Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (3): 225-232.DOI: 10.16819/j.1001-7216.2023.220506
SHEN Yumin, CHEN Mingliang, XIONG Huanjin, XIONG Wentao, WU Xiaoyan, XIAO Yeqing*()
Received:
2022-05-09
Revised:
2022-12-02
Online:
2023-05-10
Published:
2023-05-16
Contact:
*email: xiaoyq1965@163.com
沈雨民, 陈明亮, 熊焕金, 熊文涛, 吴小燕, 肖叶青*()
通讯作者:
*email: xiaoyq1965@163.com
基金资助:
SHEN Yumin, CHEN Mingliang, XIONG Huanjin, XIONG Wentao, WU Xiaoyan, XIAO Yeqing. Phenotypic Analysis and Fine Mapping of blg1(beak like grain 1), a Rice Mutant with Abnormal Palea and Lemma Development[J]. Chinese Journal OF Rice Science, 2023, 37(3): 225-232.
沈雨民, 陈明亮, 熊焕金, 熊文涛, 吴小燕, 肖叶青. 水稻内外稃异常发育突变体blg1 (beak like grain 1)的表型分析与精细定位[J]. 中国水稻科学, 2023, 37(3): 225-232.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220506
分子标记 Marker | 前引物 (5’-3’) Forward sequence (5’-3’) | 后引物 (5’-3’) Reverse sequence (5’-3’) |
---|---|---|
S1 | TAATTGCGGTCTCGTGCC | AACCACCTCAACTACTGCCG |
S2 | CGCCTGCAAAAAAGGTAGAG | GATCAAAGGAACCCCCGTAG |
S3 | GCCGGTAGATGCAGTATTGC | GTGCACAGTCACGCAGAAAG |
S4 | TGCTGTCTCCACTTCCCTTC | AAGGAGGCGTGCTTAACAGG |
S5 | CTTGTCTTGGCTTGGCTAGG | ATCCACGCAGATAGACCTGC |
InD1 | AAAACGATCATAGTTGCTTGC | GGAGTTCGGGCTCAAGTA |
InD2 | GGGGCTTATTCACTTTGT | TTCTTTCCTCCTGGCTCT |
InD3 | CCCTTTTATCCTCAGTAGT | TACAAGCAGTTGTTTGCA |
InD4 | GGCGACCGAGAAGTGTAG | CGAGATAGCGAAAGCGAC |
InD5 | CGGGTCAGTGTTATCGTC | CATCAATGAAGGGCAAAT |
Table 1. Molecular markers used for fine mapping.
分子标记 Marker | 前引物 (5’-3’) Forward sequence (5’-3’) | 后引物 (5’-3’) Reverse sequence (5’-3’) |
---|---|---|
S1 | TAATTGCGGTCTCGTGCC | AACCACCTCAACTACTGCCG |
S2 | CGCCTGCAAAAAAGGTAGAG | GATCAAAGGAACCCCCGTAG |
S3 | GCCGGTAGATGCAGTATTGC | GTGCACAGTCACGCAGAAAG |
S4 | TGCTGTCTCCACTTCCCTTC | AAGGAGGCGTGCTTAACAGG |
S5 | CTTGTCTTGGCTTGGCTAGG | ATCCACGCAGATAGACCTGC |
InD1 | AAAACGATCATAGTTGCTTGC | GGAGTTCGGGCTCAAGTA |
InD2 | GGGGCTTATTCACTTTGT | TTCTTTCCTCCTGGCTCT |
InD3 | CCCTTTTATCCTCAGTAGT | TACAAGCAGTTGTTTGCA |
InD4 | GGCGACCGAGAAGTGTAG | CGAGATAGCGAAAGCGAC |
InD5 | CGGGTCAGTGTTATCGTC | CATCAATGAAGGGCAAAT |
Fig. 1. Phenotypic analysis of floret organs in blg1 mutant and Z1803. A and B, Spikelets of blg1 and Z1803, respectively(Bar=2 cm); C, D, and E, Floret, lemma, palea of blg1, respectively(Bar=3 mm); F, G and H, Floret, lemma, palea of Z1803, respectively(Bar=3 mm); I and K, Internal floral organs of blg1 and Z1803, respectively(Bar=1.5 mm); J and L, Pollen staining of blg1 and Z1803, respectively(Bar=100 μm); M and N, Paraffin section of floret transection of blg1 and Z1803, respectively(Bar=1 mm).
