Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (4): 347-358.DOI: 10.16819/j.1001-7216.2023.220612
• Research Papers • Previous Articles Next Articles
XIAO Lequan, LI Lei, DAI Weimin, QIANG Sheng, SONG Xiaoling()
Received:
2022-06-12
Revised:
2022-10-20
Online:
2023-07-10
Published:
2023-07-17
Contact:
*email: sxl@njau.edu.com
通讯作者:
*email: sxl@njau.edu.com
基金资助:
XIAO Lequan, LI Lei, DAI Weimin, QIANG Sheng, SONG Xiaoling. Seedling Growth Characteristics of Hybrids Between Transgenic Rice with cry2A*/bar Genes and Weedy Rice[J]. Chinese Journal OF Rice Science, 2023, 37(4): 347-358.
肖乐铨, 李雷, 戴伟民, 强胜, 宋小玲. 转cry2A*/bar基因水稻与杂草稻杂交后代的苗期生长特性[J]. 中国水稻科学, 2023, 37(4): 347-358.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220612
试验材料编号 Accession of material | 来源 Origin | 籼粳型 Subspecies | 果皮颜色 Pericarp colour | |
---|---|---|---|---|
WRMM | 广东茂名 Maoming, Guangdong | 籼型indica | 红色Red | |
WRTZ | 江苏泰州 Taizhou, Jiangsu | 偏籼型indica-clinous | 红色Red | |
WRYY | 湖南益阳 Yiyang, Hunan | 籼型indica | 红色Red | |
MH63 | 华中农业大学 Huazhong Agricultural University | 籼型indica | 白色White | |
T2A-1 | 华中农业大学 Huazhong Agricultural University | 籼型indica | 白色White |
Table 1. Origin and characters of cultivated and weedy rice accessions used in the experiment.
试验材料编号 Accession of material | 来源 Origin | 籼粳型 Subspecies | 果皮颜色 Pericarp colour | |
---|---|---|---|---|
WRMM | 广东茂名 Maoming, Guangdong | 籼型indica | 红色Red | |
WRTZ | 江苏泰州 Taizhou, Jiangsu | 偏籼型indica-clinous | 红色Red | |
WRYY | 湖南益阳 Yiyang, Hunan | 籼型indica | 红色Red | |
MH63 | 华中农业大学 Huazhong Agricultural University | 籼型indica | 白色White | |
T2A-1 | 华中农业大学 Huazhong Agricultural University | 籼型indica | 白色White |
材料类型 Type | 杂交方式 Hybrid (♀×♂) | 表示形式 Abbreviation |
---|---|---|
F+ | WRMM×T2A-1 | FnMM+ |
WRTZ×T2A-1 | FnTZ+ | |
WRYY×T2A-1 | FnYY+ | |
F− | WRMM×MH63 | FnMM− |
WRTZ×MH63 | FnTZ− | |
WRYY×MH63 | FnYY− | |
RF+ | T2A-1×WRMM | RFnMM+ |
T2A-1×WRTZ | RFnTZ+ | |
T2A-1×WRYY | RFnYY+ | |
RF− | MH63×WRMM | RFnMM− |
MH63×WRTZ | RFnTZ− | |
MH63×WRYY | RFnYY− |
Table 2. Hybrid between cultivated rice and weedy rice.
材料类型 Type | 杂交方式 Hybrid (♀×♂) | 表示形式 Abbreviation |
---|---|---|
F+ | WRMM×T2A-1 | FnMM+ |
WRTZ×T2A-1 | FnTZ+ | |
WRYY×T2A-1 | FnYY+ | |
F− | WRMM×MH63 | FnMM− |
WRTZ×MH63 | FnTZ− | |
WRYY×MH63 | FnYY− | |
RF+ | T2A-1×WRMM | RFnMM+ |
T2A-1×WRTZ | RFnTZ+ | |
T2A-1×WRYY | RFnYY+ | |
RF− | MH63×WRMM | RFnMM− |
MH63×WRTZ | RFnTZ− | |
MH63×WRYY | RFnYY− |
材料 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
F1MM+ | 97.50±1.03 ab | 68.50±0.83 b | 24.74±0.10 b |
F1MM― | 99.25±0.65 a | 68.25±1.56 b | 24.67±0.31 b |
RF1MM+ | 97.00±0.94 ab | 67.75±1.71 b | 24.32±0.33 b |
RF1MM― | 96.00±0.61 b | 70.00±1.22 b | 24.76±0.19 b |
WRMM | 98.50±0.75 ab | 80.25±0.74 a | 31.36±0.60 a |
F1YY+ | 98.25±0.74 a | 62.25±1.98 bc | 21.03±0.64 b |
F1YY― | 97.50±0.43 a | 63.25±2.30 b | 20.63±0.88 b |
RF1YY+ | 98.00±0.61 a | 57.50±0.25 c | 20.79±0.20 b |
RF1YY― | 96.00±0.35 a | 60.00±0.94 bc | 21.07±0.38 b |
WRYY | 96.50±1.03 a | 74.00±0.94 a | 24.35±0.26 a |
F1TZ+ | 98.00±0.79 a | 83.00±1.46 a | 31.42±0.61 b |
F1TZ― | 98.00±0.79 a | 83.50±2.02 a | 32.31±0.60 b |
RF1TZ+ | 99.25±0.41 a | 82.00±1.46 a | 32.07±0.52 b |
RF1TZ― | 98.75±0.54 a | 85.25±1.95 a | 32.73±0.56 b |
WRTZ | 99.00±0.35 a | 79.50±0.43 a | 36.57±0.42 a |
Table 3. Germination ability of weedy rice and F1 hybrids derived from weedy rice and transgenic rice T2A-1.
