Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (3): 233-243.DOI: 10.16819/j.1001-7216.2023.221006
Previous Articles Next Articles
DUAN Min1, XIE Liujie1, GAO Xiuying2, TANG Haijuan2, HUANG Shanjun1, PAN Xiaobiao1,*()
Received:
2022-10-24
Revised:
2022-11-07
Online:
2023-05-10
Published:
2023-05-16
Contact:
*email: xbpan@163.com
段敏1, 谢留杰1, 高秀莹2, 唐海娟2, 黄善军1, 潘晓飚1,*()
通讯作者:
*email: xbpan@163.com
基金资助:
DUAN Min, XIE Liujie, GAO Xiuying, TANG Haijuan, HUANG Shanjun, PAN Xiaobiao. Creation of Thermo-sensitive Genic Male Sterile Rice Lines with Wide Compatibility Based on CRISPR/Cas9 Technology[J]. Chinese Journal OF Rice Science, 2023, 37(3): 233-243.
段敏, 谢留杰, 高秀莹, 唐海娟, 黄善军, 潘晓飚. 利用CRISPR/Cas9技术创制广亲和水稻温敏雄性不育系[J]. 中国水稻科学, 2023, 37(3): 233-243.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.221006
引物名称 Primer | 寡核苷酸序列 (5’-3’) Oligonucleotide sequence (5’-3’) |
---|---|
T5T1-BsF | ATATATGGTCTCTGGCGAACAGCGGCAAGTCATCGC |
T5T1-BsR | ATTATTGGTCTCTAAACTCACCTTGAGGTCCCTCCTC |
T5T1-F0 | GAACAGCGGCAAGTCATCGCGTTTTAGAGCTAGAAATAGC |
T5T2-R0 | AACTCACCTTGAGGTCCCTCCTCGCTTCTTGGTGCC |
T5U3-F | GACAGGCGTCTTCTACTGGTGCTA |
T5U3-R | TCACAAATTATCAGCACGCTAGTC |
T5-SF1 | GACAGGCGTCTTCTACTGGTGCTA |
T5-SF2 HYG-F | GGCCAGCAATTACGAGTCCTTCTA GCGTCTGCTGCTCCATACAA |
HYG-R | TGACATTGGGGAGTTTAGCG |
T5-F | CCAACGCATAGCAGTAGTCG |
T5-R | AATGAAATCTGCCATCGTATC |
Table 1. Primers used for amplification and sequencing.
引物名称 Primer | 寡核苷酸序列 (5’-3’) Oligonucleotide sequence (5’-3’) |
---|---|
T5T1-BsF | ATATATGGTCTCTGGCGAACAGCGGCAAGTCATCGC |
T5T1-BsR | ATTATTGGTCTCTAAACTCACCTTGAGGTCCCTCCTC |
T5T1-F0 | GAACAGCGGCAAGTCATCGCGTTTTAGAGCTAGAAATAGC |
T5T2-R0 | AACTCACCTTGAGGTCCCTCCTCGCTTCTTGGTGCC |
T5U3-F | GACAGGCGTCTTCTACTGGTGCTA |
T5U3-R | TCACAAATTATCAGCACGCTAGTC |
T5-SF1 | GACAGGCGTCTTCTACTGGTGCTA |
T5-SF2 HYG-F | GGCCAGCAATTACGAGTCCTTCTA GCGTCTGCTGCTCCATACAA |
HYG-R | TGACATTGGGGAGTTTAGCG |
T5-F | CCAACGCATAGCAGTAGTCG |
T5-R | AATGAAATCTGCCATCGTATC |
Fig. 2. Positive identification of T0 transgenic plants (partial). M, Marker; 1-24, T0 plants. A, Hygromycin gene, 506 bp in length; B, The band with 831 bp length was amplified by primer T5U3-F/R. The 863 bp fragment means a positive test result.
Fig. 3. Sequencing of the first target site of TMS5 in T0 transgenic plants and WT (Taihui 31). A, Sequencing of T0 transgenic plants at the first target site. The arrow indicates the starting point of double peaks; B, Sequencing results of WT.
