Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (2): 142-152.DOI: 10.16819/j.1001-7216.2023.220603
• Research Papers • Previous Articles Next Articles
WEI Qianqian1,2, XU Qingshan2, PAN Lin2, KONG Yali2, ZHU Lianfeng2, CAO Xiaochuang2, TIAN Wenhao2, LIU Jia3, JIN Qianyu2, XIANG Xingjia1, ZHANG Junhua2,*(), ZHU Chunquan2,*()
Received:
2022-06-08
Revised:
2022-08-31
Online:
2023-03-10
Published:
2023-03-10
Contact:
ZHANG Junhua, ZHU Chunquan
魏倩倩1,2, 徐青山2, 潘林2, 孔亚丽2, 朱练峰2, 曹小闯2, 田文昊2, 刘佳3, 金千瑜2, 项兴佳1, 张均华2,*(), 朱春权2,*()
通讯作者:
张均华,朱春权
基金资助:
WEI Qianqian, XU Qingshan, PAN Lin, KONG Yali, ZHU Lianfeng, CAO Xiaochuang, TIAN Wenhao, LIU Jia, JIN Qianyu, XIANG Xingjia, ZHANG Junhua, ZHU Chunquan. Mechanism of Interaction Between Calcium Ion and Hydrogen Sulfide Alleviating the Inhibitory Effect of Aluminum on Root Elongation in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(2): 142-152.
魏倩倩, 徐青山, 潘林, 孔亚丽, 朱练峰, 曹小闯, 田文昊, 刘佳, 金千瑜, 项兴佳, 张均华, 朱春权. 钙离子与硫化氢互作缓解铝对水稻根系伸长抑制作用的机制[J]. 中国水稻科学, 2023, 37(2): 142-152.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220603
引物 Primer | 序列Sequence (5′-3′) |
---|---|
OsSTAR2-R | CCTCAGCTTCTTCATCGTCACC |
OsSTAR2-F | ACCTCTTCATGGTCACCGTCG |
OsFRDL4-R | TCATTTGCGAAGAAACTTCCACG |
OsFRDL4-F | CGTCATCAGCACCATCCACAG |
OsNRAT1-F | GAGGCCGTCTGCAGGAGAGG |
OsNRAT1-R | GGAAGTATCTGCAAGCAGCTCTGATGC |
OsHistone-R | AACCGCAAAATCCAAAGAACG |
OsHistone-F | GGTCAACTTGTTGATTCCCCTCT |
Table 1. Primers selected for this study and the sequences.
引物 Primer | 序列Sequence (5′-3′) |
---|---|
OsSTAR2-R | CCTCAGCTTCTTCATCGTCACC |
OsSTAR2-F | ACCTCTTCATGGTCACCGTCG |
OsFRDL4-R | TCATTTGCGAAGAAACTTCCACG |
OsFRDL4-F | CGTCATCAGCACCATCCACAG |
OsNRAT1-F | GAGGCCGTCTGCAGGAGAGG |
OsNRAT1-R | GGAAGTATCTGCAAGCAGCTCTGATGC |
OsHistone-R | AACCGCAAAATCCAAAGAACG |
OsHistone-F | GGTCAACTTGTTGATTCCCCTCT |
Fig. 1. Effects of different Al3+ concentrations on root elongation (A) and Al content in root apices (B). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3).
Fig. 2. Effects of different Ca2+ concentrations on root elongation (A) and Al content in root apices (B). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). -Al, No Al3+ addition; +Al, 30μmol/L Al3+.
Fig. 3. Effects of different Ca2+ concentrations on total Al concentration (A), Al concentration in cell sap (B), apoplastic Al concentration (C), Al content in cell wall(D), pectin content (E), pectin methylesterase activity (F). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). 0.1Ca, 0.1 mmol/L CaCl2; 0.5Ca, 0.5 mmol/L CaCl2; 0.1Ca+Al, 0.1 mmol/L CaCl2+30 μmol/L AlCl3; 0.5Ca+Al, 0.5 mmol/L CaCl2+30 μmol/L AlCl3.