Fig. 2. Phenotype of mature grains of blg1. A, A mature grain of Z1803; B-H, Mature grains of blg1; I-P, Brown rice of A-H, respectively; A-D, Grains of the mutant planted in Nanchang City, Jiangxi Province; E-H, Grains of the mutant planted in Sanya City, Hainan Province. A-H, Bar=3 mm; I-P, Bar=2 mm.
基因 | 功能注释 |
---|---|
Gene | Function annotation |
LOC_Os05g48700 | 赤霉素2-β-双加氧酶 Gibberellin 2-beta-dioxygenase |
LOC_Os05g48710 | 表达蛋白 Expressed protein 转座子蛋白Transposon protein |
LOC_Os05g48720 | 转座子蛋白 Transposon protein |
LOC_Os05g48730 | 表达蛋白 Expressed protein |
LOC_Os05g48740 | 表达蛋白 Expressed protein |
LOC_Os05g48750 | 3-脱氧-甘露醇辛酸胞苷酰转移酶 3-deoxy-manno-octulosonate cytidylyltransferase |
LOC_Os05g48760 | 含有DUF1421结构域的功能未知蛋白质 Protein of unknown function containing DUF1421 domain |
LOC_Os05g48770 | 表达蛋白 Expressed protein |
Table 2. Eight candidate genes within the fine mapping region.
基因 | 功能注释 |
---|---|
Gene | Function annotation |
LOC_Os05g48700 | 赤霉素2-β-双加氧酶 Gibberellin 2-beta-dioxygenase |
LOC_Os05g48710 | 表达蛋白 Expressed protein 转座子蛋白Transposon protein |
LOC_Os05g48720 | 转座子蛋白 Transposon protein |
LOC_Os05g48730 | 表达蛋白 Expressed protein |
LOC_Os05g48740 | 表达蛋白 Expressed protein |
LOC_Os05g48750 | 3-脱氧-甘露醇辛酸胞苷酰转移酶 3-deoxy-manno-octulosonate cytidylyltransferase |
LOC_Os05g48760 | 含有DUF1421结构域的功能未知蛋白质 Protein of unknown function containing DUF1421 domain |
LOC_Os05g48770 | 表达蛋白 Expressed protein |
Fig. 4. Sequencing result of partial sequence of LOC_Os05g48760. A, Partial sequence of LOC_Os05g48760; B, Location and mutation type of 5 SNPs on gene LOC_Os05g48760.