播种期 Sowing date | 突变体类型 Mutant type | 播始历期 Days from sowing to heading/d | 幼穗分化敏感期 Young panicle differentiation period | 敏感期温度均值 Mean temperature of period/℃ | 自交结实率 Self-fertilization rate/% |
---|---|---|---|---|---|
05-14(I) | tms5-1 | 90 | 07-23 -7月29日 | 27.0 | 0.56±1.26 |
tms5-2 | 91 | 07-24 -7月30日 | 27.4 | 0 | |
tms5-3 | 90 | 07-23 -7月29日 | 27.0 | 0.03±0.13 | |
05-24(II) | tms5-1 | 87 | 07-30 -8月5日 | 28.1 | 0 |
tms5-2 | 87 | 07-30 -8月5日 | 28.1 | 0 | |
tms5-3 | 86 | 07-29 -8月4日 | 28.3 | 0 | |
06-04(III) | tms5-1 | 79 | 08-02 -8月8日 | 27.8 | 0 |
tms5-2 | 80 | 08-03 -8月9日 | 27.8 | 0 | |
tms5-3 | 80 | 08-03 -8月9日 | 27.8 | 0 | |
06-14(IV) | tms5-1 | 76 | 08-09 -8月15日 | 27.3 | 0 |
tms5-2 | 77 | 08-10 -8月16日 | 27.0 | 0 | |
tms5-3 | 76 | 08-09 -8月15日 | 27.3 | 0 |
Table 2. Sterility identification of tms5 mutants seeded at different dates.
播种期 Sowing date | 突变体类型 Mutant type | 播始历期 Days from sowing to heading/d | 幼穗分化敏感期 Young panicle differentiation period | 敏感期温度均值 Mean temperature of period/℃ | 自交结实率 Self-fertilization rate/% |
---|---|---|---|---|---|
05-14(I) | tms5-1 | 90 | 07-23 -7月29日 | 27.0 | 0.56±1.26 |
tms5-2 | 91 | 07-24 -7月30日 | 27.4 | 0 | |
tms5-3 | 90 | 07-23 -7月29日 | 27.0 | 0.03±0.13 | |
05-24(II) | tms5-1 | 87 | 07-30 -8月5日 | 28.1 | 0 |
tms5-2 | 87 | 07-30 -8月5日 | 28.1 | 0 | |
tms5-3 | 86 | 07-29 -8月4日 | 28.3 | 0 | |
06-04(III) | tms5-1 | 79 | 08-02 -8月8日 | 27.8 | 0 |
tms5-2 | 80 | 08-03 -8月9日 | 27.8 | 0 | |
tms5-3 | 80 | 08-03 -8月9日 | 27.8 | 0 | |
06-14(IV) | tms5-1 | 76 | 08-09 -8月15日 | 27.3 | 0 |
tms5-2 | 77 | 08-10 -8月16日 | 27.0 | 0 | |
tms5-3 | 76 | 08-09 -8月15日 | 27.3 | 0 |
材料 Material | 株高 Plant height/cm | 单株穗数 Panicles per plant | 每穗总粒数 Grains per panicle | 穗长 Panicle length/cm | 柱头外露率 Chapiter exposure percentage/% |
---|---|---|---|---|---|
TB52S | 86.1±3.0 | 13.5±2.0 | 243.2±63.4 | 23.0±1.9 | 53.3±3.7 |
台恢31 Taihui 31(WT) | 113.3±3.1 | 8.3±0.6 | 316.3±71.7 | 26.8±2.0 | - |
Table 3. Agronomic traits of thermo-sensitive genic male sterile mutant TB52S.