材料 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
F1MM+ | 97.50±1.03 ab | 68.50±0.83 b | 24.74±0.10 b |
F1MM― | 99.25±0.65 a | 68.25±1.56 b | 24.67±0.31 b |
RF1MM+ | 97.00±0.94 ab | 67.75±1.71 b | 24.32±0.33 b |
RF1MM― | 96.00±0.61 b | 70.00±1.22 b | 24.76±0.19 b |
WRMM | 98.50±0.75 ab | 80.25±0.74 a | 31.36±0.60 a |
F1YY+ | 98.25±0.74 a | 62.25±1.98 bc | 21.03±0.64 b |
F1YY― | 97.50±0.43 a | 63.25±2.30 b | 20.63±0.88 b |
RF1YY+ | 98.00±0.61 a | 57.50±0.25 c | 20.79±0.20 b |
RF1YY― | 96.00±0.35 a | 60.00±0.94 bc | 21.07±0.38 b |
WRYY | 96.50±1.03 a | 74.00±0.94 a | 24.35±0.26 a |
F1TZ+ | 98.00±0.79 a | 83.00±1.46 a | 31.42±0.61 b |
F1TZ― | 98.00±0.79 a | 83.50±2.02 a | 32.31±0.60 b |
RF1TZ+ | 99.25±0.41 a | 82.00±1.46 a | 32.07±0.52 b |
RF1TZ― | 98.75±0.54 a | 85.25±1.95 a | 32.73±0.56 b |
WRTZ | 99.00±0.35 a | 79.50±0.43 a | 36.57±0.42 a |
材料类型 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
F2MM+ | 97.25±0.65 a | 67.50±0.56 b | 24.96±0.20 b |
F2MM― | 97.00±0.61 a | 67.50±0.56 b | 24.27±0.21 b |
RF2MM+ | 98.50±0.56 a | 67.25±0.96 b | 24.58±0.32 b |
RF2MM― | 97.75±0.65 a | 69.75±1.88 b | 24.53±0.19 b |
WRMM | 98.25±0.74 a | 78.75±1.63 a | 32.06±0.94 a |
F2YY+ | 97.75±0.82 a | 63.25±2.53 b | 21.39±0.54 b |
F2YY― | 97.50±0.25 a | 62.75±2.46 b | 20.21±1.11 b |
RF2YY+ | 97.50±0.90 a | 59.25±2.10 b | 21.34±0.32 b |
RF2YY― | 97.75±1.14 a | 57.50±1.35 b | 21.06±0.22 b |
WRYY | 97.75±0.54 a | 71.00±1.27 a | 23.91±0.26 a |
F2TZ+ | 99.00±0.35 ab | 85.50±1.35 a | 31.87±0.25 b |
F2TZ― | 97.75±0.74 b | 85.75±0.54 a | 32.09±0.54 b |
RF2TZ+ | 99.00±0.35 ab | 83.50±1.35 a | 32.28±0.51 b |
RF2TZ― | 99.50±0.25 a | 84.25±1.02 a | 32.59±0.53 b |
WRTZ | 98.25±0.41 ab | 82.25±0.22 a | 38.60±0.31 a |
Table 4. Germination ability of weedy rice and F2 hybrids between weedy rice and transgenicrice T2A-1.
材料类型 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
F2MM+ | 97.25±0.65 a | 67.50±0.56 b | 24.96±0.20 b |
F2MM― | 97.00±0.61 a | 67.50±0.56 b | 24.27±0.21 b |
RF2MM+ | 98.50±0.56 a | 67.25±0.96 b | 24.58±0.32 b |
RF2MM― | 97.75±0.65 a | 69.75±1.88 b | 24.53±0.19 b |
WRMM | 98.25±0.74 a | 78.75±1.63 a | 32.06±0.94 a |
F2YY+ | 97.75±0.82 a | 63.25±2.53 b | 21.39±0.54 b |
F2YY― | 97.50±0.25 a | 62.75±2.46 b | 20.21±1.11 b |
RF2YY+ | 97.50±0.90 a | 59.25±2.10 b | 21.34±0.32 b |
RF2YY― | 97.75±1.14 a | 57.50±1.35 b | 21.06±0.22 b |
WRYY | 97.75±0.54 a | 71.00±1.27 a | 23.91±0.26 a |
F2TZ+ | 99.00±0.35 ab | 85.50±1.35 a | 31.87±0.25 b |
F2TZ― | 97.75±0.74 b | 85.75±0.54 a | 32.09±0.54 b |
RF2TZ+ | 99.00±0.35 ab | 83.50±1.35 a | 32.28±0.51 b |
RF2TZ― | 99.50±0.25 a | 84.25±1.02 a | 32.59±0.53 b |
WRTZ | 98.25±0.41 ab | 82.25±0.22 a | 38.60±0.31 a |
材料类型 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
F3MM+ | 97.75±0.74 a | 69.25±1.14 b | 25.21±0.18 b |
F3MM― | 97.75±0.89 a | 68.00±1.37 b | 24.38±0.29 b |
RF3MM+ | 97.50±1.03 a | 68.75±1.14 b | 24.73±0.41 b |
RF3MM― | 97.50±0.75 a | 68.00±0.35 b | 24.75±0.21 b |
WRMM | 97.75±0.89 a | 76.50±1.60 a | 30.46±0.83 a |
F3YY+ | 97.50±0.90 a | 63.25±3.21 b | 20.92±0.52 b |
F3YY― | 97.00±0.35 a | 60.25±2.25 b | 19.88±0.63 b |
RF3YY+ | 96.50±0.83 a | 57.25±0.74 b | 20.86±0.07 b |
RF3YY― | 97.50±0.83 a | 58.50±1.68 b | 20.80±0.48 b |
WRYY | 97.50±1.03 a | 74.25±1.67 a | 24.85±0.38 a |
F3TZ+ | 97.50±1.15 a | 82.25±1.24 a | 31.47±0.75 b |
F3TZ― | 98.50±1.03 a | 84.75±1.98 a | 32.29±0.69 b |
RF3TZ+ | 98.00±0.94 a | 83.50±1.03 a | 31.73±0.22 b |
RF3TZ― | 98.00±1.06 a | 84.25±1.19 a | 32.71±0.58 b |
WRTZ | 98.75±0.54 a | 81.50±0.56 a | 38.03±0.51 a |
Table 5. Germination ability of weedy rice and F3 hybrids between weedy rice and transgenic rice T2A-1.
