Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (1): 1-15.DOI: 10.16819/j.1001-7216.2023.220404
• Review and Special Topic • Next Articles
LIU Shuli1, ZHANG Rui1, Shahid HUSSAIN1, WANG Yang1, CHEN Yinglong1, WEI Huanhe1, HOU Hongyan2, DAI Qigen1()
Received:
2022-04-08
Revised:
2022-09-29
Online:
2023-01-10
Published:
2023-01-10
Contact:
DAI Qigen
刘淑丽1, 张瑞1, 王洋1, 陈英龙1, 韦还和1, 侯红燕2, 戴其根1()
通讯作者:
戴其根
基金资助:
LIU Shuli, ZHANG Rui, Shahid HUSSAIN, WANG Yang, CHEN Yinglong, WEI Huanhe, HOU Hongyan, DAI Qigen. Research Progress in Alleviating Effects of Exogenous Substances on Salt Stress in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(1): 1-15.
刘淑丽, 张瑞, 王洋, 陈英龙, 韦还和, 侯红燕, 戴其根. 外源物质对水稻盐胁迫缓解效应研究进展[J]. 中国水稻科学, 2023, 37(1): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220404
外源物质 Exogenous substances | 表型影响 Phenotypic effects | 生理生化影响 Physiological and biochemical effects | 分子水平影响 Molecular level effects |
脱落酸 Abscisic acid | 提高秧苗存活率[ Increase seedling survival rate | 缓解类胡萝卜素减少引起的强光损伤[ 性蛋白及抗氧化酶活性[ Alleviate the damage caused by reduced carotenoid; enhance the content of soluble protein and antioxidant enzymes activities | 转录因子OsSAE1可作水稻种子萌发和耐盐性的正调控因子[ OsSAE1 could be a positive regulator of seed germination and salt tolerance in rice |
乙烯 Ethylene | 萌发阶段克服种子休眠[ 生长[ 系生长[ Overcome seed dormancy during germination; inhibit growth from booting to maturity; promote seedling root growth | 增加根系抗氧化活性,提高渗透调节物质含量[ Increase root antioxidant activity, increase the content of osmotic regulating substances | 通过SNL1(SIN3-like 1)和SNL2(SIN3-like 2)负调控ABA信号[ ABA signaling is negatively regulated by SNL1(SIN3-like 1) and SNL2(SIN3-like 2) |
茉莉酸类物质 Jasmonates | 低浓度促进、高浓度抑制的“双重效应”[ " Double effects", promoting at low concentration and inhibiting at high concentration | 维持叶绿素和K+含量,增加抗氧化酶活性[ 光系统II(PSII)活性的降低和离子胁迫与渗透胁迫[ Maintain the contents of chlorophyll and K+ , increase the activitises of antioxidant enzymes; alleviate the reduction of photosystem II(PSII) activity, alleviate ionic and osmotic stress; regulate endogenous hormone levels in plants | TaFBA-2A负调控JA的生物合成[ TaFBA-2A negatively regulates JA biosynthesis; OSPP65 can negatively regulate salt tolerance of rice by regulating JA and ABA signaling pathways and raffinose metabolism pathway; Jasmonate biosynthetic gene OsOPR7 alleviates salt stress |
生长素 Indole acetic acid | 促进种子萌发[ Promote seed germination; improve seedling morphology; boost plant growth; increase grain yield | 促进细胞分裂、生长与分化,提高代谢产物含量[ Promote cell division, growth and differentiation, increase metabolite contents | |
赤霉素 Gibberellin | 维持光合系统的稳定[ Maintain the stability of the photosynthetic system; promote starch synthesis | 作为GA的负调控因子,盐胁迫下DELLA蛋白的积累可以诱导ABA合成基因的表达,抑制植物生长的同时提高抗逆性[ As a negative regulator of GA, DELLA protein accumulation under salt stress can induce the expression of ABA synthesis genes, inhibit plant growth, and improve stress tolerance | |
细胞分裂素 Cytokinin | 增强叶片光合速率[ Enhance leaf photosynthetic rate | ||
褪黑素 Melatonin | 改善光合作用和离子稳态[ 透调节能力[ 活TFs级联反应和植物激素信号等[ Improve photosynthesis and ion homeostasis; enhance antioxidant and osmotic adjustment ability; increase the accumulation of primary metabolites; activate TFs cascade and plant hormone signaling | 调节水稻钾离子转运蛋白OsHAK基因的表达[ Regulate the expression of K+ transporter OsHAK gene in rice; inhibit the expression of genes related to senescence; regulate the expression of ABA biosynthesis and decomposition genes | |
水杨酸 Salicylic acid | 诱导抗氧化防御系统,调控离子平衡、激素稳态和 代谢物质[ Induce antioxidant defense system, regulate ion balance, hormone homeostasis, and metabolic substances; maintain cell membrane stability | 诱导抗盐基因表达[ Induce the expression of salt resistance genes; regulate the expression of GA and ABA biosynthetic genes | |
多胺 Polyamines | 调节植物内源激素水平[ 化胁迫和渗透胁迫[ Regulate endogenous hormone levels in plants; Stabilize plasma membrane structure; alleviate oxidative stress and osmotic stress; increase photosynthetic pigment contents in plants | 调控ABA合成途径中关键基因NCED的表达[ Regulate the expression of NCED, a key gene in ABA synthesis pathway; inhibite photochemical reactions and down-regulate chloroplast coding genes | |
油菜素类固醇 Brassinosteroids | 提高核酸和可溶性蛋白水平[ 透平衡、增加抗氧化酶活性[ 生代谢功能[ Increase the levels of nucleic acid and soluble protein; maintain the osmotic balance of plant cells, increase the activities of antioxidant enzymes; activate secondary metabolic functions under salt stress; regulate IAA and GA levels | 上调OsBRI1基因的表达,下调OsDWF4基因的表达[ Up-regulate the expression of OsBRI1 gene and down-regulate OsDWF4 gene; up-regulate carotenoid and flavonoid pathway genes | |
钙 Calcium | 改善水稻幼苗的离子稳态、抗氧化防御及乙二醛酶 系统[ Improve ion homeostasis, antioxidant defense, and glyoxalase system in rice seedlings; maintain plant photosynthetic activity | ||
硅 Silicon | 维持光合系统稳定及离子平衡[ 性[ Maintain the stability of photosynthetic system and ion balance; increase the activity of antioxidant enzymes | 上调植物根中质膜水通道蛋白基因的表达[ Up-regulate expression of plasma membrane aquaporin gene in plant roots; up-regulate OsHAK family potassium uptake genes, rice sodium efflux (OsSOS1), sodium compartments (OsNHX1, OsNHX3 and OsNHX5) gene expression |
Table 1. Effects of exogenous substances on alleviating salt stress in rice
外源物质 Exogenous substances | 表型影响 Phenotypic effects | 生理生化影响 Physiological and biochemical effects | 分子水平影响 Molecular level effects |