材料 Material | 株高 Plant height/cm | 单株穗数 Panicles per plant | 每穗总粒数 Grains per panicle | 穗长 Panicle length/cm | 柱头外露率 Chapiter exposure percentage/% |
---|---|---|---|---|---|
TB52S | 86.1±3.0 | 13.5±2.0 | 243.2±63.4 | 23.0±1.9 | 53.3±3.7 |
台恢31 Taihui 31(WT) | 113.3±3.1 | 8.3±0.6 | 316.3±71.7 | 26.8±2.0 | - |
Fig. 8. Pollen fertility and self-fertilization rate of TB52S mutant under different temperature treatments during the young panicle differentiation. (Bar=5 mm; F, Fertile; S, Sterile)
Fig. 9. Pollen fertility and self-fertilization rate of TB52S mutant under different photoperiod period treatments during the young panicle differentiation. (Bar=5 mm; S showed sterile)
组合 Combination | 株高 Plant height/cm | 有效穗数 Effective panicle number | 穗长 Panicle length /cm | 每穗粒数 Grains per panicle | 结实率 Seed-setting rate/% | 千粒重1000-grain weight/g | 单株产量 Yield per plant/g |
---|---|---|---|---|---|---|---|
TB52S/台恢1050 TB52S/Taihui 1050 | 122.3 | 10.3 | 24.7 | 209.4 | 93.3 | 28.8 | 60.2 |
TB52S/台恢468 TB52S/Taihui 468 | 129.3 | 13.7 | 24.8 | 246.0 | 90.9 | 26.8 | 79.2 |
TB52S/台恢1628 TB52S/Taihui 1628 | 139.3 | 11.0 | 27.3 | 288.9 | 88.9 | 26.4 | 75.1 |
TB52S/TP39 | 126.3 | 8.3 | 21.5 | 258.2 | 96.1 | 24.6 | 49.9 |
TB52S/HR11 | 125.7 | 7.0 | 25.0 | 316.7 | 90.8 | 25.2 | 50.8 |
TB52S/HR4 | 123.7 | 8.3 | 24.8 | 307.0 | 94.6 | 25.4 | 55.6 |
Table 4. Agronomic traits of F1 hybrids derived from the cross between TB52S and restorer lines.
组合 Combination | 株高 Plant height/cm | 有效穗数 Effective panicle number | 穗长 Panicle length /cm | 每穗粒数 Grains per panicle | 结实率 Seed-setting rate/% | 千粒重1000-grain weight/g | 单株产量 Yield per plant/g |
---|---|---|---|---|---|---|---|
TB52S/台恢1050 TB52S/Taihui 1050 | 122.3 | 10.3 | 24.7 | 209.4 | 93.3 | 28.8 | 60.2 |
TB52S/台恢468 TB52S/Taihui 468 | 129.3 | 13.7 | 24.8 | 246.0 | 90.9 | 26.8 | 79.2 |
TB52S/台恢1628 TB52S/Taihui 1628 | 139.3 | 11.0 | 27.3 | 288.9 | 88.9 | 26.4 | 75.1 |
TB52S/TP39 | 126.3 | 8.3 | 21.5 | 258.2 | 96.1 | 24.6 | 49.9 |
TB52S/HR11 | 125.7 | 7.0 | 25.0 | 316.7 | 90.8 | 25.2 | 50.8 |
TB52S/HR4 | 123.7 | 8.3 | 24.8 | 307.0 | 94.6 | 25.4 | 55.6 |
[1] | 牟同敏. 中国两系法杂交水稻研究进展和展望[J]. 科学通报, 2016, 61(35): 3761-3769. |
Mou T M. The research progress and prospects of two-line hybrid rice in China[J]. Chinese Science Bulletin, 2016, 61(35): 3761-3769. (in Chinese) | |
[2] | 王宝和, 徐建军, 吴银慧, 朱金燕, 李生强, 周勇, 程小涛, 梁国华. 水稻光温敏雄性核不育系广占63S不育基因PTGMS2-1的遗传分析与分子定位[J]. 中国水稻科学, 2010, 24(4): 429-432. |
Wang B H, Xu J J, Wu Y H, Zhu J Y, Li S Q, Zhou Y, Cheng X T, Liang G H. Genetic analysis and molecular mapping of a photoperiod-thermo-sensitive genic male sterile gene (PTGMS2-1) in rice line Guangzhan 63S[J]. Chinese Journal of Rice Science, 2010, 24(4): 429-432. (in Chinese with English abstract) | |
[3] | Liu N, Shan Y, Wang F P, Xu C G, Peng K M, Li X H, Zhang Q F. Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice[J]. Molecular Genetics and Genomics, 2001, 266: 271-275. |
[4] | Zhang Q F, Shen B Z, Dai X K, Mei M H, Saghai M M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod sensitive genic male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 8675-8679. |