材料类型 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
F3MM+ | 97.75±0.74 a | 69.25±1.14 b | 25.21±0.18 b |
F3MM― | 97.75±0.89 a | 68.00±1.37 b | 24.38±0.29 b |
RF3MM+ | 97.50±1.03 a | 68.75±1.14 b | 24.73±0.41 b |
RF3MM― | 97.50±0.75 a | 68.00±0.35 b | 24.75±0.21 b |
WRMM | 97.75±0.89 a | 76.50±1.60 a | 30.46±0.83 a |
F3YY+ | 97.50±0.90 a | 63.25±3.21 b | 20.92±0.52 b |
F3YY― | 97.00±0.35 a | 60.25±2.25 b | 19.88±0.63 b |
RF3YY+ | 96.50±0.83 a | 57.25±0.74 b | 20.86±0.07 b |
RF3YY― | 97.50±0.83 a | 58.50±1.68 b | 20.80±0.48 b |
WRYY | 97.50±1.03 a | 74.25±1.67 a | 24.85±0.38 a |
F3TZ+ | 97.50±1.15 a | 82.25±1.24 a | 31.47±0.75 b |
F3TZ― | 98.50±1.03 a | 84.75±1.98 a | 32.29±0.69 b |
RF3TZ+ | 98.00±0.94 a | 83.50±1.03 a | 31.73±0.22 b |
RF3TZ― | 98.00±1.06 a | 84.25±1.19 a | 32.71±0.58 b |
WRTZ | 98.75±0.54 a | 81.50±0.56 a | 38.03±0.51 a |
材料 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
T2A-1 | 97.75±0.89 a | 82.00±1.22 a | 21.06±0.26 a |
MH63 | 98.00±0.61 a | 80.00±1.37 a | 20.98±0.23 a |
F4MM+ | 96.75±0.74 a | 66.75±0.74 b | 24.35±0.18 b |
F4MM― | 96.25±0.82 a | 66.75±1.14 b | 24.20±0.26 b |
RF4MM+ | 96.50±0.56 a | 70.00±0.94 b | 24.84±0.45 b |
RF4MM― | 97.00±1.06 a | 68.25±1.43 b | 24.35±0.41 b |
WRMM | 99.00±0.61 a | 78.00±2.03 a | 31.94±1.16 a |
F4YY+ | 98.00±0.61 ab | 61.75±3.21 b | 20.92±0.21 b |
F4YY― | 97.00±0.87 b | 62.25±2.90 b | 19.83±0.98 b |
RF4YY+ | 99.00±0.61 ab | 56.50±2.19 b | 20.98±0.53 b |
RF4YY― | 96.75±0.65 b | 59.00±1.87 b | 21.43±0.47 b |
WRYY | 99.50±0.25 a | 76.00±0.79 a | 25.29±0.11 a |
F4TZ+ | 96.75±0.89 b | 84.50±1.15 a | 31.22±0.59 b |
F4TZ― | 98.50±0.56 ab | 83.75±0.96 a | 31.74±0.18 b |
RF4TZ+ | 99.00±0.61 a | 84.50±0.56 a | 31.52±0.62 b |
RF4TZ― | 99.75±0.22 a | 84.25±2.16 a | 32.40±0.41 b |
WRTZ | 99.75±0.22 a | 83.25±1.08 a | 38.74±0.50 a |
Table 6. Germination ability of weedy rice and F4 hybrids between weedy rice and transgenicrice T2A-1.
材料 Type | 发芽率 Germination percentage/% | 发芽势 Germination potential/% | 发芽指数 Germination index |
---|---|---|---|
T2A-1 | 97.75±0.89 a | 82.00±1.22 a | 21.06±0.26 a |
MH63 | 98.00±0.61 a | 80.00±1.37 a | 20.98±0.23 a |
F4MM+ | 96.75±0.74 a | 66.75±0.74 b | 24.35±0.18 b |
F4MM― | 96.25±0.82 a | 66.75±1.14 b | 24.20±0.26 b |
RF4MM+ | 96.50±0.56 a | 70.00±0.94 b | 24.84±0.45 b |
RF4MM― | 97.00±1.06 a | 68.25±1.43 b | 24.35±0.41 b |
WRMM | 99.00±0.61 a | 78.00±2.03 a | 31.94±1.16 a |
F4YY+ | 98.00±0.61 ab | 61.75±3.21 b | 20.92±0.21 b |
F4YY― | 97.00±0.87 b | 62.25±2.90 b | 19.83±0.98 b |
RF4YY+ | 99.00±0.61 ab | 56.50±2.19 b | 20.98±0.53 b |
RF4YY― | 96.75±0.65 b | 59.00±1.87 b | 21.43±0.47 b |
WRYY | 99.50±0.25 a | 76.00±0.79 a | 25.29±0.11 a |
F4TZ+ | 96.75±0.89 b | 84.50±1.15 a | 31.22±0.59 b |
F4TZ― | 98.50±0.56 ab | 83.75±0.96 a | 31.74±0.18 b |
RF4TZ+ | 99.00±0.61 a | 84.50±0.56 a | 31.52±0.62 b |
RF4TZ― | 99.75±0.22 a | 84.25±2.16 a | 32.40±0.41 b |
WRTZ | 99.75±0.22 a | 83.25±1.08 a | 38.74±0.50 a |
材料 Type | F1 | F2 | F3 | F4 | ||||
---|---|---|---|---|---|---|---|---|
株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | 株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | 株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | 株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | |
正常氮条件下Under normal nitrogen conditions | ||||||||
FnMM+ | 23.56±0.24 b | 2.29±0.17 a | 24.42±0.38 b | 2.34±0.12 a | 24.04±0.36 b | 2.31±0.11 a | 24.17±0.39 b | 2.33±0.10 a |
FnMM− | 23.55±0.58 b | 2.32±0.12 a | 24.49±0.19 b | 2.34±0.12 a | 24.04±0.35 b | 2.29±0.09 a | 23.56±0.43 b | 2.33±0.16 a |