Fig. 4. Effects of different Ca2+ concentrations on total Ca concentration (A), Ca concentration in cell sap (B and C). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). 0.1Ca: 0.1 mmol/L CaCl2; 0.5Ca: 0.5 mmol/L CaCl2; 0.1Ca+Al: 0.1 mmol/L CaCl2+30 μmol/L AlCl3; 0.5Ca+Al: 0.5 mmol/L CaCl2+30 μmol/L AlCl3.
Fig. 5. Effects of different Ca2+ concentrations on the content of endogenous H2S. Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). 0.1Ca: 0.1 mmol/L CaCl2; 0.5Ca: 0.5 mmol/L CaCl2; 0.1Ca+Al: 0.1 mmol/L CaCl2+30 μmol/L AlCl3; 0.5Ca+Al: 0.5 mmol/L CaCl2+30 μmol/L AlCl3.
Fig. 6. Effects of interaction between Ca2+ and H2S on root elongation (A), relative root elongation (B) and Al content in root apices (C). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). 0.1Ca, 0.1 mmol/L CaCl2; 0.1Ca+NaHS, 0.1 mmol/L CaCl2+0.2 μmol/L NaHS; 0.1Ca+HP, 0.1 mmol/L CaCl2+100 μmol/L HP; 0.5Ca, 0.5 mmol/L CaCl2; 0.5Ca+NaHS, 0.5 mmol/L CaCl2+0.2 μmol/L NaHS; 0.5Ca+HP, 0.5 mmol/L CaCl2+100 μmol/L HP.
Fig. 7. Effects of interaction between Ca2+ and H2S on total Al concentration (A), Al concentration in cell sap (B), apoplastic Al concentration (C), Al content in cell wall(D), pectin content (E), pectin methylesterase activity (F). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). 0.1Ca, 0.1 mmol/L CaCl2; 0.1Ca+NaHS, 0.1 mmol/L CaCl2+0.2 μmol/L NaHS; 0.1Ca+HP, 0.1 mmol/L CaCl2+100 μmol/L HP; 0.5Ca, 0.5 mmol/L CaCl2; 0.5Ca+NaHS, 0.5 mmol/L CaCl2+0.2 μmol/L NaHS; 0.5Ca+HP, 0.5 mmol/L CaCl2+100 μmol/L HP.
Fig. 8. Effects of interaction between Ca2+ and H2S on relative expression of OsSTAR2 (A), OsFRDL4 (B) and OsNRAT1 (C). Different letters in the figure indicate that there is a significant difference in the results under the analysis of variance (P<0.05), and the value is the mean ± standard deviation (n=3). 0.1Ca, 0.1 mmol/L CaCl2; 0.1Ca+NaHS, 0.1 mmol/L CaCl2+0.2 μmol/L NaHS; 0.1Ca+HP, 0.1 mmol/L CaCl2+100 μmol/L HP; 0.5Ca, 0.5 mmol/L CaCl2; 0.5Ca+NaHS, 0.5 mmol/L CaCl2+0.2 μmol/L NaHS; 0.5Ca+HP, 0.5 mmol/L CaCl2+100 μmol/L HP.