[5] | Lu Q, Li X, Guo D, Xu C G, Zhang Q F. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment[J]. Molecular Genetics and Genomics, 2005, 273: 507-511. |
[6] | Zhou H, Liu Q J, Li J, Jiang D G, Zhou L Y, Wu P, Lu S, Li F, Zhu L Y, Liu Z L, Chen L T, Liu Y G, Zhuang C X. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22: 649-660. |
[7] | Xu J J, Wang B H, Wu Y H, Du P N, Wang J, Wang M, Yi C D, Gu M H, Liang G H. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod- thermo-sensitive genic male sterile gene in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 122: 365-372. |
[8] | Wang B, Xu W W, Wang J Z, Wu W, Zheng H G, Yang Z Y, Ray J D, Nguyen H T. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice(Oryza sativa L.) with molecular markers[J]. Theoretical and Applied Genetics, 1995, 91: 1111-1114. |
[9] | Lopez M T, Toojinda T, van Avichit A, Tragoonrung S. Microsatellite markers flanking the tms2 gene facilitated tropical TGMS rice line development[J]. Crop Science, 2003, 43: 2267-2271. |
[10] | Subudhi P K, Borkakati R, Virmani S S. Molecular mapping of a thermo-sensitive genetic male-sterility gene in rice using bulked segregant analysis[J]. Genome, 1997, 40: 188-194. |
[11] | Yang Q K, Liang C Y, Li J, Jin D M, Ahuang W, Deng Q Y, Wang B. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping[J]. Planta, 2007, 225: 321-330. |
[12] | 杜茜, 费云燕, 王芳权, 许扬, 王军, 李文奇, 赵凌, 陈智慧, 梁国华, 周勇, 杨杰. 敲除TMS5基因获得温敏不育粳稻新材料[J]. 中国水稻科学, 2019, 33(5): 429-435. |
Du Q, Fei Y Y, Wang F Q, Xu Y, Wang J, Li W Q, Zhao L, Chen Z H, Liang G H, Zhou Y, Yang J. Thermo- sensitive male sterile line created by editing TMS5 gene in japonica rice[J]. Chinese Journal of Rice Science, 2019, 33(5): 429-435. (in Chinese with English abstract) | |
[13] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7): 1219-1229. |
Jing R C, Lu H. The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7): 1219-1229. (in Chinese with English abstract) | |
[14] | Symington L S, Gautier J. Double-strand break end resection and repair pathway choice[J]. Annual Review of Genetics, 2011, 45: 247-271. |
[15] | Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E D, Jiang D G, Zhao B R, Zhuang C X. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system[J]. Scientific Reports, 2016, 6(1): 37395. |
[16] | 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建[J]. 作物学报, 2018, 44 (6): 844-851. |
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology[J]. Acta Agronomica Sinica, 2018, 44(6): 844-851. (in Chinese with English abstract) | |
[17] | 陈日荣, 周延彪, 王黛君, 赵新辉, 唐晓丹, 许世冲, 唐倩莹, 符星学, 王凯, 刘选明, 杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5[J]. 作物学报, 2020, 46(8): 1157-1165. |
Chen R R, Zhou Y B, Wang D J, Zhao X H, Tang X D, Xu S C, Tang Q Y, Fu X X, Wang K, Liu X M, Yang Y Z. CRISPR/Cas9-mediated editing of the thermo- sensitive genic male-sterile gene TMS5 in rice[J]. Acta Agronomica Sinica, 2020, 46(8): 1157-1165. (in Chinese with English abstract) | |
[18] | Barman H N, Sheng Z, Fiaz S, Zhong M, Wu Y W, Cai Y C, Wang W, Jiao G A, Tang S Q, Wei X J, Hu P S. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system[J]. BMC Plant Biology, 2019, 19 (1): 109. |