脱落酸 Abscisic acid | 提高秧苗存活率[ Increase seedling survival rate | 缓解类胡萝卜素减少引起的强光损伤[ 性蛋白及抗氧化酶活性[ Alleviate the damage caused by reduced carotenoid; enhance the content of soluble protein and antioxidant enzymes activities | 转录因子OsSAE1可作水稻种子萌发和耐盐性的正调控因子[ OsSAE1 could be a positive regulator of seed germination and salt tolerance in rice |
乙烯 Ethylene | 萌发阶段克服种子休眠[ 生长[ 系生长[ Overcome seed dormancy during germination; inhibit growth from booting to maturity; promote seedling root growth | 增加根系抗氧化活性,提高渗透调节物质含量[ Increase root antioxidant activity, increase the content of osmotic regulating substances | 通过SNL1(SIN3-like 1)和SNL2(SIN3-like 2)负调控ABA信号[ ABA signaling is negatively regulated by SNL1(SIN3-like 1) and SNL2(SIN3-like 2) |
茉莉酸类物质 Jasmonates | 低浓度促进、高浓度抑制的“双重效应”[ " Double effects", promoting at low concentration and inhibiting at high concentration | 维持叶绿素和K+含量,增加抗氧化酶活性[ 光系统II(PSII)活性的降低和离子胁迫与渗透胁迫[ Maintain the contents of chlorophyll and K+ , increase the activitises of antioxidant enzymes; alleviate the reduction of photosystem II(PSII) activity, alleviate ionic and osmotic stress; regulate endogenous hormone levels in plants | TaFBA-2A负调控JA的生物合成[ TaFBA-2A negatively regulates JA biosynthesis; OSPP65 can negatively regulate salt tolerance of rice by regulating JA and ABA signaling pathways and raffinose metabolism pathway; Jasmonate biosynthetic gene OsOPR7 alleviates salt stress |
生长素 Indole acetic acid | 促进种子萌发[ Promote seed germination; improve seedling morphology; boost plant growth; increase grain yield | 促进细胞分裂、生长与分化,提高代谢产物含量[ Promote cell division, growth and differentiation, increase metabolite contents | |
赤霉素 Gibberellin | 维持光合系统的稳定[ Maintain the stability of the photosynthetic system; promote starch synthesis | 作为GA的负调控因子,盐胁迫下DELLA蛋白的积累可以诱导ABA合成基因的表达,抑制植物生长的同时提高抗逆性[ As a negative regulator of GA, DELLA protein accumulation under salt stress can induce the expression of ABA synthesis genes, inhibit plant growth, and improve stress tolerance | |
细胞分裂素 Cytokinin | 增强叶片光合速率[ Enhance leaf photosynthetic rate | ||
褪黑素 Melatonin | 改善光合作用和离子稳态[ 透调节能力[ 活TFs级联反应和植物激素信号等[ Improve photosynthesis and ion homeostasis; enhance antioxidant and osmotic adjustment ability; increase the accumulation of primary metabolites; activate TFs cascade and plant hormone signaling | 调节水稻钾离子转运蛋白OsHAK基因的表达[ Regulate the expression of K+ transporter OsHAK gene in rice; inhibit the expression of genes related to senescence; regulate the expression of ABA biosynthesis and decomposition genes | |
水杨酸 Salicylic acid | 诱导抗氧化防御系统,调控离子平衡、激素稳态和 代谢物质[ Induce antioxidant defense system, regulate ion balance, hormone homeostasis, and metabolic substances; maintain cell membrane stability | 诱导抗盐基因表达[ Induce the expression of salt resistance genes; regulate the expression of GA and ABA biosynthetic genes | |
多胺 Polyamines | 调节植物内源激素水平[ 化胁迫和渗透胁迫[ Regulate endogenous hormone levels in plants; Stabilize plasma membrane structure; alleviate oxidative stress and osmotic stress; increase photosynthetic pigment contents in plants | 调控ABA合成途径中关键基因NCED的表达[ Regulate the expression of NCED, a key gene in ABA synthesis pathway; inhibite photochemical reactions and down-regulate chloroplast coding genes | |
油菜素类固醇 Brassinosteroids | 提高核酸和可溶性蛋白水平[ 透平衡、增加抗氧化酶活性[ 生代谢功能[ Increase the levels of nucleic acid and soluble protein; maintain the osmotic balance of plant cells, increase the activities of antioxidant enzymes; activate secondary metabolic functions under salt stress; regulate IAA and GA levels | 上调OsBRI1基因的表达,下调OsDWF4基因的表达[ Up-regulate the expression of OsBRI1 gene and down-regulate OsDWF4 gene; up-regulate carotenoid and flavonoid pathway genes | |
钙 Calcium | 改善水稻幼苗的离子稳态、抗氧化防御及乙二醛酶 系统[ Improve ion homeostasis, antioxidant defense, and glyoxalase system in rice seedlings; maintain plant photosynthetic activity | ||
硅 Silicon | 维持光合系统稳定及离子平衡[ 性[ Maintain the stability of photosynthetic system and ion balance; increase the activity of antioxidant enzymes | 上调植物根中质膜水通道蛋白基因的表达[ Up-regulate expression of plasma membrane aquaporin gene in plant roots; up-regulate OsHAK family potassium uptake genes, rice sodium efflux (OsSOS1), sodium compartments (OsNHX1, OsNHX3 and OsNHX5) gene expression |
[1] | 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008(5): 837-845. |
Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845. (in Chinese with English abstract) | |
[2] | Ray D K, Gerber J S, MacDonald G K, West P C. Climate variation explains a third of global crop yield variability[J]. Nature Communications, 2015, 6: 5989. |
[3] | Rahnama A, James R A, Poustini K, Munns R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil[J]. Functional Plant Biology, 2010, 37(3): 255-263. |
[4] | Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
[5] | Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell and Environment, 2010, 33(4): 453-467. |
[6] | Hussain S, Zhong C, Bai Z G, Cao X C, Zhu L F, Hussain A, Zhu C Q, Fahad S, James A B, Zhang J H, Jin Q Y. Effects of 1-methylcyclopropene on rice growth characteristics and superior and inferior spikelet development under salt stress[J]. Journal of Plant Growth Regulation, 2018, 37(4): 1368-1384. |
