Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (5): 505-519.DOI: 10.16819/j.1001-7216.2022.211104
• Research Papers • Previous Articles Next Articles
JING Wenjiang1, GU Hanzhu1, ZHANG Xiaoxiang2, WU Hao1, ZHANG Weiyang1, GU Junfei1, LIU Lijun1, WANG Zhiqin1, YANG Jianchang1, ZHANG Hao1()
Received:
2021-11-05
Revised:
2022-03-10
Online:
2022-09-10
Published:
2022-09-09
Contact:
ZHANG Hao
景文疆1, 顾汉柱1, 张小祥2, 吴昊1, 张伟杨1, 顾骏飞1, 刘立军1, 王志琴1, 杨建昌1, 张耗1()
通讯作者:
张耗
基金资助:
JING Wenjiang, GU Hanzhu, ZHANG Xiaoxiang, WU Hao, ZHANG Weiyang, GU Junfei, LIU Lijun, WANG Zhiqin, YANG Jianchang, ZHANG Hao. Response of Grain Quality and Root Characteristics to Irrigation Methods During Mid-season indica Rice Varieties Improvement[J]. Chinese Journal OF Rice Science, 2022, 36(5): 505-519.
景文疆, 顾汉柱, 张小祥, 吴昊, 张伟杨, 顾骏飞, 刘立军, 王志琴, 杨建昌, 张耗. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应[J]. 中国水稻科学, 2022, 36(5): 505-519.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.211104
应用年代 Application years | 品种 Variety | 类型 Type | 生育期 Growth duration/d |
---|---|---|---|
1940-1950 | 黄瓜籼 Huangguaxian | 高秆品种 High stalk variety | 118 |
1940-1950 | 银条籼 Yintiaoxian | 高秆品种 High stalk variety | 117 |
1940-1950 | 南京1号 Nanjing 1 | 高秆品种 High stalk variety | 117 |
1960-1970 | 台中籼 Taichung Sen | 矮秆品种 Dwarf variety | 130 |
1960-1970 | 南京11 Nanjing 11 | 矮秆品种 Dwarf variety | 122 |
1960-1970 | 珍珠矮 Zhenzhuai | 矮秆品种 Dwarf variety | 127 |
1970-1980 | IR24 | 半矮秆品种 Semi-dwarf variety | 122 |
1980-1990 | 扬稻2号 Yangdao 2 | 半矮秆品种 Semi-dwarf variety | 145 |
1980-1990 | 扬稻6号 Yangdao 6 | 半矮秆品种 Semi-dwarf variety | 146 |
2000-2005 | 扬两优6号 Yangliangyou 6 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
2000-2005 | 两优培九 Liangyoupeijiu | 半矮秆杂交稻 Semi-dwarf hybrid rice | 152 |
2000-2005 | Ⅱ优084 Ⅱyou 084 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
Table 1. Representative mid-season indica rice varieties in Jiangsu Province in recent 80 years.
应用年代 Application years | 品种 Variety | 类型 Type | 生育期 Growth duration/d |
---|---|---|---|
1940-1950 | 黄瓜籼 Huangguaxian | 高秆品种 High stalk variety | 118 |
1940-1950 | 银条籼 Yintiaoxian | 高秆品种 High stalk variety | 117 |
1940-1950 | 南京1号 Nanjing 1 | 高秆品种 High stalk variety | 117 |
1960-1970 | 台中籼 Taichung Sen | 矮秆品种 Dwarf variety | 130 |
1960-1970 | 南京11 Nanjing 11 | 矮秆品种 Dwarf variety | 122 |
1960-1970 | 珍珠矮 Zhenzhuai | 矮秆品种 Dwarf variety | 127 |
1970-1980 | IR24 | 半矮秆品种 Semi-dwarf variety | 122 |
1980-1990 | 扬稻2号 Yangdao 2 | 半矮秆品种 Semi-dwarf variety | 145 |
1980-1990 | 扬稻6号 Yangdao 6 | 半矮秆品种 Semi-dwarf variety | 146 |
2000-2005 | 扬两优6号 Yangliangyou 6 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
2000-2005 | 两优培九 Liangyoupeijiu | 半矮秆杂交稻 Semi-dwarf hybrid rice | 152 |
2000-2005 | Ⅱ优084 Ⅱyou 084 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
月份 Month | 平均气温 Mean air temperature/℃ | 降水量 Precipitation/mm | 日照时数 Sunshine hours / h |
---|---|---|---|
五月 May | 22.7 | 53.0 | 155 |
六月 June | 25.8 | 253 | 188 |
七月 July | 25.5 | 186 | 139 |
八月 August | 30.4 | 246 | 155 |
九月 September | 23.8 | 50.2 | 146 |
十月 October | 16.7 | 56.9 | 133 |
Table 2. Mean air temperature, precipitation and sunshine hours during rice growing season.
月份 Month | 平均气温 Mean air temperature/℃ | 降水量 Precipitation/mm | 日照时数 Sunshine hours / h |
---|---|---|---|
五月 May | 22.7 | 53.0 | 155 |
六月 June | 25.8 | 253 | 188 |
七月 July | 25.5 | 186 | 139 |
八月 August | 30.4 | 246 | 155 |
九月 September | 23.8 | 50.2 | 146 |
十月 October | 16.7 | 56.9 | 133 |
Fig. 1. Grain yield(A) and water use efficiency(B) of the mid-season indica rice varieties. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation; HGX, Huangguaxian; YTX, Yintiaoxian; NJ 1, Nanjing 1; TZX, Taichung Sen; NJ 11, Nanjing 11; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6, Yangdao 6; YLY 6, Yangliangyou 6; LYPJ, Liangyoupeijiu; ⅡY 084, II you 084. Water use efficiency(kg·m−3)=Grain yield/Irrigation water consumption. Different lowercase letters indicate significant difference at the 0.05 probability level.