[1] | Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis[J]. Development, 1991, 112: 1-20. |
[2] | Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development[J]. Nature, 1991, 353: 31-37. |
[3] | Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots[J]. Molecular Cell, 2000, 5: 569-579. |
[4] | Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z. DEP and AFO regulate reproductive habit in rice[J]. PLoS Genetics, 2010, 6: e1000818. |
[5] | Lee D Y, Lee J, Moon S, Park S Y, An G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem[J]. The Plant Journal, 2006, 49: 64-78. |
[6] | Lee D Y, An G. Two AP2 family genes, SUPERNUMERARY BRACT and OsINDETERMINATE SPIKELET 1, synergistically control inflorescence architecture and floral meristem establishment in rice[J]. The Plant Journal, 2012, 69: 445-461. |
[7] | Duan Y, Xing Z, Diao Z, Xu W, Li S, Du X, Wu G, Wang C, Lan T, Meng Z, Liu H, Wang F, Wu W, Xue Y. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.)[J]. Plant Molecular Biology, 2012, 80: 429-442. |
[8] | Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice[J]. The Plant Cell, 2009, 21: 3008-3025. |
[9] | Yu X, Xia S, Xu Q, Cui Y, Gong M, Zeng D, Zhang Q, Shen L, Jiao G, Gao Z, Hu J, Zhang G, Zhu L, Guo L, Ren D, Qian Q. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality[J]. Science China: Life Sciences, 2020, 63: 60-70. |
[10] | Sang X, Li Y, Luo Z, Ren D, Fang L, Wang N, Zhao F, Ling Y, Yang Z, Liu Y, He G. CHIMERIC FLORAL ORGANS1, Encoding a Monocot-Specific MADS box protein, regulates floral organ identity in rice[J]. Plant Physiology, 2012, 160: 788-807. |
[11] | Wang H, Zhang L, Cai Q, Hu Y, Jin Z, Zhao X, Fan W, Huang Q, Luo Z, Chen M, Zhang D, Yuan Z. OsMADS32 interacts with PI-like proteins and regulates rice flower development[J]. Journal of Integrative Plant Biology, 2014, 57: 504-513. |
[12] | Jin Y, Luo Q, Tong H, Wang A, Cheng Z, Tang J, Li D, Zhao X, Li X, Wan J, Jiao Y, Chu C, Zhu L. An AT-hook gene is required for palea formation and floral organ number control in rice[J]. Developmental Biology, 2011, 359: 277-288. |
[13] | Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X, Wilson Z A, Qian Q, Zhang D B. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiology, 2009, 149: 235-244. |
[14] | Zeng D D, Qin R, Alamin M, Liang R, Yang C C, Jin X L, Shi C H. DBOP specifies palea development by suppressing the expansion of the margin of palea in rice[J]. Genes and Genomics, 2016, 38: 1095-1103. |
[15] | Ren D, Li Y, Zhao F, Sang X, Shi J, Wang N, Guo S, Ling Y, Zhang C, Yang Z, He G. MULTI-FLORET SPIKELET1, Which Encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice[J]. Plant Physiology, 2013, 162: 872-884. |
[16] | Zheng M, Wang Y, Wang Y, Wang C, Ren Y, Lv J, Peng C, Wu T, Liu K, Zhao S, Liu X, Guo X, Jiang L, Terzaghi W, Wan J. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa)[J]. New Phytologist, 2015, 206: 1476-1490. |
[17] | Yan D, Zhang X, Zhang L, Ye S, Zeng L, Liu J, Li Q, He Z. CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development[J]. The Plant Journal, 2015, 82: 12-24. |
[18] | Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs[J]. The Plant Journal, 2005, 43: 915-928. |
[19] | Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development[J]. The Plant Cell, 2000, 12: 871-884. |
[20] | Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X. DH1, a LOB domain-like protein required for glume formation in rice[J]. Plant Molecular Biology, 2008, 66: 491-502. |
[21] | Li X, Sun L, Tan L, Liu F, Zhu Z, Fu Y, Sun X, Sun X, Xie D, Sun C. TH1, a DUF640 domain-like gene controls lemma and palea development in rice[J]. Plant Molecular Biology, 2012, 78: 351-359. |
[22] | Yan D, Zhou Y, Ye S, Zeng L, Zhang X, He Z. BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice[J]. Science China-Life Sciences, 2013, 56: 275-283. |
[23] | Ma X, Cheng Z, Wu F, Jin M, Zhang L, Zhou F, Wang J, Zhou K, Ma J, Lin Q, Lei C, Wan J. BEAK LIKE SPIKELET1 is required for lateral development of lemma and palea in rice[J]. Plant Molecular Biology Reporter, 2012, 31: 98-108. |