[7] | Yong M T, Solis C A, Rabbi B, Huda S, Liu R, Zhou M X, Shabala L, Venkataraman G, Shabala S, Chen Z H. Leaf mesophyll K+ and Cl- fluxes and reactive oxygen species production predict rice salt tolerance at reproductive stage in greenhouse and field conditions[J]. Plant Growth Regulation, 2020, 92(1): 53-64. |
[8] | Hasanuzzaman M, Oku H, Nahar K, Bhuyan M H M B, Al Mahmud J, Baluska F, Fujita M. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions[J]. Plant Biotechnology Reports, 2018, 12(2): 77-92. |
[9] | Jini D, Joseph B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice[J]. Rice Science, 2017, 24(2): 97-108. |
[10] | 王爱斌, 柯维忠, 彭永明. 氯化钙浸种和水杨酸浇灌复配处理对水稻幼苗抗盐性的影响[J]. 广东农业科学, 2010, 37(7): 18-19. |
Wang A B, Ke Z W, Peng Y M. Effects of complex treatment with CaCl2 soaking and SA watering on rice seedling growth[J]. Guangdong Agricultural Sciences, 2010, 37(7): 18-19. (in Chinese with English abstract) | |
[11] | Li X, Yu B, Cui Y, Yin Y. Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl- accumulation in rice[J]. Plant Growth Regulation, 2017, 83(3): 441. |
[12] | 张丽丽, 倪善君, 张战, 赵一洲, 李鑫, 毛艇, 刘研, 刘福才. 外源赤霉素对盐胁迫下水稻种子萌发及幼苗生长的缓释效应[J]. 中国稻米, 2018, 24(2): 42-46. |
Zhang L L, Ni S J, Zhang Z, Zhao Y Z, Li X, Mao T, Liu Y, Liu F C. Sustained release effects of exogenous ga3 on germination and growth of rice seedling under salt stress[J]. China Rice, 2018, 24(2): 42-46. (in Chinese with English abstract) | |
[13] | 宋雪飞, 甘淳丹, 赵海燕, 孙志国, 李刚华, 张春明, 陈刚, 郑青松. 叶面喷施褪黑素调控水稻幼苗耐盐性的浓度效应研究[J]. 土壤学报, 2018, 55(2): 455-466. |
Song X F, Gan C D, Zhao H F, Sun Z G, Li G H, Zhang C M, Chen G, Zheng Q S. Concentration-dependent effect of foliar spraying of melatonin on salt tolerance of rice[J]. Acta Pedologica Sinica. 2018, 55(2): 455-466. (in Chinese with English abstract) | |
[14] | Fan J B, Xie Y, Zhang Z C, Chen L. Melatonin: A multifunctional factor in plants[J]. International Journal of Molecular Sciences, 2018, 19(5): 1528. |
[15] | 李娜, 张海林, 李秀芬, 柳超. 钙在植物盐胁迫中的作用[J]. 生命科学, 2015, 27(4): 504-508. |
Li N, Zhang H L, Li J F, Liu C. Function of Ca2+ in salt stress in plants[J]. Chinese Bulletin of Life Sciences, 2015, 27(4): 504-508. (in Chinese with English abstract) | |
[16] | Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. Journal of Experimental Botany, 2011, 62(6): 2189-2203. |
[17] | Rahman A, Nahar K, Hasanuzzaman M, Fujita M. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings[J]. Frontiers in Plant Science, 2016, 7: 9-13. |
[18] | 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展[J]. 中国水稻科学, 2022, 36(2): 105-117. |
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Rice response to salt stress and research progress in saly tolerance mechanism[J]. Chinese Journal of Rice Science, 2022, 36(2): 105-117. (in Chinese with English abstract) | |
[19] | Chowdhury A D, Haritha G, Sunitha T, Krishnamurthy S L, Divya B, Padmavathi G, Ram T, Sarla N. Haplotyping of rice genotypes using simple sequence repeat markers associated with salt tolerance[J]. Rice Science, 2016, 23(6): 317-325. |
[20] | 常汇琳, 聂守军, 刘晴, 刘宇强, 马成, 王婧泽, 宗天鹏, 孙中华. 盐胁迫对水稻生长发育的影响及外源物质对其调节作用的研究进展[J]. 黑龙江农业科学, 2022(8): 68-73. |
Chang H L, Nie S J, Liu Q, Liu Y Q, Ma C, Wang J Z, Zong T P, Sun Z H. Research progress on effects of salt stress on growth and development in rice and regulation mechanism of exogenous substances[J]. Heilongjiang Agricultural Sciences, 2022(8): 68-73. (in Chinese with English abstract) | |
[21] | 张徐彬, 陈熙, 葛佳琳, 陈英龙, 戴其根, 孟天瑶, 韦还和. 盐-旱复合胁迫对水稻种子萌发和幼苗生长的影响[J]. 扬州大学学报: 农业与生命科学版, 2022, 43(2): 29-35. |
Zhang X B, Chen X, Ge J L, Chen Y L, Dai Q G, Meng T Y, Wei H H. Effects of salinity-drought combined stress on seed germination and seedling growth of rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2022, 43(2): 29-35. (in Chinese with English abstract) | |
[22] | 沙月霞, 杜玉宁, 宋双, 黄泽阳. 盐胁迫对水稻植株生长发育的影响及调控途径[J]. 宁夏农林科技, 2022, 63(1): 29-31. |
Sha Y X, Du Y N, Song S, Huang Z Y. Effects of saline stress on rice plant growing development and regulating ways[J]. Ningxia Journal of Agriculture and Forestry Science and technology, 2022, 63(1): 29-31. (in Chinese with English abstract) | |
[23] | Bhatt M M, Patel D B, Sasidharan N, Jadeja G C. Salinity resistance studies in rice (Oryza sativa L.)[J]. Research on Crops, 2008, 9(2): 215-218. |
[24] | Hussain S, Zhang J, Zhong C, Zhu L F, Cao X C, Yu S M, James A B, Hu J J, Jin Q Y. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. Journal of Integrative Agriculture, 2017, 16(11): 2357-2374. |
[25] | 谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019(4): 176-182. |
Gu J J, Hu B W, Jia Y, Sha H J, Li J W, Ma C, Zhao H W. Effects of salt stress on root related traits and yield of rice[J]. Crops, 2019(4): 176-182. (in Chinese with English abstract) | |
[26] | 杜孝敬, 张燕红, 吕玉平, 袁杰, 李冬, 赵志强, 布哈丽且木·阿不力孜, 王奉斌. 不同香稻品种种子萌发和苗期对NaCl胁迫的响应[J]. 新疆农业科学, 2022, 59(4): 827-838. |
Du X J, Zhang Y H, Lv Y P, Yuan J, Li D, Zhao Z Q, Buhaliqem A, Wang F B. Responses of seeds of different fragrant rice varieties to nacl stress in germination and seedling stages[J]. Xinjiang Agricultural Sciences, 2022, 59(4): 827-838. (in Chinese with English abstract) | |
[27] | 王旭明, 赵夏夏, 陈景阳, 龚茂健, 杨善, 谢平, 莫俊杰, 黄永相, 叶昌辉, 周鸿凯. 盐胁迫下水稻孕穗期SS和SPS活性与糖积累的响应及其相关性分析[J]. 江苏农业学报, 2018, 34(3): 481-486. |