处理 Treatment | 品种 Variety | 穗数 Number of panicles /(×104 hm−2) | 每穗粒数 Spikelets per panicle | 总颖花量 Total spikelets /(×106 hm−2) | 千粒重 1000-grain weight /g | 结实率 Filled grain rate /% | 产量 Grain yield /(t·hm-2) |
---|---|---|---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 239 ± 1.70 c | 138 ± 4.39 e | 332 ± 3.95 f | 25.16 ± 0.22 c | 80.25 ± 1.63 c | 6.68 ± 0.48 e |
珍珠矮 Zhenzhuai | 253 ± 2.13 a | 148 ± 4.52 d | 376 ± 4.37 e | 26.18 ± 0.29 b | 78.30 ± 1.27 d | 7.72 ± 0.54 d | |
扬稻2号 Yangdao 2 | 239 ± 1.21 c | 166 ± 3.83 b | 397 ± 3.68 c | 25.95 ± 0.26 b | 85.02 ± 1.29 a | 8.78 ± 0.54 c | |
扬稻6号 Yangdao 6 | 242 ± 1.47 b | 157 ± 2.32 c | 379 ± 2.73 d | 29.16 ± 0.30 a | 84.87 ± 1.17 a | 9.38 ± 0.46 b | |
扬两优6号 Yangliangyou 6 | 221 ± 2.63 d | 196 ± 4.91 a | 432 ± 4.76 b | 28.87 ± 0.55 a | 81.11 ± 0.64 bc | 10.11 ± 0.65 a | |
两优培九 Liangyoupeijiu | 242 ± 1.27 b | 196 ± 2.16 a | 476 ± 4.31 a | 26.03 ± 0.43 b | 82.28 ± 1.31 b | 10.16 ± 0.57 a | |
CI | 台中籼 Taizhongxian | 247 ± 1.11 cd | 125 ± 3.17 f | 309 ± 1.21 f | 24.95 ± 0.52 c | 75.91 ± 1.48 d | 5.86 ± 0.46 f |
珍珠矮 Zhenzhuai | 257 ± 2.56 b | 130 ± 5.14 e | 360 ± 4.88 d | 25.08 ± 0.38 bc | 70.37 ± 1.81 e | 6.34 ± 0.53 e | |
扬稻2号 Yangdao 2 | 246 ± 1.32 d | 154 ± 4.18 c | 376 ± 2.79 c | 25.59 ± 0.32 b | 85.08 ± 1.67 a | 8.21 ± 0.57 d | |
扬稻6号 Yangdao 6 | 263 ± 2.17 a | 135 ± 3.96 d | 352 ± 1.77 e | 29.11 ± 0.13 a | 84.08 ± 1.43 b | 8.62 ± 0.51 c | |
扬两优6号 Yangliangyou 6 | 235 ± 2.88 e | 168 ± 2.65 b | 391 ± 1.46 b | 28.75 ± 0.39 a | 80.66 ± 1.29 c | 9.08 ± 0.53 b | |
两优培九 Liangyoupeijiu | 249 ± 1.64 c | 186 ± 4.38 a | 464 ± 3.44 a | 24.90 ± 0.50 c | 81.33 ± 1.11 c | 9.41 ± 0.64 a | |
方差分析 Analysis of variance | |||||||
处理 Treatment (T) | ** | ** | ** | * | * | * | |
品种 Variety (V) | ** | ** | ** | ** | ** | ** | |
处理 × 品种 (T × V) | ** | NS | * | NS | NS | NS |
Table 3. Effects of different irrigation methods on grain yield and its components.
处理 Treatment | 品种 Variety | 穗数 Number of panicles /(×104 hm−2) | 每穗粒数 Spikelets per panicle | 总颖花量 Total spikelets /(×106 hm−2) | 千粒重 1000-grain weight /g | 结实率 Filled grain rate /% | 产量 Grain yield /(t·hm-2) |
---|---|---|---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 239 ± 1.70 c | 138 ± 4.39 e | 332 ± 3.95 f | 25.16 ± 0.22 c | 80.25 ± 1.63 c | 6.68 ± 0.48 e |
珍珠矮 Zhenzhuai | 253 ± 2.13 a | 148 ± 4.52 d | 376 ± 4.37 e | 26.18 ± 0.29 b | 78.30 ± 1.27 d | 7.72 ± 0.54 d | |
扬稻2号 Yangdao 2 | 239 ± 1.21 c | 166 ± 3.83 b | 397 ± 3.68 c | 25.95 ± 0.26 b | 85.02 ± 1.29 a | 8.78 ± 0.54 c | |
扬稻6号 Yangdao 6 | 242 ± 1.47 b | 157 ± 2.32 c | 379 ± 2.73 d | 29.16 ± 0.30 a | 84.87 ± 1.17 a | 9.38 ± 0.46 b | |
扬两优6号 Yangliangyou 6 | 221 ± 2.63 d | 196 ± 4.91 a | 432 ± 4.76 b | 28.87 ± 0.55 a | 81.11 ± 0.64 bc | 10.11 ± 0.65 a | |
两优培九 Liangyoupeijiu | 242 ± 1.27 b | 196 ± 2.16 a | 476 ± 4.31 a | 26.03 ± 0.43 b | 82.28 ± 1.31 b | 10.16 ± 0.57 a | |
CI | 台中籼 Taizhongxian | 247 ± 1.11 cd | 125 ± 3.17 f | 309 ± 1.21 f | 24.95 ± 0.52 c | 75.91 ± 1.48 d | 5.86 ± 0.46 f |
珍珠矮 Zhenzhuai | 257 ± 2.56 b | 130 ± 5.14 e | 360 ± 4.88 d | 25.08 ± 0.38 bc | 70.37 ± 1.81 e | 6.34 ± 0.53 e | |
扬稻2号 Yangdao 2 | 246 ± 1.32 d | 154 ± 4.18 c | 376 ± 2.79 c | 25.59 ± 0.32 b | 85.08 ± 1.67 a | 8.21 ± 0.57 d | |
扬稻6号 Yangdao 6 | 263 ± 2.17 a | 135 ± 3.96 d | 352 ± 1.77 e | 29.11 ± 0.13 a | 84.08 ± 1.43 b | 8.62 ± 0.51 c | |
扬两优6号 Yangliangyou 6 | 235 ± 2.88 e | 168 ± 2.65 b | 391 ± 1.46 b | 28.75 ± 0.39 a | 80.66 ± 1.29 c | 9.08 ± 0.53 b | |