[1] | 郑爱珍, 李春喜. 酸性红壤铝毒对植物的影响及其改良[J]. 湖北农业科学, 2004(6): 38-40. |
Zheng A Z, Li C X. Influences and improvement of Al toxin on plant in acid red soil[J]. Huibei Agricultural Sciences, 2004(6): 38-40. (in Chinese) | |
[2] | Poschenrieder C, Gunsé B, Corrales I, Barceló J J. A glance into aluminum toxicity and resistance in plants[J]. The Science of the Total Environment, 2008, 400(1-3): 356-368. |
[3] | Zhen Y, Qi J L, Wang S S, Su J, Xu G H, Zhang M S, Miao L, Peng X X, Tian D C, Yang Y H. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean[J]. Physiologia Plantarum, 2007, 131: 542-554. |
[4] | Zhu C Q, Zhang J H, Sun L M, Zhu L F, Abliz B, Hu W J, Zhong C, Bai Z G, Sajid H, Cao X C, Jin Q Y. Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice[J]. Frontiers in Plant Science, 2018, 9: 294 |
[5] | 沈仁芳. 铝在土壤-植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008. |
Shen R F. The Behavior of Aluminum in Soil Plant and the Adaptive Mechanism of Plants[M]. Beijing: Science Press, 2008. (in Chinese) | |
[6] | Ma J F, Chen Z C, Shen R F. Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant and Soil, 2014, 381: 1-12. |
[7] | Huang W J, Oo T L, He H Y, Wang A Q, Zhan J, Wei S Q, He L F. Aluminum induces rapidly mitochondria- dependent programmed cell death in Al sensitive peanut root tips[J]. Botanical Studies, 2014, 55: 67. |
[8] | Hepler P K. Calcium: A central regulator of plant growth and development[J]. The Plant Cell, 2005: 2142-2155. |
[9] | Tang R H, Han S C, Zheng H L, Cook C W, Choi C S, Woerner T E, Jackson R B, Pei Z M. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis[J]. Science, 2007, 315: 1423-1426. |
[10] | Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. |
[11] | Wan U L, Najeeb U, Jilani G, Naeem M S, Zhou W J. Calcium invigorates the cadmium-stressed Brassica napus L. Plants by strengthening their photosynthetic system[J]. Environmental Science and Pollution Research International, 2011, 18: 1478-1486. |
[12] | Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa N K. Regulating subcellular metal homeostasis: The key to crop improvement[J]. Front Plant Science, 2016, 7: 1192. |
[13] | Lu H P, Li Z, Wu J T, Shen Y, Li Y W, Zou B, Tang Y T, Zhuang P. Influences of Calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L[J]. Scientific Reports, 2017, 7: 40583. |
[14] | 王爱勤, 何龙飞, 沈振国, 刘友良, 李杨瑞. 铝胁迫下钙对小麦幼苗营养元素吸收和转运的影响[J]. 西南农业学报, 2002, 15 (2): 42-47. |
Wang A Q, He L F, Shen Z G, Liu Y L, Li Y R. Effects of calcium on the absorption and distribution of nutrient elements of wheat seedlings under aluminum stress[J]. Southwest China Journal of Agricultural Sciences, 2002, 15(2): 42-47. | |
[15] | Chen J, Duan R X, Hu W J, Zhang N N, Lin X Y, Zhang J H, Zheng H L. Unravelling calcium-alleviated aluminium toxicity in Arabidopsis thaliana: Insights into regulatory mechanisms using proteomics[J]. Journal of Proteomic, 2019, 199: 15-30. |
[16] | Fang H H, Jing T, Liu Z Q, Zhang L Q, Jin Z P, Pei Y X. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica[J]. Cell Calcium, 2014, 56(6): 472-481. |
[17] | Bont L D, Mu X J, Wei B, Han Y. Abiotic stress-triggered oxidative challenges: Where does H2S act?[J]. Journal of Genetics and Genomics, 2022, 49(8): 748-755. |
[18] | Peng R Y, Bian Z Y, Zhou L, Cheng W, Hai N, Yang C Q, Yang T, Wang X Y, Wang C Y. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.)[J]. Plant Cell Reports, 2016, 35(11): 2325-2340. |
[19] | Wang H H, Ji F, Zhang Y Y, Hou J J, Liu W W, Huang J J, Liang W H. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity[J]. Plant, Cell and Environment, 2019, 42(8): 2340-2356. |
[20] | Zhu C Q, Wei Q Q, Hu W J, Kong Y L, Xiang X J, Zhang H, Cao X C, Zhu L F, Liu J, Tian W H, Jin Q Y, Zhang J H. Unearthing the alleviatory mechanisms of hydrogen sulfide in aluminum toxicity in rice[J]. Plant Physiology and Biochemistry, 2022, 182: 133-144. |