Wang X M, Zhao X X, Chen J Y, Gong M J, Yang S, Xie P, Mo J J, Huang Y X, Ye C H, Zhou H K. The response and correlations between carbohydrate accumulation and activities of SPS, SS at booting stage of rice under salt stress[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(3): 481-486. (in Chinese with English abstract) | |
[28] | 朱家骝, 范国灿. 不同生育期盐胁迫对水稻产量性状的影响[J]. 浙江农业科学, 2021, 62(7): 1299-1300. |
Zhu J L, Fan G C. Effects of salt stress at different growth stages on rice yield related traits[J]. Journal of Zhejiang Agricultural Sciences, 2018, 34(3): 481-486. (in Chinese) | |
[29] | 刘梦霜, 郭海峰, 陈观秀, 莫俊杰, 许江环, 杨善, 周鸿凯. 不同水稻品种对NaCl胁迫的生理响应及耐盐性评价[J]. 热带作物学报, 2022: 1-13. |
Liu M S, Guo H F, Chen G X, Mo J J, Xu J H, Zhou H K. Physiological response and salt tolerance evaluation of different rice(oryza sativa l.) cultivars under nacl stress[J]. Chinese Journal of Tropical Crops, 2022: 1-13. (in Chinese with English abstract) | |
[30] | 杨东雷, 董伟欣, 张迎迎, 何祖华. 赤霉素调节植物对非生物逆境的耐性[J]. 中国科学: 生命科学, 2013, 43(12): 1119-1126. |
Yang D L, Dong W X, Zhang Y Y, He Z H. Gibberellins modulate abiotic stress tolerance in plants[J]. Scientia Sinica: Vitae, 2013, 43(12): 1119-1126. (in Chinese with English abstract) | |
[31] | Wang J, Qin H, Zhou S, Wei P, Zhang H W, Zhou Y, Miao Y C, Huang R F. The ubiquitin-binding protein osdsk2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice[J]. Plant Cell, 2020, 32(2): 414-428. |
[32] | 张雅文, 沈祥娟, 张静, 朱美娇, 张海玲, 王全伟. 大豆E3泛素连接酶基因GmAIRP1 的同源克隆及在烟草中的功能鉴定[J]. 植物遗传资源学报, 2019, 20(4): 1011-1019. |
Zhang Y W, Shen X J, Zhang J, Zhu M J, Zhang H L, Wang Q W. Homologous cloning of soybean E3 ubiquitin ligase gene gmairp1 and its functional identification in tobacco[J]. Journal of Plant Genetic Resources, 2019, 20(4): 1011-1019. (in Chinese with English abstract) | |
[33] | Javid MG, Sorooshzadeh A, Moradi F, Sanavy S, Allahdadi I. The role of phytohormones in alleviating salt stress in crop plants[J]. Australian Journal of Crop Science, 2011, 5(6): 726-734. |
[34] | 张丽, 罗孝明, 蒙辉, 袁远国. 盐胁迫下植物激素水平的研究进展[J]. 蔬菜, 2017(3): 29-32. |
Zhang L, Luo X M, Meng H, Yuan Y G. Research progress of phytohormone levels under salt stress[J]. Vegetables, 2017(3): 29-32. (in Chinese) | |
[35] | 王敬东, 白海波, 马斯霜, 惠建, 李树华. 外源激素IAA对NaCl胁迫下水稻种子萌发的影响[J]. 安徽农业科学, 2021, 49(14): 25-28. |
Wang J D, Bai H B, Ma S S, Hui J, Li S H. Effects of exogenous hormone IAA on the germination of rice seeds under NaCl stress[J]. Journal of Anhui Agricultural Sciences, 2021, 49(14): 25-28. (in Chinese with English abstract) | |
[36] | 温福平, 张檀, 张朝晖, 潘映红. 赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析[J]. 作物学报, 2009, 35(3): 483-489. |
Wen F P, Zhang T, Zhang C H, Pan Y H. Proteome analysis of relieving effect of gibberellin on the inhibition of rice seed germination by salt stress[J]. Acta Agronomica Sinica, 2009, 35(3): 483-489. (in Chinese with English abstract) | |
[37] | 尹昌喜, 汪献芳, 金莉, 吴全荣, 邓林, 李荣伟. 赤霉素对盐胁迫下水稻种子发芽及幼苗生长的影响[J]. 安徽农业科学, 2009, 37(14): 6389-6390. |
Yin C X, Wang X F, Jin L, Wu Q R, Deng L, Li R W. Effects of GA on seed germination and seedling growth of rice under salt stress[J]. Journal of Anhui Agricultural Sciences, 2009, 37(14): 6389-6390. (in Chinese with English abstract) | |
[38] | 刘晓龙. 脱落酸(ABA)对水稻耐碱胁迫的诱抗效应及机理研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019: 58-60. |
Liu X L. Studies on the mechanism of abscisic acid-priming for alkaline stress tolerance in rice[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2019: 58-60. (in Chinese with English abstract) | |
[39] | Javid M G, Sorooshzadeh A, Sanavy S A M M, Allahdadi I, Moradi F. Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress[J]. Plant Growth Regulation, 2011, 65(2): 305-313. |
[40] | Saeed S. The combined effects of salinity and foliar spray of different hormones on some biological aspects, dry matter accumulation and yield in two varieties of indica rice differing in their level of salt tolerance[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2014, 84(3): 721-733. |
[41] | Richards D E, King K E, Ait-Ali T, Harberd N P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling[J]. Annual Review of Plant Biology, 2001, 52: 67-88. |
[42] | Liu X X, Wang X Y, Yin L N, Deng X P, Wang S W. Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice[J]. Theoretical and Experimental Plant Physiology, 2018, 30(4): 335-345. |
[43] | Wen F P, Zhang Z H, Bai T, Xu Q, Pan Y H. Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots[J]. Plant Science, 2010, 178(2): 170-175. |
[44] | Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development[J]. Annual Review of Cell and Developmental Biology, 2012, 28(1): 463-487. |
[45] | Achard P, Renou J P, Berthome R, Harberd N P, Genschik P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J] .Current Biology, 2008, 18(9): 656-660. |
[46] | Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 2007, 19(10): 3037-3057. |
[47] | Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity[J]. Plant Cell, 2008, 20(10): 2729-2745. |
[48] | 熊敏. 油菜素内酯与赤霉素协同调控水稻种子萌发的分子机制研究[D]. 扬州: 扬州大学, 2021: 9-11. |
Xiong M. Study on the molecular mechanism of coordinated regulation of brassinosteroid and gibberellin on rice seed germination[D]. Yangzhou: Yangzhou University, 2021: 9-11. (in Chinese with English abstract) | |
[49] | Zhang Y, Lan H X, Shao Q L, Wang R Q, Chen H, Tang H J, Zhang H S, Huang J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa)[J]. Journal of Experimental Botany, 2016, 67(1): 315-326. |