两优培九 Liangyoupeijiu | 249 ± 1.64 c | 186 ± 4.38 a | 464 ± 3.44 a | 24.90 ± 0.50 c | 81.33 ± 1.11 c | 9.41 ± 0.64 a | |
方差分析 Analysis of variance | |||||||
处理 Treatment (T) | ** | ** | ** | * | * | * | |
品种 Variety (V) | ** | ** | ** | ** | ** | ** | |
处理 × 品种 (T × V) | ** | NS | * | NS | NS | NS |
处理 Treatment | 品种 Variety | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 垩白粒率 Chalky grain rate/% | 垩白度 Chalkiness degree/% |
---|---|---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 82.58 ± 2.57 a | 67.07 ± 1.28 c | 47.08 ± 2.62 d | 59.25 ± 3.12 a | 15.50 ± 1.28 a |
珍珠矮 Zhenzhuai | 81.18 ± 1.90 ab | 69.33 ± 1.03 bc | 49.30 ± 1.28 cd | 43.95 ± 4.01 b | 12.20 ± 1.09 b | |
扬稻2号 Yangdao 2 | 81.09 ± 3.10 ab | 70.73 ± 3.32 ab | 50.60 ± 1.03 bc | 32.35 ± 4.11 c | 9.25 ± 0.38 c | |
扬稻6号 Yangdao 6 | 79.49 ± 2.15 b | 72.07 ± 2.31 ab | 51.53 ± 0.97 bc | 13.70 ± 2.58 d | 4.40 ± 0.97 d | |
扬两优6号 Yangliangyou 6 | 79.29 ± 3.61 b | 73.32 ± 2.02 a | 52.70 ± 0.86 b | 6.00 ± 2.73 e | 3.20 ± 1.35 d | |
两优培九 Liangyoupeijiu | 78.99 ± 2.40 b | 73.51 ± 1.34 a | 58.58 ± 2.69 a | 2.30 ± 2.16 f | 3.05 ± 1.88 d | |
CI | 台中籼 Taichung Sen | 82.18 ± 3.22 a | 65.67 ± 1.41 d | 45.55 ± 2.03 b | 65.00 ± 3.88 a | 23.35 ± 1.62 a |
珍珠矮 Zhenzhuai | 80.90 ± 1.08 ab | 67.65 ± 1.65 cd | 47.76 ± 1.55 b | 63.05 ± 2.19 a | 13.45 ± 1.77 b | |
扬稻2号 Yangdao 2 | 80.66 ± 1.85 ab | 70.05 ± 3.01 bc | 50.55 ± 2.67 a | 32.95 ± 3.62 b | 11.90 ± 0.88 b | |
扬稻6号 Yangdao 6 | 79.41 ± 2.76 ab | 71.00 ± 2.52 ab | 51.12 ± 1.47 a | 26.75 ± 3.15 c | 7.75 ± 1.55 c | |
扬两优6号 Yangliangyou 6 | 79.05 ± 3.55 ab | 71.59 ± 1.40 ab | 51.82 ± 1.09 a | 8.50 ± 2.18 d | 5.45 ± 1.30 d | |
两优培九 Liangyoupeijiu | 78.54 ± 3.07 b | 72.98 ± 2.71 a | 53.03 ± 2.64 a | 8.05 ± 1.47 d | 4.00 ± 0.54 d | |
方差分析 Analysis of variance | ||||||
处理 Treatment (T) | NS | NS | NS | ** | ** | |
品种 Variety (V) | NS | NS | ** | ** | ** | |
处理 × 品种 (T × V) | NS | NS | NS | NS | NS |
Table 4. Effects of different irrigation methods on milling and appearance quality of rice.
处理 Treatment | 品种 Variety | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 垩白粒率 Chalky grain rate/% | 垩白度 Chalkiness degree/% |
---|---|---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 82.58 ± 2.57 a | 67.07 ± 1.28 c | 47.08 ± 2.62 d | 59.25 ± 3.12 a | 15.50 ± 1.28 a |
珍珠矮 Zhenzhuai | 81.18 ± 1.90 ab | 69.33 ± 1.03 bc | 49.30 ± 1.28 cd | 43.95 ± 4.01 b | 12.20 ± 1.09 b | |
扬稻2号 Yangdao 2 | 81.09 ± 3.10 ab | 70.73 ± 3.32 ab | 50.60 ± 1.03 bc | 32.35 ± 4.11 c | 9.25 ± 0.38 c | |
扬稻6号 Yangdao 6 | 79.49 ± 2.15 b | 72.07 ± 2.31 ab | 51.53 ± 0.97 bc | 13.70 ± 2.58 d | 4.40 ± 0.97 d | |
扬两优6号 Yangliangyou 6 | 79.29 ± 3.61 b | 73.32 ± 2.02 a | 52.70 ± 0.86 b | 6.00 ± 2.73 e | 3.20 ± 1.35 d | |
两优培九 Liangyoupeijiu | 78.99 ± 2.40 b | 73.51 ± 1.34 a | 58.58 ± 2.69 a | 2.30 ± 2.16 f | 3.05 ± 1.88 d | |
CI | 台中籼 Taichung Sen | 82.18 ± 3.22 a | 65.67 ± 1.41 d | 45.55 ± 2.03 b | 65.00 ± 3.88 a | 23.35 ± 1.62 a |
珍珠矮 Zhenzhuai | 80.90 ± 1.08 ab | 67.65 ± 1.65 cd | 47.76 ± 1.55 b | 63.05 ± 2.19 a | 13.45 ± 1.77 b | |
扬稻2号 Yangdao 2 | 80.66 ± 1.85 ab | 70.05 ± 3.01 bc | 50.55 ± 2.67 a | 32.95 ± 3.62 b | 11.90 ± 0.88 b | |
扬稻6号 Yangdao 6 | 79.41 ± 2.76 ab | 71.00 ± 2.52 ab | 51.12 ± 1.47 a | 26.75 ± 3.15 c | 7.75 ± 1.55 c | |
扬两优6号 Yangliangyou 6 | 79.05 ± 3.55 ab | 71.59 ± 1.40 ab | 51.82 ± 1.09 a | 8.50 ± 2.18 d | 5.45 ± 1.30 d | |