[21] | Liu Z Q, Fang H H, Pei Y X, Jin Z P, Zhang L P, Liu D M. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana[J]. Science Bulletin, 2015, 60(11): 995-1001. |
[22] | Kaur H, Hussain S J, Al-Huqail A A, Siddiqui M H, Al-Huqail A A, Khan M I R. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress[J]. Plant Biology, 2022, 24(4): 660-669. |
[23] | Singh S, Prasad S M, Singh V P. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide[J]. Journal of Hazardous Materials, 2020, 398: 122607. |
[24] | Husain T, Suhel M, Prasa S M, Singh V P. Ethylene needs endogenous hydrogen sulfide for alleviating hexavalent chromium stress in Vigna mungo L. and Vigna radiata L[J]. Environmental Pollution, 2021, 290: 117968. |
[25] | Khan M N, Siddiqui M H, AlSolami M A, Alamri S, Hu Y, Ali H M, Al-Amri A A, Alsubaie Q D, Al-Munqedhi B M A, Al-Ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata[J]. Plant Physiology and Biochemistry, 2020, 156: 278-290. |
[26] | Yang J L, Zhu X F, Peng Y X, Zheng C, Li G X, Liu Y, Shi Y Z, Zheng S J. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis[J]. Plant Physiology, 2011, 155(4): 1885-1892. |
[27] | Xia J X, Yamaji N, Kasai T, Ma J F. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 18381-18385. |
[28] | Hossain M A, Ban K, Hossain A K M Z, Koyama H, Hara T. Combined effects of Mg and Ca supply on alleviation of Al toxicity in wheat plants[J]. Soil Science and Plant Nutrition, 2004, 50: 283-286. |
[29] | 周索, 王绍杰, 余晓丽. 拟南芥花粉细胞质游离钙离子荧光测定法[J]. 生物技术, 2005(5): 55-57. |
Zhou S, Wang S J, Yu X L. Measurement of cytoplasmic calcium fluorescence in Arabidopsis thaliana pollen cells[J]. Biotechnology, 2005(5): 55-57. (in Chinese) | |
[30] | Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28: 350-356. |
[31] | 朱春权, 曹小闯, 朱练峰, 白志刚, 黄洁, 梁清铎, 金千瑜, 张均华. 硫化氢提高水稻磷吸收转运的生理和分子机制[J]. 中国水稻科学, 2019, 33(6): 532-540. |
Zhu C Q, Cao X C, Zhu L F, Bai Z G, Huang J, Liang Q D, Jin Q Y, Zhang J H. Physiological and molecular mechanisms of hydrogen sulfide enhancing phosphorus absorption and transportation in rice[J]. Chinese Journal of Rice Science, 2019, 33 (6): 532-540. | |
[32] | Blamey F P C, Nishizawa N K, Yoshimura E. Timing, magnitude, and location of initial soluble aluminum injuries to mungbean roots[J]. Soil Science and Plant Nutrition, 2004, 50: 67-76. |
[33] | Ma J F. Plant root responses to three abundant soil minerals: Silicon, aluminum and iron[J]. Critical Reviews in Plant Sciences, 2005, 24: 267-281. |
[34] | Hossain M A, Ashrafuzzaman M, Hossain A K, Ismail M R, Koyama H. Role of accumulated calcium in alleviating aluminum injury in wheat plants[J]. Scientific World Journal, 2014: 457187. |
[35] | Ligaba-Osena A, Fei Z J, Liu J P, Xu Y M, Shaff Y, Lee S C, Luan S, Kudla J, Kochian L, Pineros M. Loss-of-function mutation of the calcium sensor CBL1 in-creases aluminum sensitivity in Arabidopsis[J]. The New Phytologist, 2017, 214(2): 830-841. |
[36] | Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells[J]. New Phytologist, 2001, 151(1): 7-33. |
[37] | Rengel Z, Zhang W H. Role of dynamics of intracellular Calcium in aluminium-toxicity syndrome[J]. New Phytologist, 2003, 159: 295-314. |
[38] | Zhang H, Tan Z Q, Hu L Y, Wang S H, Luo J P, Jones R L. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings[J]. Journal of Integrative Plant Biology, 2010, 52(6): 556-567. |
[39] | Clarkson D T. Interactions between aluminium and phosphorus on root surfaces and cell wall material[J]. Plant Soil 1967, 27: 347-356. |
[40] | Yokosho K, Yamaji N, Kashino-Fujii M, Ma J F. Retrotransposonmediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4[J]. Plant Physiology, 2016, 172: 2327-2336. |
[41] | Huang C F, Yamaji N, Chen Z, Ma J F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice[J]. The Plant Journal, 2011, 69: 857-867. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||