[24] | Ren D, Rao Y, Wu L, Xu Q, Li Z, Yu H, Zhang Y, Leng Y, Hu J, Zhu L, Gao Z, Dong G, Zhang G, Guo L, Zeng D, Qian Q. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice[J]. Journal of Integrative Plant Biology, 2016, 58: 529-539. |
[25] | 周涯. 水稻花器官相关基因MRG的图位克隆[D]. 金华: 浙江师范大学, 2011. |
Zhou Y. Map-based cloning of MRG related to rice flower development[D]. Jinhua: Zhejiang Normal University, 2011. | |
[26] | Yu X, Xia S, Xu Q, Cui Y, Gong M, Zeng D, Zhang Q, Shen L, Jiao G, Gao Z, Hu J, Zhang G, Zhu L, Guo L, Ren D, Qian Q. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality[J]. Science China: Life Sciences, 2020, 63: 228-238. |
[27] | Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues[J]. Plant Molecular Biology, 1985, 5: 69-76. |
[28] | Kim S L, Lee S, Kim H J, Nam H G, An G. Osmads51 Is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a[J]. Plant Physiology, 2007, 145: 1484-1494. |
[29] | Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura M M, Colombo L, Kater M M. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes[J]. Plant Physiology, 2004, 135: 2207-2219. |
[30] | Yadav S R, Prasad K, Vijayraghavan U. Divergent Regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ[J]. Genetics, 2007, 176: 283-294. |
[31] | Yao S G, Ohmori S, Kimizu M, Yoshida H. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development[J]. Plant and Cell Physiology, 2008, 49: 853-857. |
[32] | Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development, 2003, 130: 705-718. |
[33] | Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants[J]. Plant and Cell Physiology, 2002, 43: 130-135. |
[34] | Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa[J]. The Plant Cell, 2006, 18: 15-28. |
[35] | Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk P B F, An G, Colombo L, Kater M M. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice[J]. The Plant Journal, 2007, 52: 690-699. |
[36] | Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa)[J]. The Plant Journal, 2010, 61: 767-781. |
[37] | Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development[J]. Plant Physiology, 2010, 153: 728-740. |
[38] | Zhou Y, Li S, Qian Q, Zeng D, Zhang M, Guo L, Liu X, Zhang B, Deng L, Liu X, Luo G, Wang X, Li J. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.)[J]. The Plant Journal, 2009, 57: 446-462. |
[39] | Jiang J, Li J, Xu Y, Han Y, Bai Y, Zhou G, Lou Y, Xu Z, Chong K. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice[J]. Plant, Cell and Environment, 2007, 30: 690-699. |
[40] | Zhang L, Tian L H, Zhao J F, Song Y, Zhang C J, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis[J]. Plant Physiology, 2009, 149: 916-928. |
[41] | 李娟, 常闪闪, 刘凤权, 邵敏. OsDUF500基因沉默提高水稻对白叶枯病的抗性[J]. 中国水稻科学, 2012, 26: 476-480. |
Li J, Chang S S, Liu F Q, Shao M. Silencing of OsDUF500 gene in rice enhances resistance to Xanthomonas oryzae pv. oryzae[J]. Chinese Journal of Rice Science, 2012, 26: 476-480. (in Chinese with English abstract) | |
[42] | Yoshida A, Suzaki T, Tanaka W, Hirano H Y. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet[J]. Proceedings of the National Academy of Sciences, 2009, 106: 20103-20108. |
[43] | Liu M, Li H, Su Y, Li W, Shi C. G1/ELE functions in the development of rice lemmas in addition to determining identities of empty glumes[J]. Frontiers in Plant Science, 2016, 7: 1006. |
[44] | Xia T, Yang Y, Zheng H, Han X, Jin H, Xiong Z, Qian W, Xia L, Ji X, Li G, Wang D, Zhang K. Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site[J]. Plant Biotechnology Journal, 2020, 19(5): 897-909. |
[45] | Morgan J T, Fink G R, Bartel D P. Excised linear introns regulate growth in yeast[J]. Nature, 2019, 565(7741): 606-611. |
[46] | Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou E S. Introns are mediators of cell response to starvation[J]. Nature, 2019, 565(7741): 612-617. |
[47] | Heo J B, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331: 76-79. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||