两优培九 Liangyoupeijiu | 78.54 ± 3.07 b | 72.98 ± 2.71 a | 53.03 ± 2.64 a | 8.05 ± 1.47 d | 4.00 ± 0.54 d | |
方差分析 Analysis of variance | ||||||
处理 Treatment (T) | NS | NS | NS | ** | ** | |
品种 Variety (V) | NS | NS | ** | ** | ** | |
处理 × 品种 (T × V) | NS | NS | NS | NS | NS |
处理 Treatment | 品种 Variety | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 胶稠度 Gel consistency/mm |
---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 8.42 ± 0.82 a | 25.53 ± 1.65 a | 76.45 ± 2.03 a |
珍珠矮 Zhenzhuai | 8.58 ± 1.87 a | 23.75 ± 1.74 b | 74.20 ± 1.34 b | |
扬稻2号 Yangdao 2 | 8.90 ± 1.65 a | 21.76 ± 1.83 c | 73.55 ± 1.62 bc | |
扬稻6号 Yangdao 6 | 9.14 ± 1.74 a | 20.39 ± 2.03 d | 72.38 ± 2.42 c | |
扬两优6号 Yangliangyou 6 | 9.36 ± 1.95 a | 19.64 ± 1.12 d | 61.45 ± 1.40 d | |
两优培九 Liangyoupeijiu | 9.73 ± 1.24 a | 21.86 ± 1.49 c | 60.33 ± 1.53 d | |
CI | 台中籼 Taichung Sen | 8.20 ± 1.06 b | 24.86 ± 1.23 a | 72.40 ± 1.98 a |
珍珠矮 Zhenzhuai | 8.55 ± 1.37 ab | 23.27 ± 1.57 b | 65.38 ± 2.58 b | |
扬稻2号 Yangdao 2 | 8.61 ± 0.79 ab | 21.06 ± 1.82 c | 62.60 ± 1.32 c | |
扬稻6号 Yangdao 6 | 9.02 ± 1.48 ab | 19.93 ± 1.39 d | 58.20 ± 0.98 d | |
扬两优6号 Yangliangyou 6 | 9.26 ± 1.53 ab | 18.71 ± 1.32 e | 54.90 ± 1.00 e | |
两优培九 Liangyoupeijiu | 9.39 ± 1.26 a | 20.10 ± 1.19 d | 51.23 ± 2.43 f | |
方差分析 Analysis of variance | ||||
处理 Treatment (T) | NS | * | ** | |
品种 Variety (V) | NS | ** | ** | |
处理 × 品种 (T × V) | NS | NS | NS |
Table 5. Effects of different irrigation methods on cooking, eating and nutrition quality of rice.
处理 Treatment | 品种 Variety | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 胶稠度 Gel consistency/mm |
---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 8.42 ± 0.82 a | 25.53 ± 1.65 a | 76.45 ± 2.03 a |
珍珠矮 Zhenzhuai | 8.58 ± 1.87 a | 23.75 ± 1.74 b | 74.20 ± 1.34 b | |
扬稻2号 Yangdao 2 | 8.90 ± 1.65 a | 21.76 ± 1.83 c | 73.55 ± 1.62 bc | |
扬稻6号 Yangdao 6 | 9.14 ± 1.74 a | 20.39 ± 2.03 d | 72.38 ± 2.42 c | |
扬两优6号 Yangliangyou 6 | 9.36 ± 1.95 a | 19.64 ± 1.12 d | 61.45 ± 1.40 d | |
两优培九 Liangyoupeijiu | 9.73 ± 1.24 a | 21.86 ± 1.49 c | 60.33 ± 1.53 d | |
CI | 台中籼 Taichung Sen | 8.20 ± 1.06 b | 24.86 ± 1.23 a | 72.40 ± 1.98 a |
珍珠矮 Zhenzhuai | 8.55 ± 1.37 ab | 23.27 ± 1.57 b | 65.38 ± 2.58 b | |
扬稻2号 Yangdao 2 | 8.61 ± 0.79 ab | 21.06 ± 1.82 c | 62.60 ± 1.32 c | |
扬稻6号 Yangdao 6 | 9.02 ± 1.48 ab | 19.93 ± 1.39 d | 58.20 ± 0.98 d | |
扬两优6号 Yangliangyou 6 | 9.26 ± 1.53 ab | 18.71 ± 1.32 e | 54.90 ± 1.00 e | |
两优培九 Liangyoupeijiu | 9.39 ± 1.26 a | 20.10 ± 1.19 d | 51.23 ± 2.43 f | |
方差分析 Analysis of variance | ||||
处理 Treatment (T) | NS | * | ** | |
品种 Variety (V) | NS | ** | ** | |
处理 × 品种 (T × V) | NS | NS | NS |
处理 Treatment | 品种 Variety | 峰值黏度 Peak viscosity /cP | 热浆黏度 Hot viscosity /cP | 崩解值 Breakdown /cP | 最终黏度 Final viscosity /cP | 消减值 Setback /cP | 糊化温度 Pasting temperature /℃ |
---|---|---|---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 3052.5 ± 44.6 a | 2478.5 ± 47.9 a | 549.5 ± 35.8 e | 3269.0 ± 52.7 a | 330.5 ± 12.5 b | 80.27 ± 2.4 a |
珍珠矮 Zhenzhuai | 2996.0 ± 47.9 b | 2469.5 ± 43.2 a | 586.0 ± 29.4 d | 3233.5 ± 50.8 b | 364.0 ± 17.9 a | 79.93 ± 2.2 a | |
扬稻2号 Yangdao 2 | 2843.0 ± 50.2 c | 2172.5 ± 35.7 b | 620.5 ± 33.6 bc | 2967.0 ± 51.8 c | 233.5 ± 14.0 de | 78.48 ± 2.4 b | |
扬稻6号 Yangdao 6 | 2780.5 ± 40.7 d | 2087.0 ± 46.6 c | 682.5 ± 37.6 a | 2913.5 ± 45.7 d | 250.0 ± 11.3 c | 78.13 ± 1.9 b | |
扬两优6号 Yangliangyou 6 | 2691.0 ± 34.9 e | 1832.5 ± 50.3 d | 609.0 ± 42.8 c | 2756.0 ± 37.7 e | 238.5 ± 17.9 d | 77.68 ± 1.4 b | |