[50] | Liu Y G, Ye N H, Liu R, Chen M X, Zhang J H. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination[J]. Journal of Experimental Botany, 2010, 61(11): 2979-2990. |
[51] | Zhu S Q, Chen M W, Ji B H, Jiao D M, Liang J S. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris)[J]. Journal of Experimental Botany, 2011, 62(13): 4617-4625. |
[52] | Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H Y, Buaboocha T, Chadchawan S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress[J]. Environmental and Experimental Botany, 2013, 86: 94-105. |
[53] | Li Y X, Zhou J H, Li Z, Qiao J Z, Quan R D, Wang J, Huang R F, Qin H. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice[J]. Plant Physiology, 2022, 189(2): 1110-1127. |
[54] | van de Poel B, Smet D, van Der Straeten D. Ethylene and hormonal cross talk in vegetative growth and development[J]. Plant Physiology (Bethesda), 2015, 169(1): 61-72. |
[55] | Hussain S, Bai Z G, Huang J, Cao X C, Zhu L F, Zhu C Q, Khaskheli M A, Zhong C, Jin Q Y, Zhang J H. 1-methylcyclopropene modulates physiological, biochemical, and antioxidant responses of rice to different salt stress levels[J]. Frontiers in Plant Science, 2019, 10: 124. |
[56] | Hussain S, Zhu C Q, Huang J, Huang J, Zhu L F, Cao X C, Nandi S, Khaskheli M A, Liang Q D, Kong Y L. Ethylene response of salt stressed rice seedlings following Ethephon and 1-methylcyclopropene seed priming[J]. Plant Growth Regulation, 2020, 92(2): 219-231. |
[57] | Hussain S, Zhong C, Bai Z G, Cao X C, Zhu L F, Hussain A, Zhu C Q, Fahad S, James A B, Zhang J H. Effects of 1-methylcyclopropene on rice growth characteristics and superior and inferior spikelet development under salt stress[J]. Journal of Plant Growth Regulation, 2018, 37(4): 1368-1384. |
[58] | Wang Z, Cao H, Sun Y Z, Li X Y, Chen F Y, Carles A, Li Y, Ding M, Zhang C, Deng X. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation[J]. Plant Cell, 2013, 25(1): 149-166. |
[59] | 母德伟, 冯乃杰, 郑殿峰, 周行, 余明龙, 陈观杰. 乙烯利缓解盐胁迫对水稻幼苗根系的伤害[J]. 分子植物育种, 2021: 1-20. |
Mu D W, Feng N J, Zheng D F, Zhou H, Yu M L, Chen G J. Ethephon alleviates the damage of salt stress to rice seedling root system[J]. Molecular Plant Breeding, 2021: 1-20. (in Chinese with English abstract) | |
[60] | Nawaz M A, Huang Y, Bie Z L, Ahmed W, Reiter R J, Niu M L, Hameed S. Melatonin: Current status and future perspectives in plant science[J]. Frontiers in Plant Science, 2016, 6: 1-10. |
[61] | Zhan H S, Nie X J, Zhang T, Li S, Wang X Y, Du X H, Tong W, Song W N. Melatonin: A small molecule but important for salt stress tolerance in plants[J]. International Journal of Molecular Sciences, 2019, 20(3): 709. |
[62] | Wei L, Zhao H Y, Wang B X, Wu X Y, Lan R J, Huang X, Chen B, Chen G, Jiang C Q, Wang J L. Exogenous melatonin improves the growth of rice seedlings by regulating redox balance and ion homeostasis under salt stress[J]. Journal of Plant Growth Regulation, 2022, 41: 2108-2121. |
[63] | Chen Y L, Li R K, Ge J L, Liu J G, Wang W B, Xu M F, Zhang R, Hussain S, Wei H H, Dai Q G. Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis[J]. Environmental and Experimental Botany, 2021, 189: 104530. |
[64] | 向警, 黄倩, 鞠春燕, 黄伦霄, 赵正武. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响[J]. 植物生理学报, 2021, 57(2): 393-401. |
Xiang J, Huang Q, Ju C Y, Huang L X, Zhao Z W. Effect of exogenous melatonin on seed germination and seedling growth of rice under salt stress[J]. Plant Physiology Communications, 2021, 57(2): 393-401. (in Chinese with English abstract) | |
[65] | Li J P, Liu J, Zhu T T, Zhao C, Li L Y, Chen M. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735. |
[66] | Chen Y E, Mao J J, Sun L Q, Huang B, Ding C B, Gu Y, Liao J Q, Hu C, Zhang Z W, Yuan S, Yuan M. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity[J]. Physiology Plant, 2018, 164(3): 349-363. |
[67] | Wang L Y, Liu J L, Wang W X, Sun Y. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress[J]. Photosynthetica, 2016, 54(1): 19-27. |
[68] | Huangfu L X, Zhang Z H, Zhou Y, Zhang E Y, Chen R J, Fang H M, Li P C, Xu Y, Yao Y L, Zhu M Y, Yin S Y, Xu C W, Lu Y, Yang Z F. Integrated physiological, metabolomic and transcriptomic analyses provide insights into the roles of exogenous melatonin in promoting rice seed germination under salt stress[J]. Plant Growth Regulation, 2021, 95(1): 19-31. |
[69] | Liang C Z, Zheng G Y, Li W Z, Wang Y Q, Hu B, Wang H R, Wu H K, Qian Y W, Zhu X G, Tan D X, Chen S Y, Chu C C. Melatonin delays leaf senescence and enhances salt stress tolerance in rice[J]. Journal of Pineal Research, 2015, 59(1): 91-101. |
[70] | Xie Z Y, Wang J, Wang W S, Wang Y R, Xu J L, Li Z K, Zhao X Q, Fu B Y. Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin[J]. Frontiers in Plant Science, 2020, 11: 618-680. |
[71] | Zhang N, Sun Q Q, Zhang H J, Cao Y Y, Weeda S, Ren S X, Guo Y D. Roles of melatonin in abiotic stress resistance in plants[J]. Journal of Experimental Botany, 2015, 66(3): 647-656. |
[72] | Li J P, Zhao C, Zhang M J, Yuan F, Chen M. Exogenous melatonin improves seed germination in Limonium bicolor under salt stress[J]. Plant Signaling & Behavior, 2019, 14(11): 659-705. |
[73] | Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: A review[J]. Environmental and Experimental Botany, 2010, 68(1): 14-25. |