RFnMM+ | 22.57±0.56 b | 2.26±0.09 a | 23.44±0.31 bc | 2.34±0.17 a | 22.74±0.56 b | 2.28±0.10 a | 23.36±0.21 b | 2.34±0.10 a |
RFnMM− | 23.02±0.11 b | 2.26±0.03 a | 22.51±0.29c | 2.30±0.07 a | 23.38±0.33 b | 2.26±0.09 a | 23.14±0.32 b | 2.25±0.10 a |
WRMM | 26.88±0.09 a | 2.64±0.06 a | 27.36±0.54 a | 2.64±0.16 a | 27.17±0.17 a | 2.60±0.10 a | 27.39±0.30 a | 2.55±0.06 a |
FnYY+ | 24.42±0.27 a | 2.46±0.08 a | 24.44±0.28 a | 2.51±0.04 a | 23.68±0.63 a | 2.48±0.11 a | 24.36±0.35 a | 2.52±0.13 a |
FnYY− | 24.46±0.18 a | 2.51±0.08 a | 23.59±0.32 a | 2.52±0.09 a | 23.54±0.22 a | 2.46±0.09 a | 24.02±0.48 a | 2.46±0.08 a |
RFnYY+ | 23.70±0.43 a | 2.45±0.05 a | 24.28±0.20 a | 2.48±0.09 a | 24.13±0.36 a | 2.52±0.06 a | 24.09±0.48 a | 2.49±0.09 a |
RFnYY− | 23.87±0.65 a | 2.52±0.10 a | 24.05±0.72 a | 2.52±0.12 a | 23.96±0.20 a | 2.48±0.08 a | 24.02±0.26 a | 2.50±0.14 a |
WRYY | 24.47±0.29 a | 2.45±0.09 a | 23.76±0.24 a | 2.54±0.10 a | 23.73±0.22 a | 2.51±0.14 a | 23.79±0.25 a | 2.49±0.11 a |
FnTZ+ | 21.68±0.54 a | 2.31±0.15 b | 22.01±0.35 a | 2.26±0.03 b | 21.84±0.27 a | 2.28±0.08 b | 21.61±0.36 a | 2.31±0.09 b |
FnTZ− | 21.64±0.06 a | 2.31±0.08 b | 22.37±0.38 a | 2.25±0.12 b | 21.67±0.32 a | 2.29±0.10 b | 22.09±0.31 a | 2.26±0.07 b |
RFnTZ+ | 22.30±0.23 a | 2.33±0.08 b | 21.70±0.39 a | 2.35±0.06 b | 21.97±0.35 a | 2.35±0.20 b | 21.61±0.15 a | 2.28±0.12 b |
RFnTZ− | 21.76±0.36 a | 2.26±0.05 b | 21.94±0.25 a | 2.31±0.11 b | 21.61±0.42 a | 2.30±0.14 b | 21.76±0.47 a | 2.25±0.10 b |
WRTZ | 17.06±0.41 b | 2.77±0.09 a | 17.33±0.32 b | 2.84±0.15 a | 17.35±0.53 b | 2.82±0.10 a | 16.56±0.23 b | 2.79±0.09 a |
低氮条件下Under low nitrogen conditions | ||||||||
FnMM+ | 21.05±0.39 b | 2.23±0.09 a | 21.42±0.28 b | 2.20±0.12 a | 21.21±0.21 b | 2.24±0.10 a | 21.49±0.28 b | 2.24±0.12 a |
FnMM− | 21.38±0.40 b | 2.19±0.10 a | 21.41±0.25 b | 2.24±0.07 a | 20.58±0.26 b | 2.17±0.07 a | 20.60±0.36 b | 2.22±0.11 a |
RFnMM+ | 20.67±0.31 b | 2.24±0.10 a | 21.01±0.27 b | 2.17±0.12 a | 21.10±0.27 b | 2.22±0.12 a | 21.40±0.16 b | 2.18±0.12 a |
RFnMM− | 21.13±0.23 b | 2.23±0.03 a | 21.35±0.25 b | 2.22±0.09 a | 21.06±0.43 b | 2.22±0.08 a | 21.33±0.37 b | 2.24±0.13 a |
WRMM | 24.60±0.27 a | 2.40±0.12 a | 25.03±0.37 a | 2.35±0.08 a | 25.11±0.28 a | 2.36±0.13 a | 25.16±0.18 a | 2.43±0.13 a |
FnYY+ | 19.30±0.37 b | 2.35±0.12 a | 19.23±0.31 b | 2.31±0.07 a | 18.60±0.16 b | 2.32±0.03 a | 19.18±0.27 b | 2.31±0.06 a |
FnYY− | 19.35±0.47 b | 2.34±0.18 a | 19.50±0.27 b | 2.30±0.09 a | 18.99±0.32 b | 2.25±0.09 a | 19.12±0.14 b | 2.35±0.08 a |
RFnYY+ | 19.36±0.55 b | 2.27±0.10 a | 18.85±0.25 b | 2.26±0.14 a | 18.87±0.60 b | 2.33±0.10 a | 18.67±0.60 b | 2.27±0.15 a |
RFnYY− | 19.42±0.14 b | 2.27±0.08 a | 19.38±0.07 b | 2.29±0.09 a | 19.20±0.51 b | 2.33±0.08 a | 18.53±0.29 b | 2.27±0.09 a |
WRYY | 21.49±0.32 a | 2.38±0.06 a | 21.10±0.17 a | 2.40±0.04 a | 21.25±0.35 a | 2.37±0.10 a | 20.90±0.22 a | 2.42±0.18 a |
FnTZ+ | 18.29±0.33 a | 2.09±0.10 b | 18.21±0.27 a | 2.15±0.12 b | 17.88±0.51 a | 2.09±0.10 b | 17.50±0.24 a | 2.12±0.09 b |
FnTZ− | 18.02±0.56 a | 2.07±0.13 b | 18.23±0.17 a | 2.11±0.07 b | 17.75±0.30 a | 2.11±0.19 b | 17.96±0.34 a | 2.13±0.06 b |
RFnTZ+ | 17.78±0.27 a | 2.11±0.08 b | 18.22±0.51 a | 2.14±0.13 b | 17.77±0.37 a | 2.07±0.09 b | 17.88±0.25 a | 2.11±0.07 b |
RFnTZ− | 18.28±0.12 a | 2.08±0.11 b | 17.54±0.29 a | 2.07±0.11 b | 17.51±0.30 a | 2.07±0.07 b | 18.13±0.35 a | 2.14±0.09 b |
WRTZ | 15.89±0.36 b | 2.70±0.14 a | 16.29±0.28 b | 2.74±0.08 a | 15.73±0.22 b | 2.69±0.08 a | 16.09±0.26 b | 2.72±0.14 a |
Table 7. Plant height and whole plant dry biomass of weedy rice and Fn hybrid.