两优培九 Liangyoupeijiu | 2618.5 ± 42.0 f | 1798.5 ± 52.4 e | 629.0 ± 37.9 b | 2709.5 ± 35.3 f | 226.5 ± 12.6 e | 77.43 ± 2.1 b | |
CI | 台中籼 Taichung Sen | 2969.5 ± 45.8 a | 2388.5 ± 36.6 a | 506.0 ± 48.6 d | 3246.0 ± 43.3 a | 357.5 ± 10.3 b | 81.93 ± 1.5 a |
珍珠矮 Zhenzhuai | 2855.5 ± 53.7 b | 2330.0 ± 42.5 b | 566.0 ± 30.3 c | 3221.5 ± 41.5 b | 371.5 ± 16.9 a | 80.20 ± 1.4 b | |
扬稻2号 Yangdao 2 | 2793.0 ± 52.4 c | 2064.5 ± 41.8 c | 614.5 ± 37.1 b | 2942.0 ± 46.6 c | 257.0 ± 14.3 d | 79.73 ± 1.3 b | |
扬稻6号 Yangdao 6 | 2740.5 ± 40.8 d | 1982.0 ± 47.1 d | 678.5 ± 42.6 a | 2895.0 ± 50.2 d | 268.5 ± 11.4 c | 78.52 ± 1.7 c | |
扬两优6号 Yangliangyou 6 | 2481.5 ± 38.3 e | 1765.0 ± 39.8 e | 596.0 ± 49.1 b | 2722.0 ± 42.0 e | 251.5 ± 15.9 de | 77.98 ± 1.5 cd | |
两优培九 Liangyoupeijiu | 2427.5 ± 33.6 f | 1640.5 ± 46.9 f | 618.0 ± 38.9 b | 2689.0 ± 42.8 f | 243.0 ± 11.1 e | 77.74 ± 1.7 d | |
方差分析 Analysis of variance | |||||||
处理 Treatment (T) | ** | ** | NS | NS | * | NS | |
品种 Variety (V) | ** | ** | * | ** | ** | NS | |
处理 × 品种 T × V | NS | NS | NS | NS | NS | NS |
Table 6. Effects of different irrigation methods on viscosity of rice starch.
处理 Treatment | 品种 Variety | 峰值黏度 Peak viscosity /cP | 热浆黏度 Hot viscosity /cP | 崩解值 Breakdown /cP | 最终黏度 Final viscosity /cP | 消减值 Setback /cP | 糊化温度 Pasting temperature /℃ |
---|---|---|---|---|---|---|---|
AWD | 台中籼 Taichung Sen | 3052.5 ± 44.6 a | 2478.5 ± 47.9 a | 549.5 ± 35.8 e | 3269.0 ± 52.7 a | 330.5 ± 12.5 b | 80.27 ± 2.4 a |
珍珠矮 Zhenzhuai | 2996.0 ± 47.9 b | 2469.5 ± 43.2 a | 586.0 ± 29.4 d | 3233.5 ± 50.8 b | 364.0 ± 17.9 a | 79.93 ± 2.2 a | |
扬稻2号 Yangdao 2 | 2843.0 ± 50.2 c | 2172.5 ± 35.7 b | 620.5 ± 33.6 bc | 2967.0 ± 51.8 c | 233.5 ± 14.0 de | 78.48 ± 2.4 b | |
扬稻6号 Yangdao 6 | 2780.5 ± 40.7 d | 2087.0 ± 46.6 c | 682.5 ± 37.6 a | 2913.5 ± 45.7 d | 250.0 ± 11.3 c | 78.13 ± 1.9 b | |
扬两优6号 Yangliangyou 6 | 2691.0 ± 34.9 e | 1832.5 ± 50.3 d | 609.0 ± 42.8 c | 2756.0 ± 37.7 e | 238.5 ± 17.9 d | 77.68 ± 1.4 b | |
两优培九 Liangyoupeijiu | 2618.5 ± 42.0 f | 1798.5 ± 52.4 e | 629.0 ± 37.9 b | 2709.5 ± 35.3 f | 226.5 ± 12.6 e | 77.43 ± 2.1 b | |
CI | 台中籼 Taichung Sen | 2969.5 ± 45.8 a | 2388.5 ± 36.6 a | 506.0 ± 48.6 d | 3246.0 ± 43.3 a | 357.5 ± 10.3 b | 81.93 ± 1.5 a |
珍珠矮 Zhenzhuai | 2855.5 ± 53.7 b | 2330.0 ± 42.5 b | 566.0 ± 30.3 c | 3221.5 ± 41.5 b | 371.5 ± 16.9 a | 80.20 ± 1.4 b | |
扬稻2号 Yangdao 2 | 2793.0 ± 52.4 c | 2064.5 ± 41.8 c | 614.5 ± 37.1 b | 2942.0 ± 46.6 c | 257.0 ± 14.3 d | 79.73 ± 1.3 b | |
扬稻6号 Yangdao 6 | 2740.5 ± 40.8 d | 1982.0 ± 47.1 d | 678.5 ± 42.6 a | 2895.0 ± 50.2 d | 268.5 ± 11.4 c | 78.52 ± 1.7 c | |
扬两优6号 Yangliangyou 6 | 2481.5 ± 38.3 e | 1765.0 ± 39.8 e | 596.0 ± 49.1 b | 2722.0 ± 42.0 e | 251.5 ± 15.9 de | 77.98 ± 1.5 cd | |
两优培九 Liangyoupeijiu | 2427.5 ± 33.6 f | 1640.5 ± 46.9 f | 618.0 ± 38.9 b | 2689.0 ± 42.8 f | 243.0 ± 11.1 e | 77.74 ± 1.7 d | |
方差分析 Analysis of variance | |||||||
处理 Treatment (T) | ** | ** | NS | NS | * | NS | |
品种 Variety (V) | ** | ** | * | ** | ** | NS | |
处理 × 品种 T × V | NS | NS | NS | NS | NS | NS |
Fig. 2. Effects of different irrigation methods on solubility(A) and swelling capacity(B) of rice starch. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. TZX, Taichung Sen; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6, Yangdao 6; YLY 6, Yangliangyou 6; LYPJ, Liangyoupeijiu. Different lowercase letters indicate significant difference at the 0.05 probability level.
