Chinese with English abstract) | |
[9] | Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal, 2011, 66(6): 996-1007. |
[10] | Cui Y, Peng Y, Zhang Q, Xia S, Ruan B, Xu Q, Yu X, Zhou T, Liu H, Zeng D, Zhang G, Gao Z, Hu J, Zhu L, Shen L, Guo L, Qian Q, Ren D. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice[J]. The Plant Journal, 2021, 105(4): 942-956. |
[11] | Wei Q, Yan Z, Xiong Y, Fang Z. Altered expression of OsAAP3 influences rice lesion mimic and leaf senescence by regulating arginine transport and nitric oxide pathway[J]. International Journal of Molecular Sciences, 2021, 22(4): 2181. |
[12] | Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, Li C. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice[J]. PloS ONE, 2012, 7(11): e50089. |
[13] | Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake G J, Chu C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2011, 158(1): 451-464. |
[14] | Ingestad T. Mineral Nutrition of Plants: Principles and Perspectives[J]. Forest Science, 1973, 19(2): 156. |
[15] | Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Science and Plant Nutrition, 2004, 50(1): 11-18. |
[16] | Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691. |
[17] | Azeem S, Li Z, Zheng H, Lin W, Arafat Y, Zhang Z, Lin X, Lin W,. Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance[J]. Plant Growth Regulation, 2016, 78(3): 307-323. |
[18] | Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-212. |
[19] | Yamaji N, Ma J F. A transporter at the node responsible for intervascular transfer of silicon in rice[J]. The Plant Cell, 2009, 21(9): 2878-2883. |
[20] | Yamaji N, Mitatni N, Ma J F. A transporter regulating silicon distribution in rice shoots[J]. The Plant Cell, 2008, 20(5): 1381-1389. |
[21] | Mitani N, Ma J F, Iwashita T. Identification of the silicon form in xylem sap of rice (Oryza sativa L.)[J]. Plant Cell Physiology, 2005, 46(2): 279-283. |
[22] | Huang S, Yamaji N, Sakurai G, Mitani-Ueno N, Konishi N, Ma J F. A pericycle-localized silicon transporter for efficient xylem loading in rice[J]. New Phytology, 2022, 234(1): 197-208. |
[23] | Currie H A, Perry C C. Silica in plants: Biological, biochemical and chemical studies[J]. Annals of Botany, 2007, 100(7): 1383-1389. |
[24] | 崔鹏, 苑世领, 徐桂英. 玉米植株中的植硅石及其纳米SiO2的制备[J]. 无机材料学报, 2009, 24(3): 512-516. |
Cui P, Wan S L, Xu G Y. Phytoliths in mealies corns and preparation of SiO2 nano-materials[J]. Journal of Inorganic Materials, 2009, 24(3): 512-516. (in Chinese with English abstract) | |
[25] | 沈旺鑫, 史小品, 杜海波, 冯志明, 陈宗祥, 胡珂鸣, 范江波, 左示敏. 水稻类病斑突变体基因克隆及发生机制研究进展[J]. 江苏农业学报, 2022, 38(03): 837-48. |
Sen W X, Shi X P, Du H B, Feng Z M, Chen Z X, Hu K M, Fan H B, Zuo S M. Research advances in gene cloning and occurrence mechanism of rice lesion mimic mutants[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 837-848. (in Chinese with English abstract) | |
[26] | Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues[J]. Plant Molecular Biology, 1985, 5(2): 69-76. |
[27] | 华海霞, 于慧国, 刘德君. 硅钼蓝比色法测定植株中的硅[J]. 现代农业科技, 2013(24): 173-4. |
Bi H X, Xu H G, Liu D J. Determination of silicon concentration in the plants by colorimetric molybdenum blue method[J]. Modern Agricultural Science and Technology, 2013(24): 173-174. (in Chinese with English abstract) | |
[28] | Liu Q, Ning Y, Zhang Y, Yu N, Zhao C, Zhan X, Wu W, Chen D, Wei X, Wang G L, Cheng S, Cao L. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. The Plant Cell, 2017, 29(2): 345-359. |
[29] | 奉保华, 杨杨, 施勇烽, 林璐, 陈洁, 黄奇娜, 魏彦林, Leung H, 吴建利. 水稻淡褐斑叶突变体lbsl1的遗传分析与基因定位[J]. 中国水稻科学, 2012, 26(3): 297-301. |