[74] | 沙汉景,. 水杨酸、 脯氨酸和γ-氨基丁酸对盐胁迫下水稻氮代谢及产质量的调控效应[D]. 哈尔滨: 东北农业大学, 2018: 7-19. |
Sha H J,. Effects of SA proline, and GABA on nitrogen metabolism, yield, and quality of rice under salt stress[D]. Harbin:Northeast Agricultural University, 2018: 7-19. (in Chinese with English abstract) | |
[75] | 王俊斌, 王海凤, 刘海学. 水杨酸促进盐胁迫条件下水稻种子萌发的机理研究[J]. 华北农学报, 2012, 27(4): 223-227. |
Wang J B, Wang H F, Liu H X. Study on mechanism of salicylic acid on the promotion of rice seeds germination under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(4): 223-227. (in Chinese with English abstract) | |
[76] | 徐芬芬, 叶利民, 潘维华. 外源水杨酸对盐胁迫下水稻幼苗生长的影响[J]. 广东农业科学, 2009(9): 22-24. |
Xu F F, Ye L M, Pan W H. Eeffect of salicylic acid on rice growth under salt stress[J]. Guangdong Agricultural Sciences, 2009(9): 22-24. (in Chinese with English abstract) | |
[77] | Babu R M, Sajeena A, Samundeeswari A V, Sreedhar A, Vidhyasekaran P, Seetharaman K, Reddy M S. Induction of systemic resistance to Xanthomonas oryzae pv. oryzae by salicylic acid in Oryza sativa (L.)[J]. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz (1970), 2003, 110(5): 419-431. |
[78] | Ganesan V, Thomas G. Salicylic acid response in rice: Influence of salicylic acid on H2O2 accumulation and oxidative stress[J]. Plant Science: Limerick, 2001, 160(6): 1095-1106. |
[79] | Ganesan V, Thomas G. Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress[J]. Plant Science, 2001, 160(6): 1095-1106. |
[80] | Jini D, Joseph B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice[J]. Rice Science, 2017, 24(2): 97-108. |
[81] | Liu Z G, Ma C Y, Hou L, Wu X Z, Wang D, Zhang L, Liu P. Exogenous SA affects rice seed germination under salt stress by regulating Na+ /K+ balance and endogenous GAs and ABA homeostasis[J]. International Journal of Molecular Sciences, 2022, 23(6): 3293. |
[82] | Zheng J, Ma X H, Zhang X L, Hu Q D, Qian R J. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L.(Caryophyllaceae) grown under different salt stress conditions[J]. Physiology and Molecular Biology of Plants, 2018, 24(2): 231-238. |
[83] | Ma X H, Zheng J, Zhang X, Hu Q D, Qian R J. Salicylic acid alleviates the adverse effects of salt stress on dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system[J]. Frontiers in Plant Science, 2017, 8: 600. |
[84] | Hussain S S, Ali M, Ahmad M, Siddique K H M. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants[J]. Biotechnology Advances, 2011, 29(3): 300-311. |
[85] | Zhang Y X, Wu R H, Qin G J, Chen Z L, Gu H Y, Qu L J. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011, 53(6): 493-506. |
[86] | Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia, Toninello A, Agostinelli E. Polyamine catabolism: Target for antiproliferative therapies in animals and stress tolerance strategies in plants[J]. Amino Acids, 2012, 42(2-3): 411-426. |
[87] | Liu H P, Dong B H, Zhang Y Y, Liu Z P, Liu Y L. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings[J]. Plant Science, 2004, 166(5): 1261-1267. |
[88] | Espasandin F D, Maiale S J, Calzadilla P, Ruiz O A, Sansberro P A. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants[J]. Plant Physiology and Biochemistry, 2014, 76: 29-35. |
[89] | Cuevas J C, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio A F, Ferrando A. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature[J]. Plant Physiology, 2008, 148(2): 1094-1105. |
[90] | 程维国. 分析多胺在水稻产量形成与响应逆境中的作用[J]. 山西农经, 2014(5): 92-93. |
Cheng W G. To analyze the role of polyamines in rice yield formation and response to stress[J]. Shanxi Agricultural Economy, 2014(5): 92-93. (in Chinese) | |
[91] | Cui X, Ge C M, Wang R X, Wang H Z, Chen W Q, Fu Z M, Jiang X N, Li J Y, Wang Y H. The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis[J]. Cell Research, 2010, 20(5): 576-586. |
[92] | 黄雪梅, 俞炳杲. 腐胺在GA3促进水稻种子萌发中的作用[J]. 南京农业大学学报, 1997(1): 31-33. |
Huang X M, Yu B G. Role of putrescine in GA3-induced rice seed germination[J]. Journal of Nanjing Agricultural University, 1997(1): 31-33. (in Chinese) | |
[93] | Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany, 2007, 58(6): 1545-1555. |
[94] | 毛善国, 王仁雷, 周泉澄, 周峰, 华春, 刘青, 章琦. 盐胁迫下亚精胺对不同耐盐性水稻叶片内游离态多胺含量的影响[J]. 江苏农业科学, 2010(6): 101-104. |
Mao S G, Wang R L, Zhou Q C, Zhou F, Hua C, Liu Q, Zhang Q. Effects of spermidine on free polyamine content in rice leaves of different salt tolerance under salt stress[J]. Jiangsu Agricultural Sciences, 2010(6): 101-104. (in Chinese with English abstract) | |
[95] | 赵福庚, 束怀瑞. NaCl处理下大麦根系质膜微囊结合多胺与Na+/H+逆向运输的关系[J]. 植物生理与分子生物学学报, 2002(5): 333-338. |
Zhao F G, Shu H R. Relationship between Na+/H+ antiport and polyamines in plasma membrane vesicles prepared from barley roots under salt treatment[J]. Journal of Plant Physiology and Molecular Biology, 2002(5): 333-338. (in Chinese with English abstract) | |
[96] | 王燕, 刘青, 华春, 周峰, 李萍, 王仁雷. 外源亚精胺对盐胁迫下水稻根系抗氧化酶活性的影响[J]. 西北农业学报, 2009, 18(6): 161-165. |
Wang Y, Liu Q, Hua C, Zhou F, Li P, Wang R L. Effects of exogenous spermidine on anti-oxidative enzyme activities in rice seedling roots under salt stress[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(6): 161-165. (in Chinese with English abstract) | |
[97] | 吴正东, 王仁雷, 王燕, 陈全战, 周峰, 华春. 外源亚精胺对盐胁迫下水稻根系活力及叶片光合色素含量的影响[J]. 安徽农业科学, 2011, 39(16): 9536-9538. |