Fig. 3. Effects of different irrigation methods on XRD patterns of rice starch. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. TZX, Taichung Sen; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6, Yangdao 6; YLY 6, Yangliangyou 6; LYPJ, Liangyoupeijiu.
Fig. 4. Effects of different irrigation methods on relative crystallinity of rice starch. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. TZX, Taichung Sen; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6, Yangdao 6; YLY 6, Yangliangyou 6; LYPJ, Liangyoupeijiu. Different lowercase letters indicate significant difference at the 0.05 probability level.
Fig. 5. Effects of different irrigation methods on root dry weight and root-shoot ratio of rice. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. MT, Mid-tillering stage; PI, Panicle initiation stage; HD, Heading stage; MA, Maturity stage. TZX, Taichung Sen; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6, Yangdao 6; YLY 6, Yangliangyou 6; LYPJ, Liangyoupeijiu. Different lowercase letters indicate significant difference at the 0.05 probability level.
Fig. 6. Effects of different irrigation methods on root oxidation activity of rice. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. PI, Panicle initiation stage; HD, Heading stage; MF, Mid-filling stage. TZX, Taichung Sen; ZZA, Zhenzhuai; YD2, Yangdao 2; YD6, Yangdao 6; YLY6, Yangliangyou 6; LYPJ, Liangyoupeijiu. Different lowercase letters indicate significant difference at the 0.05 probability level.
Fig. 7. Effects of different irrigation methods on root total absorbing surface area and active absorbing surface area of rice. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. PI, Panicle initiation stage; HD, Heading stage; MF, Mid-filling stage. TZX, Taichung Sen; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6: Yangdao 6; YLY 6: Yangliangyou 6; LYPJ, Liangyoupeijiu. Different lowercase letters indicate significant difference at the 0.05 probability level.
Fig. 8. Effects of different irrigation methods on Z+ZR and ABA contents in rice root bleeding sap of rice. AWD, Alternate wetting and drying irrigation; CI, Conventional irrigation. PI, Panicle initiation stage; HD, Heading stage; MF, Mid-filling stage. TZX, Taichung Sen; ZZA, Zhenzhuai; YD 2, Yangdao 2; YD 6, Yangdao 6; YLY 6, Yangliangyou 6; LYPJ, Liangyoupeijiu. Different lowercase letters indicate significant difference at the 0.05 probability level.
Fig. 9. Correlation of root characteristics with yield, water use efficiency and grain quality. RDW, Root dry weight; RSR, Root-shoot ratio; ROA, Root oxidation activity; RTASA, Root total absorbing surface area; RAASA, Root active absorbing surface area; Zr, Z+ZR content in root bleeding sap; Ar, ABA content in root bleeding sap; MT, Mid-tillering stage; PI, Panicle initiation stage; HD, Heading stage; MF, Middle grain filling stage; MA, Maturity stage. The red and blue circles indicate negative or positive correlations between parameters, respectively. The darker the color is, the closer the correlation is. *, ** and *** indicate significant differences at P<0.05, P<0.01 and P<0.001 levels, respectively.
[1] | Suleiman S O, Habila D G, Mamadou F, Abolanle B M, Olatunbosun A N. Grain yield and leaf gas exchange in upland NERICA rice under repeated cycles of water deficit at reproductive growth stage[J]. Agricultural Water Management, 2022, 264: 107507. |
[2] | Muthayy S, Sugimoto J D, Montgomery S, Marberly G F. An overview of global rice production, supply, trade and consumption[J]. Annals of the New York Academy of Sciences, 2014, 1324(1): 7-14. |
[3] | Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342. |
[4] | Zhang W Y, Yu J X, Xu Y J, Wang Z Q, Liu L J, Zhang H, Gu J F, Zhang J H, Yang J C. Alternate wetting and drying irrigation combined with the proportion of polymer-coated urea and conventional urea rates increases grain yield, water and nitrogen use efficiencies in rice[J]. Field Crops Research, 2021, 268: 108165. |
[5] | 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究[J]. 作物学报, 2006, 32(7): 949-955. |
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice varieties[J]. Acta Agronomica Sinica, 2006, 32(7): 949-955. (in Chinese with English abstract) | |
[6] | Zhang J H. China's success in increasing per capita food production[J]. Journal of Experimental Botany, 2011, 62(11): 3707-3711. |
[7] | Zhang Q F. Strategies for developing green super rice[J]. Proceedings of the National Academy of Sciences, 2007, 104(42): 16402-16409. |
[8] | Fu Y Y, Gu Q Q, Dong Q, Zhang Z H, Lin C, Hu W M, Pan R H, Guan Y J, Hu J. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism[J]. Molecules, 2019, 24(3): 13-95. |
[9] | Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice[J]. Agricultural Water Management, 2001, 49(1): 11-30. |
[10] | Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales[J]. Agricultural Systems, 2006, 93(1): 43-60. |
[11] | Wang Z Q, Xu Y J, Chen T T, Zhang H, Yang J C, Zhang J H. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling[J]. Planta, 2015, 241(5): 1091-1107. |
[12] | Yang J C, Zhou Q, Zhang J H. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission[J]. The Crop Journal, 2017, 5(2): 151-158. |
[13] | Ye Y S, Liang X Q, Chen Y X, Liu J, Gu J T, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144: 212-224. |
[14] | Shao G C, Deng S, Liu N, Yu S E, Wang M H, She D L. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice[J]. European Journal of Agronomy, 2014, 53: 1-9. |