Feng B H, Yang Y, Shi Y F, Lin L Chen J, Huang Q N, Wei Y L, Leung H, Wu J L. Genetic analysis and gene mapping of a light brown spotted leaf mutant(lbsl1) in rice[J]. Chinese Journal of Rice Science, 2012, 26(3): 297-301. (in Chinese with English abstract) | |
[30] | Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal, 2012, 71(5): 763-775. |
[31] | Chen X, Hao L, Pan J, Zheng X, Jiang G, Jin Y, Gu Z, Qian Q, Zhai W, Ma B. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2): 939-949. |
[32] | Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice Pti1a negatively regulates RAR1-dependent defense responses[J]. The Plant Cell, 2007, 19(9): 2940-2951. |
[33] | 王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病斑突变体的生理与遗传分析[J]. 植物生理与分子生物学学报, 2004(3): 331-338. |
Wang J J, Zhu X D, Wang L Y, Zhang L H, Xue Q Z, He Z H. Physiological and genetic analysis of the disease-like mutant of rice[J]. Physiology and Molecular Biology of Plants, 2004(3): 331-338. (in Chinese with English abstract) | |
[34] | Yoshimura A, Ideta O, Iwata N. Linkage map of phenotype and RFLP markers in rice[J]. Plant Molecular Biology, 1997, 35(1-2): 49-60. |
[35] | 钱婧雅, 刘芬, 屈成, 王悦. 水稻类病斑突变基因的克隆及其机制研究进展[J]. 分子植物育种, 2021, 19(10): 3274-3280. |
Qian J Y, Liu F, Qu C, Wang Y. Research progress on cloning and mechanism of rice lesion mimic genes[J]. Molecular Plant Breeding, 2021, 19(10): 3274-3280. (in Chinese with English abstract) | |
[36] | 陈萍萍, 叶胜海, 赵宁春, 陆艳婷, 刘合芹, 杨玲, 金庆生, 张小明. 浙粳22类病斑突变体spl(t)特征及其基因定位[J]. 核农学报, 2010, 24(1): 1-6. |
Chen P P, Ye H S, Zhao N C, Lu Y T, Liu H Q, Yang L, Jin Q S, Zhang X M. Characteristics and genetic mapping of a lesion mimic mutant spl(t) in japonica rice variety Zhejing 22[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(1): 1-6. (in Chinese with English abstract) | |
[37] | Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Chu C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice[J]. Plant Physiology, 2012, 158(1): 451-464. |
[38] | Fang C, Li L, Zhang P, Wang D, Yang L, Reza B M, Lin W. Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation[J]. Plant Science, 2019, 278: 96-106. |
[39] | 曾仁杰. 硅肥对水稻产量、品质及抗倒伏特性的影响[J]. 中国农学通报, 2021, 37(22): 1-4. |
Zeng R J. Effect of silicon fertilizer on rice yield, grain quality and lodging resistance[J]. Chinese Agricultural Science Bulletin, 2021, 37(22): 1-4. (in Chinese with English abstract) | |
[40] | 张文绪. 稻属植物叶背亚显微结构的观察研究[J]. 中国水稻科学, 1995(2): 71-76. |
Zhang W X. The observation of submicrostructure on leaves-back in Oryza[J]. Chinese Journal of Rice Science, 1995(2): 71-76. (in Chinese with English abstract) | |
[41] | 张文绪, 裴鑫德. 水稻稃面双峰乳突的研究[J]. 作物学报, 1998(6): 691-697. |
Zhang W X, Pei X D. Study of double-peaked papillae on the lemma side of rice[J]. Acta Agronomica Sinica, 1998(6): 691-697. (in Chinese with English abstract) | |
[42] | 张良平, 陈良碧, 沈晓勤. 水稻叶片表面结构电镜观察[J]. 电子显微学报, 1990(3): 43. |
Zhang L P, Chen L B, Shen X Q. Electron microscopic observation of the surface structure of rice leaves[J]. Journal of Chinese Electron Microscopy Society, 1990(3): 43. (in Chinese with English abstract) | |
[43] | 周少凡, 黎根, 彭紫登, 杨文广, 邹志云, 杨秉耀, 何波仔, 黄琫. 水稻施硅之抗虫机制的研究[J]. 电子显微学报, 1993(3): 247-250. |
Zhou S F, Li G, Peng Z D, Yang W G, Zou Z Y, Yang B Y, He B Z, Huang B. Studies on insect-resistance mechanism after silicon applied in rice[J]. Journal of Chinese Electron Microscopy Society, 1993(3): 247-250. (in Chinese with English abstract) | |
[44] | 水茂兴, 陈德富, 秦遂初, 蒋式洪. 水稻新嫩组织的硅质化及其与稻瘟病抗性的关系[J]. 植物营养与肥料学报, 1999(4): 352-358. |
Shui M X, Chen D F, Qin S C, Jiang S H. The silicification of young tissues of rice and relationship with its resistance to blast of rice[J]. Journal of Plant Nutrition and Fertilizers, 1999(4): 352-358. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||