材料 Type | F1 | F2 | F3 | F4 | ||||
---|---|---|---|---|---|---|---|---|
株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | 株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | 株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | 株高 Plant height /cm | 整株 干生物量 Whole plant dry biomass /g | |
正常氮条件下Under normal nitrogen conditions | ||||||||
FnMM+ | 23.56±0.24 b | 2.29±0.17 a | 24.42±0.38 b | 2.34±0.12 a | 24.04±0.36 b | 2.31±0.11 a | 24.17±0.39 b | 2.33±0.10 a |
FnMM− | 23.55±0.58 b | 2.32±0.12 a | 24.49±0.19 b | 2.34±0.12 a | 24.04±0.35 b | 2.29±0.09 a | 23.56±0.43 b | 2.33±0.16 a |
RFnMM+ | 22.57±0.56 b | 2.26±0.09 a | 23.44±0.31 bc | 2.34±0.17 a | 22.74±0.56 b | 2.28±0.10 a | 23.36±0.21 b | 2.34±0.10 a |
RFnMM− | 23.02±0.11 b | 2.26±0.03 a | 22.51±0.29c | 2.30±0.07 a | 23.38±0.33 b | 2.26±0.09 a | 23.14±0.32 b | 2.25±0.10 a |
WRMM | 26.88±0.09 a | 2.64±0.06 a | 27.36±0.54 a | 2.64±0.16 a | 27.17±0.17 a | 2.60±0.10 a | 27.39±0.30 a | 2.55±0.06 a |
FnYY+ | 24.42±0.27 a | 2.46±0.08 a | 24.44±0.28 a | 2.51±0.04 a | 23.68±0.63 a | 2.48±0.11 a | 24.36±0.35 a | 2.52±0.13 a |
FnYY− | 24.46±0.18 a | 2.51±0.08 a | 23.59±0.32 a | 2.52±0.09 a | 23.54±0.22 a | 2.46±0.09 a | 24.02±0.48 a | 2.46±0.08 a |
RFnYY+ | 23.70±0.43 a | 2.45±0.05 a | 24.28±0.20 a | 2.48±0.09 a | 24.13±0.36 a | 2.52±0.06 a | 24.09±0.48 a | 2.49±0.09 a |
RFnYY− | 23.87±0.65 a | 2.52±0.10 a | 24.05±0.72 a | 2.52±0.12 a | 23.96±0.20 a | 2.48±0.08 a | 24.02±0.26 a | 2.50±0.14 a |
WRYY | 24.47±0.29 a | 2.45±0.09 a | 23.76±0.24 a | 2.54±0.10 a | 23.73±0.22 a | 2.51±0.14 a | 23.79±0.25 a | 2.49±0.11 a |
FnTZ+ | 21.68±0.54 a | 2.31±0.15 b | 22.01±0.35 a | 2.26±0.03 b | 21.84±0.27 a | 2.28±0.08 b | 21.61±0.36 a | 2.31±0.09 b |
FnTZ− | 21.64±0.06 a | 2.31±0.08 b | 22.37±0.38 a | 2.25±0.12 b | 21.67±0.32 a | 2.29±0.10 b | 22.09±0.31 a | 2.26±0.07 b |
RFnTZ+ | 22.30±0.23 a | 2.33±0.08 b | 21.70±0.39 a | 2.35±0.06 b | 21.97±0.35 a | 2.35±0.20 b | 21.61±0.15 a | 2.28±0.12 b |
RFnTZ− | 21.76±0.36 a | 2.26±0.05 b | 21.94±0.25 a | 2.31±0.11 b | 21.61±0.42 a | 2.30±0.14 b | 21.76±0.47 a | 2.25±0.10 b |
WRTZ | 17.06±0.41 b | 2.77±0.09 a | 17.33±0.32 b | 2.84±0.15 a | 17.35±0.53 b | 2.82±0.10 a | 16.56±0.23 b | 2.79±0.09 a |
低氮条件下Under low nitrogen conditions | ||||||||
FnMM+ | 21.05±0.39 b | 2.23±0.09 a | 21.42±0.28 b | 2.20±0.12 a | 21.21±0.21 b | 2.24±0.10 a | 21.49±0.28 b | 2.24±0.12 a |
FnMM− | 21.38±0.40 b | 2.19±0.10 a | 21.41±0.25 b | 2.24±0.07 a | 20.58±0.26 b | 2.17±0.07 a | 20.60±0.36 b | 2.22±0.11 a |
RFnMM+ | 20.67±0.31 b | 2.24±0.10 a | 21.01±0.27 b | 2.17±0.12 a | 21.10±0.27 b | 2.22±0.12 a | 21.40±0.16 b | 2.18±0.12 a |
RFnMM− | 21.13±0.23 b | 2.23±0.03 a | 21.35±0.25 b | 2.22±0.09 a | 21.06±0.43 b | 2.22±0.08 a | 21.33±0.37 b | 2.24±0.13 a |
WRMM | 24.60±0.27 a | 2.40±0.12 a | 25.03±0.37 a | 2.35±0.08 a | 25.11±0.28 a | 2.36±0.13 a | 25.16±0.18 a | 2.43±0.13 a |
FnYY+ | 19.30±0.37 b | 2.35±0.12 a | 19.23±0.31 b | 2.31±0.07 a | 18.60±0.16 b | 2.32±0.03 a | 19.18±0.27 b | 2.31±0.06 a |
FnYY− | 19.35±0.47 b | 2.34±0.18 a | 19.50±0.27 b | 2.30±0.09 a | 18.99±0.32 b | 2.25±0.09 a | 19.12±0.14 b | 2.35±0.08 a |
RFnYY+ | 19.36±0.55 b | 2.27±0.10 a | 18.85±0.25 b | 2.26±0.14 a | 18.87±0.60 b | 2.33±0.10 a | 18.67±0.60 b | 2.27±0.15 a |
RFnYY− | 19.42±0.14 b | 2.27±0.08 a | 19.38±0.07 b | 2.29±0.09 a | 19.20±0.51 b | 2.33±0.08 a | 18.53±0.29 b | 2.27±0.09 a |
WRYY | 21.49±0.32 a | 2.38±0.06 a | 21.10±0.17 a | 2.40±0.04 a | 21.25±0.35 a | 2.37±0.10 a | 20.90±0.22 a | 2.42±0.18 a |
FnTZ+ | 18.29±0.33 a | 2.09±0.10 b | 18.21±0.27 a | 2.15±0.12 b | 17.88±0.51 a | 2.09±0.10 b | 17.50±0.24 a | 2.12±0.09 b |
FnTZ− | 18.02±0.56 a | 2.07±0.13 b | 18.23±0.17 a | 2.11±0.07 b | 17.75±0.30 a | 2.11±0.19 b | 17.96±0.34 a | 2.13±0.06 b |
RFnTZ+ | 17.78±0.27 a | 2.11±0.08 b | 18.22±0.51 a | 2.14±0.13 b | 17.77±0.37 a | 2.07±0.09 b | 17.88±0.25 a | 2.11±0.07 b |
RFnTZ− | 18.28±0.12 a | 2.08±0.11 b | 17.54±0.29 a | 2.07±0.11 b | 17.51±0.30 a | 2.07±0.07 b | 18.13±0.35 a | 2.14±0.09 b |
WRTZ | 15.89±0.36 b | 2.70±0.14 a | 16.29±0.28 b | 2.74±0.08 a | 15.73±0.22 b | 2.69±0.08 a | 16.09±0.26 b | 2.72±0.14 a |
Fig. 1. Relative root development indexes of Fn+/Fn−, RFn+/RFn−. 1-7 represent T2A-1/MH63, FnMM+/FnMM−, RFnMM+/RFnMM−, FnYY+/FnYY−, RFnYY+/RFnYY−, FnTZ+/FnTZ−, RFnTZ+/RFnTZ−, respectively. In Figure A, n=1; In Figure B, n=2; and so on.The relative root development index(the root development index of F−, RF−, and MH63 is defined as 1, and the average value of the ratio of F+ and RF+ to their various indicators is defined as the relative root development index) was analyzed by independent sample t test. *means significant difference between Fn+ and Fn− or between RFn+ and RFn−(Data are mean±SE, n=4, P<0.05).