Wu Z D, Wang R L, Wang Y, Chen Q Z, Zhou F, Hua C. Effect of exogenous spermidine on the root vigor and the content of photosynthetic pigment in the leaf of rice cultivar under salt stress[J]. Journal of Anhui Agricultural Sciences, 2011, 39(16): 9536-9538. (in Chinese with English abstract) | |
[98] | Chattopadhayay M K, Tiwari B S, Chattopadhyay G, Bose A, Sengupta D N, Ghosh B. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants[J]. Physiologia Plantarum, 2002, 116(2): 192-199. |
[99] | Nounjan N, Kumon-Sa N, Theerakulpisut P. Spermidine priming promotes germination of deteriorated seeds and reduced salt stressed damage in rice seedlings[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(1): 21-30. |
[100] | 辛树权, 高扬, 赵骥民, 刘晓敏. 盐胁迫下亚精胺浸种对水稻种子萌发的影响[J]. 北方水稻, 2010, 40(6): 23-25. |
Xin S Q, Gao Y, Zhao J M, Liu X M. Effect of seed soaking in spermidine(Spd) under salt stress on rice seed germination[J]. North Rice, 2010, 40(6): 23-25. (in Chinese with English abstract) | |
[101] | 杨安中, 许俊芝. 亚精胺浸种对水稻种子萌发及秧苗生长的影响[J]. 安徽技术师范学院学报, 2002(1): 39-42. |
Yang A Z, Xu J Z. Effect of spermidine soaking seed on germination and seedling growth for rice[J]. Journal of Anhui Science and Technology University, 2002(1): 39-42. (in Chinese with English abstract) | |
[102] | Ndayiragije A, Lutts S. Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl[J]. Plant and Soil, 2007, 291(1/2): 225-238. |
[103] | Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P. Application of exogenous spermidine (Spd) improved salt tolerance of rice at the seedling and reproductive stages[J]. Procedia Environmental Sciences, 2015, 29: 134. |
[104] | 王静超, 王志琴. 多胺在水稻产量形成与响应逆境中的作用[J]. 安徽农业科学, 2012, 40(8): 4473-4477. |
Wang J C, Wang Z Q. Functions of polyamines in the rice yield formation and response to stress[J]. Journal of Anhui Agricultural Sciences, 2012, 40(8): 4473-4477. (in Chinese with English abstract) | |
[105] | Sasse J M. Recent progress in brassinosteroid research[J]. Physiologia Plantarum, 1997, 100(3): 696-701. |
[106] | 陈燕华, 王亚梁, 陈惠哲, 向镜, 张义凯, 张玉屏. 油菜素甾醇类化合物对水稻抗逆的作用及其机制研究进展[J]. 作物研究, 2020, 34(6): 597-604. |
Chen Y H, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhang Y P. Research progress on effect of brassinosteroids applied on rice stress tolerance and lts mechanisms[J]. Crop Research, 2020, 34(6): 597-604. (in Chinese with English abstract) | |
[107] | 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193. |
Li L L, Yin W C, Niu M, Meng W J, Zhang X X, Tong H N. Functional analysis of brassinosteroids in salt stress responses in rice[J]. Chinese Bulletin of Botany, 2019, 54(2): 185-193. (in Chinese with English abstract) | |
[108] | 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561. |
Wu M M, Zeng W, Zhai R R, Ye J, Zhu G F, Yu F M, Zhang X M, Ye S H. Research progress in molecular mechanism and breeding status of salt tolerance in rice[J]. Chinese Journal of Rice Science, 2022, 36(6): 551-561. | |
[109] | 侯会云. 油菜素内酯对盐胁迫下水稻种子萌发的影响[J]. 热带农业科学, 2020, 40(7): 1-6. |
Hou H Y. Effects of brassinolide on seed germination of rice under salt stress[J]. Chinese Journal of Tropical Agriculture, 2020, 40(7): 1-6. (in Chinese with English abstract) | |
[110] | Anuradha S, Seeta R R S. Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.)[J]. Plant Growth Regulation, 2001, 33(2): 151-153. |
[111] | 安辉, 盛伟, 于玉凤, 张露倩, 曾红丽, 陈光辉. 外源2,4-表油菜素内酯对盐胁迫下对水稻幼苗生理特性的影响[J]. 分子植物育种, 2021, 19(8): 2740-2746. |
An H, Sheng Wei, Yu Y F, Zhang L Q, Zeng H L, Chen G H. Effects of exogenous 2,4-epibrassinolide on physiological characteristics of rice seedlings under salt stress[J]. Molecular Plant Breeding, 2021, 19(8): 2740-2746. (in Chinese with English abstract) | |
[112] | Guerrero Y R, Gonzalez L M, Dell'Amico J, Nunez M, Pieters A J. Reversion of deleterious effects of salt stress by activation of ROS detoxifying enzymes via foliar application of 24-epibrassinolide in rice seedlings[J]. Theoretical and Experimental Plant Physiology, 2015, 27(1): 31-40. |
[113] | Sharma I, Bhardwaj R, Pati P K. Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety pusa basmati-1[J]. Journal of Plant Growth Regulation, 2015, 34(3): 509-518. |
[114] | 李钱峰, 鲁军, 余佳雯, 张昌泉, 刘巧泉. 油菜素内酯与脱落酸互作调控植物生长与抗逆的分子机制研究进展[J]. 植物生理学报, 2018, 54(3): 370-378. |
Li Q F, Lu J, Yu J W, Zhang C Q, Liu Q Q. Advances in molecular mechanisms of brassinosteroid-abscisic acid crosstalk coordinating plant growth and stress tolerances[J]. Plant Physiology Communications, 2018, 54(3): 370-378. (in Chinese with English abstract) | |
[115] | Shahzad R, Harlina P W, Ewas M, Zhenyuan P, Nie X H, Gallego P P, Khan S U, Nishawy E, Khan A H, Jia H T. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativa L.) by suppression of ABA levels and upregulation of secondary metabolites[J]. Journal of Plant Interactions, 2021, 16(1): 533-549. |
[116] | Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171(3): 501-523. |
[117] | Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. |
[118] | Gao J, Chen H, Yang H F, He Y, Tian Z H, Li J X. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development[J]. The New phytologist, 2018, 220(2): 488-501. |
[119] | 汪新文. 茉莉酸参与植物逆境胁迫的研究进展[J]. 安徽农学通报, 2008(6): 29-35. |
Wang X W. Research progress of jasmonic acid involved in plant stress[J]. Anhui Agricultural Science Bulletin, 2008(6): 29-35. (in Chinese) | |