[15] | Li S, Zuo Q, Jin X X, Ma W W, Shi J C, Ben-Gal A. The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system[J]. Agricultural Water Management, 2018, 201: 11-20. |
[16] | Kadiyala M D M, Mylavarapu R S, Li Y C, Reddy G B, Reddy M D. Impact of aerobic rice cultivation on growth, yield, and water productivity of rice-maize rotation in semiarid topics[J]. Agronomy Journal, 2012, 104(6): 1757-1765. |
[17] | 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响[J]. 中国水稻科学, 2019, 33(4): 293-302. |
Li T T, Feng Y F, Zhu A, Huang J, Wang H, Li S Y, Liu K, Peng R M, Zhang H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots[J]. Chinese Journal of Rice Science, 2019, 33(4): 293-302. (in Chinese with English abstract) | |
[18] | Lampayan R, Rejesus R, Singleton G, Bouman B. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice[J]. Field Crops Research, 2015, 170: 95-108. |
[19] | Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144: 212-224. |
[20] | Arjun P, Van T, Duong Q, Thi P, Thi L, Lars S, Andreas N. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam[J]. Agriculture, Ecosystems and Environment, 2014, 196: 137-146. |
[21] | Liu L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154: 226-235. |
[22] | Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice[J]. Journal of Experimental Botany, 2010, 61(12): 3177-3189. |
[23] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1): 36-46. |
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese with English abstract) | |
[24] | 陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系[J]. 作物学报, 2013, 39(10): 1899-1908. |
Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D. Relationship between root morphological characteristics and yield components of major commercial indica rice in south China[J]. Scientia Agricultura Sinica, 2013, 39(10): 1899-1908. (in Chinese with English abstract) | |
[25] | 褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系[J]. 作物学报, 2014, 40(5): 850-858. |
Chu G, Liu J, Zhang H, Yang J C. Morphology and physiology of roots and their relationships with yield formation in super rice[J]. Acta Agronomica Sinica, 2014, 40(5): 850-858. (in Chinese with English abstract) | |
[26] | 刘红江, 蒋银涛, 陈留根, 郑建初. 不同播栽方式对水稻根系生长及产量形成的影响[J]. 江苏农业学报, 2015, 31(2): 310-316. |
Liu H J, Jiang Y T, Chen L G, Zheng J C. Influence of planting modes on root growth and yield of Oryza sativa L.[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(2): 310-316. (in Chinese with English abstract) | |
[27] | Yan F J, Sun Y J, Xu H, Yin Y Z, Wang H Y, Wang C Y, Guo C C, Yang Z Y, Sun Y Y, Ma J. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility[J]. Paddy and Water Environment, 2018, 16(3): 507-518. |
[28] | 罗德强, 江学海, 周维佳, 王学鸿, 涂丹, 李敏, 姬广梅. 不同籼稻品种的籽粒灌浆特性及根系活力[J]. 贵州农业科学, 2013, 41(6): 49-51. |
Luo D Q, Jiang X H, Zhou W J, Wang X H, Tu D, Li M, Ji G M. Grain-filling properties and root activity of different indica rice varieties[J]. Guizhou Agricultural Sciences, 2013, 41(6): 49-51. (in Chinese) | |
[29] | 陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达[J]. 中国农业科学, 2015, 48(7): 1288-1299. |
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains[J]. Scientia Agricultura Sinica, 2015, 48(7): 1288-1299. (in Chinese with English abstract) | |
[30] | Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice[J]. Journal of Experimental Botany, 2012, 63(1): 215-227. |
[31] | 高君恺, 叶红霞, 舒小丽, 吴殿星. 水稻低淀粉粘滞突变体的理化特性和淀粉结构[J]. 核农学报, 2009, 23(1): 23-27. |
Gao J K, Ye H X, Shu X L, Wu D X. Physicochemical properties and starch structure of a rice mutant with reduction of starch paste viscosity[J]. Journal of Nuclear Agricultural Sciences, 2009, 23(1): 23-27. (in Chinese with English abstract) | |
[32] | 章骏德, 刘国屏, 施永宁. 植物生理实验法[M]. 南昌: 江西人民出版社, 1982. |
Zhang J D, Liu G P, Shi Y N. Experimental Method of Plant Physiology[M]. Nanchang: Jiangxi People's Publishing House, 1982. (in Chinese) | |
[33] | 萧浪涛, 王三根. 植物生理学实验技术. 北京: 中国农业出版社, 2005: 61-62. |
Xiao L T, Wang S G. Experimental Techniques of Plant Physiology. Beijing: China Agriculture Press, 2005: 61-62. (in Chinese with English abstract) | |
[34] | 常二华, 王朋, 唐成, 刘立军, 王志琴, 杨建昌. 水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系[J]. 作物学报, 2006, 32(4): 540-547. |
Chang E H, Wang P, Tang C, Liu L J, Wang Z Q, Yang J C. Concentrations of cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice[J]. Acta Agronomica Sinica, 2006, 32(4): 540-547. (in Chinese with English abstract) | |
[35] | 魏海燕, 凌启鸿, 张洪程, 郭文善, 杨建昌, 陈德华, 冷锁虎, 陆卫平, 邢志鹏. 作物群体质量及其关键调控技术[J]. 扬州大学学报: 农业与生命科学版, 2018, 39(2): 1-9. |
Wei H Y, Ling Q H, Zhang H C, Guo W S, Yang J C, Chen D H, Leng S H, Lu W P, Xing Z P. The quality of crop population and its key regulation technology[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2018, 39(2): 1-9. (in Chinese with English abstract) | |
[36] | Belder P, Bouman B A M, Cabangon R, Lu G A, Quilang E J P, Li Y H, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia[J]. Agricultural Water Management, 2003, 65(3): 193-210. |
[37] | Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation[J]. Field Crops Research, 2004, 93(2): 169-185. |
[38] | Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis[J]. Field Crops Research, 2017, 203: 173-180. |
[39] | 张耗, 马丙菊, 张春梅, 赵步洪, 许京菊, 邵士梅, 顾骏飞, 刘立军, 王志琴, 杨建昌. 全生育期干湿交替灌溉对稻米品质及淀粉特性的影响[J]. 扬州大学学报: 农业与生命科学版, 2020, 41(6):1-8. |