Fig. 2. Relative root development index of hybrid Fn, and RFn with T2A-1 as parent and its corresponding weedy rice. 1-6 represent FnMM+/WRMM, RFnMM+/WRMM, FnYY+/WRYY, RFnYY+/WRYY, FnTZ+/WRTZ, RFnTZ+/WRTZ, respectively. In Figure A, n=1; In Figure B, n=2; and so on. The relative root development index(The root development index of three types of weedy rice is defined as 1, and the average value of the ratio of F+and RF+ to their various indicators is defined as the relative root development index) was analyzed by independent sample T test. *means the significant difference between Fn+ or RFn+ and weedy rice(Data are mean±SE, n=4, P<0.05).
[1] | 翁绿水, 蒋利平, 肖国樱. 抗虫抗除草剂转基因水稻恢复系B2A68的培育[J]. 杂交水稻, 2013, 28(1): 63-67. |
Weng L S, Jiang L P, Xiao G Y. Development of an insect-resistant and herbicide-resistant transgenic restorer line B2A68 in rice[J]. Hybrid Rice, 2013, 28(1): 63-67. (in Chinese with English abstract) | |
[2] | 陈丽, 邓力华, 陈芬, 肖国樱. 转Cry1Ca和Bar基因水稻的获得与性状鉴定[J]. 农业现代化研究, 2012, 33(1): 104-107. |
Chen L, Deng L H, Chen F, Xiao G Y. Development and character identification of rice transformed by Cry1Ca and Bar gene[J]. Research of Agricultural Modernization, 2012, 33(1): 104-107. (in Chinese with English abstract) | |
[3] | 邓力华, 邓晓湘, 魏岁军, 曹正春, 唐俐, 肖国樱. 抗虫抗除草剂转基因水稻B1C893的获得与鉴定[J]. 杂交水稻, 2014, 29(1): 67-71. |
Deng L H, Deng X X, Wei S J, Cao Z C, Tang L, Xiao G Y. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice[J]. Hybrid Rice, 2014, 29(1): 67-71. (in Chinese with English abstract) | |
[4] | Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J]. Theoretical and Applied Genetics, 2005, 111(7): 1330-1337. |
[5] | Yang X, Wang F, Su J, Lu B R. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field[J]. PLoS ONE, 2012, 7(7): e41220. |
[6] | Gu X Y, Kianian S F, Foley M E. Seed dormancy imposed by covering tissues interrelates to shattering and seed morphological characteristics in weedy rice[J]. Crop Science, 2005, 45(3): 948-955. |
[7] | Akasaka M, Konishi S, IzawaT, Ushiki J. Histological and genetic characteristics associated with the seed-shattering habit of weedy rice (Oryza sativa L.) from Okayama, Japan[J]. Breeding Science, 2011, 61: 168-173. |
[8] | Baek J S, Chung N J. Seed wintering and deterioration characteristics between weedy and cultivated rice[J]. Rice, 2012, 5(1): 1-10. |
[9] | Zhao C, Xu W R, Li H W, Dai W M, Zhang Z, Qiang S, Song X L. The rapid cytological process of grain determines early maturity in weedy rice[J]. Frontiers in Plant Science, 2021, 12: 711321-711321. |
[10] | Zhao C, Xu W R, Meng L C, Qiang S, Dai W M, Zhang Z, Song X L. Rapid endosperm development promotes early maturity in weedy rice (Oryza sativa f. spontanea)[J]. Weed Science, 2019, 68(2): 168-178. |
[11] | Zhao C, Xu W R, Song X L, Dai W M, Dai L, Zhang Z, Qiang S. Early flowering and rapid grain filling determine early maturity and escape from harvesting in weedy rice[J]. Pest Management Science, 2018, 74(2): 465-476. |
[12] | Zhang F L, Lei S R, Liu Y, Guo L A, Yin Q, Song J, Wang D, Chang L J, Liu W J, Zhou X Q. Differences in ecological fitness between Bt transgenic rice and conventional rice under insect-infestation pressures[J]. Agricultural Science & Technology, 2012, 18(1): 35-41. |
[13] | Huang Y, Wang Y Y, Qiang S, Song X L, Dai W M. Fitness of F1 hybrids between stacked transgenic rice T1c-19 with cry1C*/bar genes and weedy rice[J]. Journal of Integrative Agriculture, 2019, 18: 2-14. |
[14] | 肖国樱, 陈芬, 孟秋成, 周浩, 李锦江, 于江辉, 邓力华, 翁绿水. 我国转基因抗除草剂水稻的生态风险与控制[J]. 农业生物技术学报, 2015, 23(1): 1-11. |
Xiao G Y, Chen F, Meng Q C, Zhou H, Li J J, Yu J H, Deng L H, Weng L S. Ecological risk and management of herbicide-resistant transgenic rice (Oryza sativa) in China[J]. Journal of Agricultural Biotechnology, 2015, 23(1): 1-11. (in Chinese with English abstract) | |
[15] | Song X L, Liu L L, Wang Z, Qiang S. Potential gene flow from transgenic rice(Oryza sativa L.) to different weedy rice (Oryza sativa f. spontanea) accessions based on reproductive compatibility[J]. Pest Management Science, 2009, 65(8): 862-869. |
[16] | Zuo J, Zhang L J, Song X L, Dai W M, Qiang S. Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes[J]. Pest Management Science, 2011, 67(6): 677-690. |
[17] | 王敏. 转基因水稻与杂草稻基因漂移率的检测技术及基因漂移研究[D]. 南京: 南京农业大学, 2019. |
Wang M. Study on verifying technology of gene flow frequency and gene flow in transgenic rice and weedy rice[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese with English abstract) | |
[18] | Burgos N R, Norman R J, Gealy D R, Blank H. Competitive N uptake between rice and weedy rice[J]. Field Crops Research, 2006, 99(2-3): 96-105. |
[19] | Dai L, Song X L, He B Y, Valverde B E, Qiang S. Enhanced photosynthesis endows seedling growth vigour contributing to the competitive dominance of weedy rice over cultivated rice[J]. Pest Management Science, 2017, 73(7): 1410-1420. |
[20] | Ross M A, Harper J L. Occupation of biological space during seeding establishment[J]. Journal of Ecology, 1972, 50: 116-122. |
[21] | Li B, Hara T. On the relative yield of plants in two-species mixture[J]. Oikos, 1999, 85: 170-176. |
[22] | Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor[J]. Annual Review of Plant Biology, 2012, 63(1): 507-533. |