[120] | Gao L T, Jia S Z, Cao L, Ma Y J, Wang J L, Lan D, Guo G Y, Chai J F, Bi C L. An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants[J]. Plant Physiology and Biochemistry, 2022, 182: 227-239. |
[121] | Liu Q, Ding J R, Huang W J, Yu H, Wu S W, Li W Y, Mao X X, Chen W F, Xing J L, Li C, Yan S J. OsPP65 negatively regulates osmotic and salt stress responses through regulating phytohormone and raffinose family oligosaccharide metabolic pathways in rice[J]. Rice, 2022, 15(1): 34. |
[122] | 蔡昆争, 董桃杏, 徐涛. 茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J]. 生态环境, 2006(2): 397-404. |
Cai K Z, Dong T X, Xu T. The physiological roles and resistance control in stress environment of jasmonates[J]. Ecology and Environment Sciences, 2006(2): 397-404. (in Chinese with English abstract) | |
[123] | 吴劲松, 种康. 茉莉酸作用的分子生物学研究[J]. 植物学通报, 2002(2): 164-170. |
Wu J S, Zhong K. The molecular biology research on the action of jasmonatess[J]. Bulletin of Botany, 2002(2): 164-170. (in Chinese with English abstract) | |
[124] | Mahmud S, Sharmin S, Das Chowdhury B L, Hossain M A. Effect of salinity and alleviating role of methyl jasmonate in some rice varieties[J]. Asian Journal of Plant Sciences, 2017, 16(2): 87-93. |
[125] | Kang D J, Seo Y J, Lee J D, Ishii R, Kim K U, Shin D H, Park S K, Jang S W, Lee I J. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars[J]. Journal of Agronomy and Crop Science (1986), 2005, 191(4): 273-282. |
[126] | Hazman M, Hause B, Eiche E, Nick P, Riemann M. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity[J]. Journal of Experimental Botany, 2015, 66(11): 3339-3352. |
[127] | Asfaw K G, Liu Q, Eghbalian R, Purper S, Akaberi S, Dhakarey R, Munch S W, Wehl I, Brase S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P. The jasmonate biosynthesis Gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress[J]. Plant Science, 2022, 316: 111156. |
[128] | Seo H S, Kim S K, Jang S W, Choo Y S, Sohn E Y, Lee I J. Effect of jasmonic acid on endogenous gibberellins and abscisic acid in rice under NaCl stress[J]. Biologia Plantarum, 2005, 49(3): 447-450. |
[129] | Byeon Y, Park S, Kim Y S, Back K. Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase[J]. Journal of Pineal Research, 2013, 55(4): 357-363. |
[130] | Wang Y F, Hou Y X, Qiu J H, Wang H M, Wang, S, Tang L Q, Tong X H, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. The New Phytologist, 2020, 228(4): 1336-1353. |
[131] | Yang T, Lv R, Li J H, Lin H H, Xi D H. Phytochrome A and B negatively regulate salt stress tolerance of Nicotiana tobacum via ABA-jasmonic acid synergistic cross-talk[J]. Plant and Cell Physiology, 2018, 59, 2381-2393. |
[132] | White P J, Broadley M R. Calcium in plants[J]. Annals of Botany, 2003, 92(4): 487-511. |
[133] | 李娜, 张海林, 李秀芬, 柳超. 钙在植物盐胁迫中的作用[J]. 生命科学, 2015, 27(4): 504-508. |
Li N, Zhang H L, Li J F, Liu C. Function of Ca2+ in salt stress in plants[J]. Chinese Bulletin of Life Sciences, 2015, 27(4): 504-508. (in Chinese with English abstract) | |
[134] | Aslam M, Muhammad N, Qureshi R H, Ahmad Z, Nawaz S, Akhtar J. Calcium and salt-tolerance of rice[J]. Communications in Soil Science and Plant Analysis, 2003, 34(19-20): 3013-3031. |
[135] | Rahman A, Nahar K, Hasanuzzaman M, Fujita M. Calcium supplementation improves Na(+)/K(+) ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings[J]. Frontiers Plant Science, 2016, 7: 609. |
[136] | 朱晓军. 钙对盐胁迫下水稻幼苗盐害缓解的效应及机理研究[D]. 南京: 南京农业大学, 2004: 1-8. |
Zhu X J. Mitigative effect and mechanisms of exogenous calcium on rice seedlings under salt stress[D]. Nanjing: Nanjing Agricultural University, 2004: 1-8. (in Chinese with English abstract) | |
[137] | 闫国超. 硅调控水稻耐盐性的生理与分子机制研究[D]. 杭州: 浙江大学, 2020: 2-5. |
Yan G C. Physiological and molecular mechanisms of silicon-mediated salt stress resistance in rice(Oryza sativa L.)[D]. Hangzhou: Zhejiang University, 2020: 2-5. (in Chinese with English abstract) | |
[138] | Liang Y C, Sun W C, Zhu Y G, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environment Pollution, 2007, 147(2): 422-428. |
[139] | Yeo A R, Flowers S A, Rao G, Welfare, Senanayake N, Flowers T J. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow[J]. Plant Cell and Environment, 1999, 22(5): 559-565. |
[140] | Shi Y, Wang Y C, Flowers T J, Gong H J. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions[J]. Journal of Plant Physiology, 2013, 170(9): 847-853. |
[141] | Yang Y Q, Guo Y. Unraveling salt stress signaling in plants[J]. Journal of Integrative Plant Biology, 2018, 60(9): 796-804. |
[142] | 闫国超, 樊小平, 谭礼, 尹昌, 梁永超. 盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达[J]. 植物营养与肥料学报, 2020, 26(11): 1935-1943. |
Yan G C, Fan X P, Tan L, Yin C, Liang Y C. Exogenous silicon effectively enhances salt stress resistance of rice by upregulating antioxidant enzymes activities and expression of genes related to Na/K homeostasis[J]. Plant Nutrition and Fertilizer Science, 2020, 26(11): 1935-1943. (in Chinese with English abstract) | |
[143] | Yan G C, Fan X P, Peng M, Yin C, Xiao Z X, Liang Y C. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern[J]. Frontiers in Plant Science, 2020, 11: 260. |
[144] | Liang Y C, Chen Q, Liu Q, Zhang W H, Ding R X. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J]. Journal of Plant Physiology, 2003, 160(10): 1157- 1164. |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||