[19] | Chen Y Y, Wang Z P, Ni H W, Xu Y, Chen Q J, Jiang L J. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of function mutations in Arabidopsis[J]. Science China: Life Science, 2017, 60(5): 520-523. doi: 10.1007/sll427-017-9021-5. |
[20] | 唐海娟. 根癌农杆菌介导的水稻转基因体系研究[D]. 南京: 南京农业大学, 2009: 27-32. |
Tang H J. Study on Agrobacterium tumefaciens-mediated rice transgenic system[D]. Nanjing: Nanjing Agricultural University, 2009: 27-32. | |
[21] | Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology, 2014, 14: 327. |
[22] | Petolino J F. Genome editing in plants via designed zinc finger nucleases[J]. In Vitro Cellular & Developmental Biology-Plant, 2015, 51(1): 1-8. |
[23] | Bogdanove A J, Voytas D F. TAL effectors: Customizable proteins for DNA targeting[J]. Science, 2011, 333(6051): 1843-1846. |
[24] | Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284. |
[25] | Xu R F, Li H, Qin R Y, Li J, Qiu C H, Yang Y C, Ma H, Li L, Wei P C, Yang J B. Generation of inheritable and “transgeneclean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system[J]. Scientific Reports, 2015: 11491. |
[26] | 王加峰, 郑才敏, 刘维, 罗文龙, 王慧, 陈志强, 郭涛. 基于CRISPR/Cas9技术的水稻千粒重基因tgw6突变体的创建[J]. 作物学报, 2016, 42(8): 1160-1167. |
Wang J F, Zheng C M, Liu W, Luo W L, Wang H, Chen Z Q, Guo T. Construction of tgw6 mutants in rice based on CRISPR/Cas9[J]. Acta Agronomica Sinica, 2016, 42(8): 1160-1167. (in Chinese with English abstract) | |
[27] | 王芳权, 范方军, 李文奇, 朱金燕, 王军, 仲维功, 杨杰. 利用CRISPR/Cas9技术敲除水稻Pi21基因的效率分析[J]. 中国水稻科学, 2016, 30(5): 469-478. |
Wang F Q, Fan F J, Li W Q, Zhu J Y, Wang J, Zhong W G, Yang J. Knock-out efficiency analysis of Pi21 gene using CRISPR/Cas9 in rice[J]. Chinese Journal of Rice Science, 2016, 30(5): 469-478. (in Chinese with English abstract) | |
[28] | 周海, 周明, 杨远柱, 曹晓风, 庄楚雄. RNase ZS1加工UbL40mRNA控制水稻温敏雄性核不育[J]. 遗传, 2014, 36: 1274. |
Zhou H, Zhou M, Yang Y Z, Cao X F, Zhuang C X. RNase ZS1 processes UbL40mRNA to control thermo-sensitive genic male sterility in rice[J]. Hereditas(Beijing), 2014, 36: 1274. (in Chinese) | |
[29] | Liu W, Xie X, Ma X, Li J, Chen J, Liu Y G. DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8: 1431-1433. |
[30] | 程式华, 孙宗修, 斯华敏, 卓丽圣. 水稻两用核不育系育性转换光温反应型的分类研究[J]. 中国农业科学, 1996, 29(4): 11-16. |
Cheng S H, Sun Z X, Si H M, Zhuo L S. Classification of fertility response to photoperiod and temperature in dual-purpose genic male sterile lines (Oryza sativa L.)[J]. Scientia Agricultura Sinica, 1996, 29(4): 11-16. (in Chinese with English abstract) | |
[31] | 卢兴桂. 中国光、温敏雄性不育水稻育性生态[M]. 北京: 科学出版社, 2003: 135-136. |
Lu X G. Fertility Ecology of Photoperiod- and Thermo-sensitive Genic Male Sterile Rice in China[M]. Beijing: Science Press, 2003: 135-136. (in Chinese) | |
[32] | 朱旭东, 王建林, 熊振民, 严学强. 水稻亚种间杂种优势利用中广亲和性的研究[J]. 中国水稻科学, 1994, 8 (4): 211-216. |
Zhu X D, Wang J L, Xiong Z M, Yan X Q. Studies on the wide compatibility for utilization of heterosis between indica and japonica rice[J]. Chinese Journal of Rice Science, 1994, 8(4): 211-216. (in Chinese with English abstract) | |
[33] | 万建民. 水稻籼粳交杂种优势利用研究[J]. 杂交水稻, 2010(S1): 15-18. |
Wan J M. Utilization of strong heterosis between indica and japonica varieties in rice[J]. Hybrid Rice, 2010, 2010(S1): 15-18. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||