[23] | Gommers C M M, Monte E. Seedling establishment: A dimmer switch-regulated process between dark and light signaling[J]. Plant Physiology, 2018, 176(2): 1061-1074. |
[24] | Foolad M R, Subbiah P, Zhang L P. Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions[J]. International Journal of Plant Genomics, 2007, 2007: 97386. |
[25] | Wang Y, Zhang G, Du J, Liu B, Wang M. Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield[J]. Crop Protection, 2010, 29(2): 128-133. |
[26] | 刘睿, 强胜, 宋小玲, 陈世国, 戴伟民. 杂草稻苗期强竞争性的生理机制[J]. 植物保护学报, 2015, 42(1): 138-144. |
Liu R, Qiang S, Song X L, Chen S G, Dai W M. Physiological mechanisms of strong competition of weedy rice at seedling stage[J]. Journal of Plant Protection, 2015, 42(1): 138-144. (in Chinese with English abstract) | |
[27] | Fitter A H. Lnfluence of mycorrhlzal infection on competition for phosphorus and potassium by two species[J]. New Phytologist, 1977, 79: 119-125. |
[28] | 吴云艳. 杂草稻与栽培稻的地下营养竞争[J]. 西南农业学报, 2016, 29(3): 558-561. |
Wu Y Y. Research on nutrient competition between root of weedy rice and that of cultivated rice[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(3): 558-561. (in Chinese with English abstract) | |
[29] | Schaedler C E, Taborda C U M, Goulart F A P. Rice root growth and development in competition with weedy rice[J]. Planta Daninha, 2020, 38: e020216460. |
[30] | He Y, Chen S S, Liu K X, Chen Y J, Cheng Y H, Zeng P, Zhu P W, Xie T, Chen S L, Zhang H S, Cheng J P. OsHIPL1, a hedgehog-interacting protein-like 1 protein, increases seed vigor in rice[J]. Plant Biotechnology Journal, 2022: 1-17. |
[31] | Li Y X, Zhou J H, Li Z, Qiao J Z, Quan R D, Wang J, Huang R F, Qin H. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice[J]. Plant Physiology, 2022, 189(2): 1110-1127. |
[32] | 李振博, 董立尧, 李俊, 张宏军, 杨玉清. 不同环境因子对江苏省杂草稻与常规栽培稻发芽势影响的比较[J]. 杂草科学, 2009(4): 28-31. (in Chinese with English abstract) |
Li Z B, Dong L X, Li J, Zhang H J, Yang Y Q. Study on the influence of different environmental factors on the germination potential of weedy rice(Oryza sativa L.) and cultivated rice from Jiangsu Province[J]. Journal of Weed Science, 2009, 4: 28-31. (in Chinese with English abstract) | |
[33] | 王楠, 马殿荣, 贾德涛, 王莹, 陈温福. 北方杂草稻出苗特性的研究[J]. 华中农业大学学报, 2007, 26(6): 755-758. |
Wang N, Ma D R, Jia D T, Wang Y, Chen W F. Germination characteristics of northern weedy rice[J]. Journal of Huazhong Agricultural University, 2007, 26(6): 755-758. (in Chinese with English abstract) | |
[34] | Jia S, Yuan Q, Pei X, Wang F, Hu N, Yao K, Wang Z. Rice transgene flow: Its patterns, model and risk management[J]. Plant Biotechnology Journal, 2014, 12: 1259-1270. |
[35] | 卢宝荣. 转基因逃逸及其环境生物安全评价研究进展:抗虫水稻案例分析[J]. 生物安全学报, 2014, 23(4): 217-223. |
Lu B R. Assessing transgene escape and its environmental biosafety impacts: A case study in insect- resistant transgenic rice[J]. Journal of Biosafety, 2014, 23(4): 217-223. (in Chinese with English abstract) | |
[36] | Xia H, Lu B R, Xu K, Wang W, Yang X, Yang C, Luo J, Lai F X, Ye W L, Fu Q. Enhanced yield performance of Bt rice under target-insect attacks: Implications for field insect management[J]. Transgenic Research, 2011, 20: 655-664. |
[37] | Yang X, Wang F, Su J, Lu B R. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field[J]. PLoS ONE, 2012, 7(7): e41220. |
[38] | Wang Y, Mi G, Chen F, Zhang J, Zhang F. Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize[J]. Journal of Plant Nutrition, 2004, 27(12): 2189-2202. |
[39] | 田中伟, 樊永惠, 殷美, 王方瑞, 蔡剑, 姜东, 戴廷波. 长江中下游小麦品种根系改良特征及其与产量的关系[J]. 作物学报, 2015, 41(4): 613-622. |
Tian Z W, Fan Y H, Yin M, Wang F R, Cai J, Jiang D, Dai T B. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the middle-lower Yangtze River[J]. Acta Agronomica Sinica, 2015, 41(4): 613-622. (in Chinese with English abstract) | |
[40] | 韩胜芳, 李淑文, 吴立强, 文宏达, 肖凯. 不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J]. 应用生态学报, 2007(4): 807-812. |
Han S F, Li S W, Wu L Q, Wen H D, Xiao K. Responses and corresponding physiological mechanisms of different wheat varieties in their nitrogen efficiency and nitrogen uptake to nitrogen supply[J]. Chinese Journal of Applied Ecology, 2007(4): 807-812. (in Chinese with English abstract) | |
[41] | Mu X, Chen F, Wu Q, Chen Q, Wang J, Yuan L, Mi G. Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake[J]. European Journal of Agronomy, 2015, 63: 55-61 |
[42] | 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析[J]. 植物营养与肥料学报, 2017, 23(2): 333-341. |
Chen C, Gong H Q, Zhang J Z, Gao H J. Correlation between root morphology and nitrogen uptake of rice[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 333-341. (in Chinese with English abstract) | |
[43] | 程建峰, 戴廷波, 荆奇, 姜东, 潘晓云, 曹卫星. 不同水稻基因型的根系形态生理特性与高效氮素吸收[J]. 土壤学报, 2007(2): 266-272. |
Cheng J F, Dai T B, Jing Q, Jiang D, Pan X Y, Cao W X. Root morphologlcal and physiological characterisics in relation to nitrogen absorption efficiency in different rice genotypes[J]. Acta Pedologica Sinica, 2007(2): 266-272. (in Chinese with English abstract) | |
[44] | Bais H P, Sang-Wook P, Weir T L, Callaway R M, Vivanco J M. How plants communicate using the underground information superhighway[J]. Trends in Plant Science, 2004, 9(1): 26-32. |