Zhang H, Ma B J, Zhang C M, Zhao B H, Xu J J, Shao S M, Gu J F, Liu L J, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation during whole growing season on quality and starch properties of rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2020, 41(6): 1-8. (in Chinese with English abstract) | |
[40] | 张耗, 谈桂露, 孙小淋, 刘立军, 杨建昌. 江苏省中籼水稻品种演进过程中稻米品质的变化[J]. 作物学报, 2009, 35(11): 2037-2044. |
Zhang H, Tan G L, Sun X L, Liu L J, Yang J C. Changes in grain quality during the evolution of mid-Season indica rice varieties in Jiangsu Province[J]. Acta Agronomica Sinica, 2009, 35(11): 2037-2044. (in Chinese with English abstract) | |
[41] | 朱安, 高捷, 黄健, 汪浩, 陈云, 刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020(2): 1-8. |
Zhu A, Gao J, Huang J, Wang H, Chen Y, Liu L J. Advances in morphology and physiology of root and their relationships with grain quality in rice[J]. Crops, 2020(2): 1-8. (in Chinese with English abstract) | |
[42] | Zhang H, Jing W J, Zhao B H, Wang W L, Xu Y J, Gu J F, Liu L J, Wang Z Q, Yang J C. Alternative fertilizer and irrigation practices improve rice yield and resource use efficiency by regulating source-sink relationships[J]. Field Crops Research, 2021, 265: 108124. |
[43] | 蔡昆争, 骆世明, 段舜山. 水稻群体根系特征与地上部生长发育和产量的关系[J]. 华南农业大学学报, 2005(2): 1-4. |
Cai K Z, Luo S M, Duan S S. The relationship between root system of rice and aboveground characteristics and yield[J]. Journal of South China Agricultural University, 2005(2): 1-4. (in Chinese with English abstract) | |
[44] | 蒋玉兰. 干湿交替灌溉对水稻产量、根系形态生理和土壤性状的影响[D]. 扬州: 扬州大学, 2018. |
Jiang Y L. Effect of alternate wetting and drying irrigation on yield, root morphological physiology and soil properties of rice[D]. Yangzhou: Yangzhou University, 2018. (in Chinese with English abstract) | |
[45] | Taghipour M, Jalali M. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents[J]. Chemosphere, 2016, 155: 395-404. |
[46] | 孙静文, 陈温福, 臧春明, 王彦荣, 吴淑琴. 水稻根系研究进展[J]. 沈阳农业大学学报, 2002(6): 466-470. |
Sun J W, Chen W F, Zang C M, Wang Y R, Wu S Q. Advances of research on rice root systems[J]. Journal of Shenyang Agricultural University, 2002(6): 466-470. (in Chinese with English abstract) | |
[47] | 肖金川, 武志海, 徐克章, 凌凤楼, 崔菁菁, 李鑫. 吉林省47年育成的水稻品种根系伤流液重量变化及其与剑叶光合速率的关系[J]. 植物生理学报, 2012, 48(5): 499-504. |
Xiao J C, Wu Z H, Xu K Z, Ling F L, Cui J J, Li X. Changes of root bleeding sap weight and its correlation with flag leaf net photosynthetic rate in rice varieties released 47 Years in Jilin Province of China[J]. Plant Physiology Journal, 2012, 48(5): 499-504. (in Chinese with English abstract) | |
[48] | 李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲, 曹利强, 吴浩. 水稻高产氮高效型品种的根系形态生理特征[J]. 作物学报, 2012, 38(4): 648-656. |
Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K, Cao L Q, Wu H. Root morphological and physiological characteristics of rice varieties with high yield and high nitrogen use efficiency[J]. Acta Agronomica Sinica, 2012, 38(4): 648-656. (in Chinese with English abstract) | |
[49] | 张耗. 水稻根系形态生理与产量形成的关系及其栽培调控技术[D]. 扬州: 扬州大学, 2011. |
Zhang H. Morphology and physiology of rice roots in relation to yield formation and cultivation regulation techniques[D]. Yangzhou: Yangzhou University, 2011. (in Chinese with English abstract) | |
[50] | 郑华斌, 姚林, 刘建霞, 贺慧, 陈阳, 黄璜. 种植方式对水稻产量及根系性状的影响[J]. 作物学报, 2014, 40(4): 667-677. |
Zheng H B, Yao L, Liu J X, He H, Chen Y, Huang H. Effect of ridge and terraced cultivation on rice yield and root trait[J]. Acta Agronomica Sinica, 2014, 40(4): 667-677. (in Chinese with English abstract) | |
[51] | 戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征[J]. 中国农业科学, 2012, 45(23): 4770-4781. |
Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency[J]. Scientia Agricultura Sinica, 2012, 45(23): 4770-4781. (in Chinese with English abstract) | |
[52] | 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(7): 1026-1036. |
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract) | |
[53] | 熊溢伟. 氮肥对不同的水稻品种根系形态生理与产量的影响[D]. 扬州: 扬州大学, 2015. |
Xiong Y W. Effects of nitrogen fertilizer on grain yield and root morphology physiology in different rice varieties[D]. Yangzhou: Yangzhou University, 2015. (in Chinese with English abstract) | |
[54] | 魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究[J]. 作物学报, 2008(3): 429-436. |
Wei H Y, Zhang H C, Zhang S F, Hang J, Dai Q G, Huo Z Y, Xu K, Ma Q, Zhang Q, Liu Y Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies[J]. Acta Agronomica Sinica, 2008(3): 429-436. (in Chinese with English abstract) | |
[55] | 钟旭华, 黄农荣. 水稻结实期根系活性与稻米垩白形成的相关性初步研究[J]. 中国水稻科学, 2005, 19(5): 471-474. |
Zhong X H, Huang N R. Preliminary study on the relationship between rice grain chalkiness and root activity at grain-filling stage[J]. Chinese Journal of Rice Science, 2005, 19(5): 471-474. (in Chinese with English abstract) | |
[56] | Yang J C, Zhang J H, Huang Z L, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice[J]. Annals of Botany, 2002, 90(3): 369-377. |
[57] | Schussler J R, Brenner M L, Brun W A. Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans[J]. Plant Physiology, 1991, 96(4): 1308-1313. |
[58] | Zhang H, Jing W J, Xu J J, Ma B J, Wang W L, Gu J F, Liu L J, Wang Z Q, Yang J C. Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years[J]. Journal of Integrative Agriculture, 2020, 19(12): 2983-2996. |
[59] | Zhang H, Hou D P, Peng X L, Ma B J, Shao S M, Jing W J, Gu J F, Liu L J, Wang Z Q, Liu Y Y, Yang J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice[J]. Journal of Integrative Agriculture, 2019, 18(12): 2716-2731. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||