[45] | Kotchoni O S, Gachomo E W, Mwangi M. Commercial production of genetically modified crops: A prognosis towards global acceptance[J]. International Journal of Agricultural and Biology, 2005, 7: 681-688. |
[46] | Filipecki M, Malepszy S. Unintended consequences of plant transformation: A molecular insight[J]. Journal of Applied Genetics, 2006, 47(4): 277-286. |
[47] | Xia H, Lu B R, Su J, Chen R, Rong J, Song Z P, Wang F. Normal expression of insect-resistant transgene in progenies of common wild rice crossed with genetically modified rice: Its implication in ecological biosafety assessment[J]. Theoretical and Applied Genetics, 2009, 119: 635-644. |
[48] | Yang X, Li L, Cai X X, Wang F, Su J, Lu B R. Efficacy of insect-resistance Bt/CpTI transgenes in F5-F7 generations of rice crop-weed hybrid progeny: implications for assessing ecological impact of transgene flow[J]. Science Bulletin, 2015, 60(18): 1563-1571. |
[49] | 梁晓慧, 史树德. 作物氮素快速营养诊断及其在甜菜上的应用前景[J]. 北方农业学报, 2019, 47(1): 49-56. |
Liang X H, Shi S D. Rapid diagnosis of crop nitrogen nutrition and prospects for its application in sugar beet[J]. Journal of Northern Ageiculture, 2019, 47(1): 49-56. (in Chinese with English abstract) | |
[50] | 莫良玉. 高等植物氨基酸态氮营养效应研究[D]. 杭州: 浙江大学, 2001. |
Mo L Y. Studies on the effects of amino acid nitrogen on different plants under sterile culture[D]. Hangzhou: Zhejiang University, 2001. (in Chinese with English abstract) | |
[51] | Mercer K L, Shaw R G, Wyse D L. Increased germination of diverse crop-wild hybrid sunflower seeds[J]. Ecological Applications, 2006, 16(3): 845-854. |
[1] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[2] | Tianyao MENG, Jialin GE, Xubin ZHANG, Huanhe WEI, Guisheng ZHOU, Qigen DAI. Phosphorus Accumulation Characteristics of Medium-maturity Yongyou japonica/indica Hybrid Rice After Transplanting and Its Modeling [J]. Chinese Journal OF Rice Science, 2020, 34(3): 256-265. |
[3] | Guo-hua DING, Jian SUN, Guang YANG, Feng-ming ZHANG, Liang-ming BAI, Shi-chen SUN, Shu-kun JIANG, Tong-tong WANG, Hong-liang ZHENG, Tian-shu XIA, Xi-hong SHEN, Dian-rong MA, Wen-fu CHEN. Global Genome Expression Analysis of Root Genes under Drought Stress in Weedy Rice and Up-land Rice [J]. Chinese Journal OF Rice Science, 2016, 30(5): 458-468. |
[4] | Xiao-feng CHEN, Sheng QIANG, Jin-ling YANG, Bang-hua ZHANG, Zheng ZHANG, Xiao-ling SONG, Wei-min DAI. Hierarchical Clustering and indica-japonica Classification: Uncover Mutual Spread and indica-japonica Differentiation for Weedy Rice in Jiangsu Province [J]. Chinese Journal OF Rice Science, 2015, 29(1): 82-90. |
[5] | LI Xiaoyan, QIANG Sheng, SONG Xiaoling, CAI Kun, DAI Weimin*. Haplotype Analysis of Rc Gene for Weedy Rice in Jiangsu Province [J]. Chinese Journal of Rice Science, 2014, 28(3): 304-313. |
[6] | MA Dianrong*, KONG Dexiu, GAO Qi, XU Fan, ZHAO Minghui, TANG Liang, XU Zhengjin, CHEN Wenfu*. Effects of Weedy Rice Competition on Yield and Paddy Environment of Transplanted Rice in Northeast China [J]. Chinese Journal of Rice Science, 2014, 28(2): 211-216. |
[7] | MA Dianrong*, KONG Dexiu, LIU Xiaoliang, GAO Qi, DING Guohua, ZHAO Minghui, TANG Liang, XU Zhengjin, CHEN Wenfu*. Mesocotyl Elongation of Weedy Rice and Its Relationship with Grain Amylase Activities and Soluble Sugar Contents [J]. Chinese Journal of Rice Science, 2014, 28(1): 97-102. |
[8] | XU Qun1 , XU Hongyun2 , WEI Xinghua1,* , TANG Shengxiang1 , LEE Dongsun2 , CHEN Lijuan2. SSILP, InDel and SSR Markersbased indicajaponica Classification for Weedy Rice [J]. Chinese Journal of Rice Science, 2012, 26(6): 686-692. |
[9] | SUN Xingqiang1,2, ZHOU Yongjun1, LU Yongliang1, CHEN Lijuan2, YU Liuqing1,* . Effect of Two Biotypes of Jiangdu Weedy Rice at Various Transplanting Densities on Growth of Cultivated Rice and Their Genetic Relationship [J]. Chinese Journal of Rice Science, 2012, 26(1): 118-122. |
[10] | LIU Dan, SUN Jian, MA Dianrong*, WANG Jiayu, TANG Liang, MIAO Wei, CHEN Wenfu*. Genetic Diversity of 47 Weedy Rice with SRAP Markers [J]. Chinese Journal of Rice Science, 2012, 26(1): 70-76. |
[11] | MIAO Wei, WANG Guojiao, MA Dianrong*, WANG Jiayu, XU Zhengjin, CHEN Wenfu*. Physiological Responses of Weedy Rice to Cold Stress at Seedling Stage in Liaoning Province, China [J]. Chinese Journal of Rice Science, 2011, 25(6): 639-644. |
[12] | YANG Jie,CAO Qing,WANG Jun,FAN Fang-jun,ZHANG Yu-qiong,ZHONG Wei-gong. Development and Application of Functional Markers for Polyphenol Oxidase (PPO) Alleles in Rice [J]. Chinese Journal of Rice Science, 2011, 25(1): 37-42 . |
[13] | ZUO Jiao,QIANG Sheng,SONG Xiao-ling* . Fitness of Progenies Between Transgenic Rice and Weedy Rice under Greenhouse Conditions [J]. Chinese Journal of Rice Science, 2010, 24(6): 608-616 . |
[14] | YANG Lin,DAI Wei-min,QIANG Sheng,SONG Xiao-ling*. Cluster Analysis of Weedy Rice and Cultivated Rice Based on the Structural Characteristics of Leaf Lower Epidermis [J]. Chinese Journal of Rice Science, 2009, 23(5): 495-502 . |
[15] |
YANG Jie,WANG Jun,CAO Qing,CHEN Zhide,TANG Linghua,WANG Yan ping,FANG Xianwen,WANG Cailin,ZHONG Weigong*.
Indicajaponica Differentiation of Chloroplast DNA of Weedy Rice in the Changjiang and Huaihe River Valley of China [J]. Chinese Journal of Rice Science, 2009, 23(4): 391-397 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||