Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (5): 487-504.DOI: 10.16819/j.1001-7216.2022.211105
• Research Papers • Previous Articles Next Articles
CHEN Hongyang, JIA Yan(), ZHAO Hongwei(), QU Zhaojun, WANG Xinpeng, DUAN Yuyang, YANG Rui, BAI Xu, WANG Changcheng
Received:
2021-11-08
Revised:
2022-02-28
Online:
2022-09-10
Published:
2022-09-09
Contact:
JIA Yan, ZHAO Hongwei
陈红阳, 贾琰(), 赵宏伟(), 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞
通讯作者:
贾琰,赵宏伟
基金资助:
CHEN Hongyang, JIA Yan, ZHAO Hongwei, QU Zhaojun, WANG Xinpeng, DUAN Yuyang, YANG Rui, BAI Xu, WANG Changcheng. Effects of Low Temperature Stress During Grain Filling on Starch Formation and Accumulation of Superior and Inferior Grains in Rice[J]. Chinese Journal OF Rice Science, 2022, 36(5): 487-504.
陈红阳, 贾琰, 赵宏伟, 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响[J]. 中国水稻科学, 2022, 36(5): 487-504.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.211105
Fig. 1. Effect of low temperature stress on amylose content of superior and inferior grains during grain filling period. Within a hitogram, different lowercase letters above the bars mean significant difference at P<0.05. A and B, superior grains; C and D, Inferior grains. D0, D1, D3, D5 and D7 represent 0(contrd), 1, 3, 5, and 7 days of treatment, low temperature(17℃) respectively. The same below.
粒位 Grain position | 品种 Variety | 处理 Treatment | 齐穗后天数Days after full heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|
8~13 | 13~18 | 18~23 | 23~28 | 28~33 | 33~38 | ||||
强势粒 Superior grains | 东农428 Dongnong 428 | D0 | 0.81 a | 0.61 a | 0.48 e | 0.24 e | 0.17 a | 0.07 b | |
D1 | 0.77 b | 0.60 b | 0.52 d | 0.25 d | 0.19 a | 0.06 b | |||
D3 | 0.51 c | 0.47 d | 0.67 c | 0.83 c | 0.03 c | 0.10 a | |||
D5 | 0.38 d | 0.58 c | 0.76 b | 0.90 b | 0.04 b | 0.09 a | |||
D7 | 0.21 e | 0.57 c | 0.93 a | 1.05 a | 0.06 b | 0.10 a | |||
松粳10 Songjing 10 | D0 | 0.81 a | 0.54 c | 0.50 e | 0.32 e | 0.12 a | 0.07 b | ||
D1 | 0.76 b | 0.53 c | 0.52 d | 0.40 d | 0.11 a | 0.09 a | |||
D3 | 0.51 c | 0.63 a | 0.64 c | 0.88 c | 0.06 b | 0.06 b | |||
D5 | 0.20 e | 0.56 b | 0.74 b | 1.28 b | 0.07 b | 0.10 a | |||
D7 | 0.23 d | 0.47 d | 0.89 a | 1.39 a | 0.06 b | 0.08 a | |||
弱势粒 Inferior grains | 东农428 Dongnong 428 | D0 | 0.40 a | 0.79 a | 0.60 d | 0.44 e | 0.19 b | 0.20 a | |
D1 | 0.37 b | 0.78 a | 0.59 d | 0.48 d | 0.27 a | 0.18 b | |||
D3 | 0.34 c | 0.54 b | 0.78 b | 0.83 c | 0.11 c | 0.21 a | |||
D5 | 0.22 d | 0.55 b | 0.73 c | 0.99 b | 0.19 b | 0.15 c | |||
D7 | 0.15 e | 0.44 c | 0.85 a | 1.10 a | 0.19 b | 0.19 a | |||
松粳10 Songjing 10 | D0 | 0.44 a | 0.85 a | 0.56 d | 0.53 e | 0.21 b | 0.10 b | ||
D1 | 0.38 b | 0.85 a | 0.56 d | 0.57 d | 0.23 a | 0.07 c | |||
D3 | 0.29 c | 0.51 b | 0.79 c | 0.94 c | 0.20 b | 0.09 b | |||
D5 | 0.18 d | 0.41 d | 0.84 a | 1.25 b | 0.18 c | 0.12 a | |||
D7 | 0.13 e | 0.43 c | 0.82 b | 1.42 a | 0.20 b | 0.11 a | |||
F值 F value | 强势粒 Superior grains | 处理Treatment(T) | 166.11** | 50.95** | 142.15** | 276.34** | 109.63** | 1.25 | |
品种Variety(V) | 92.37** | 51.36** | 168.62** | 223.58** | 199.02** | 1.06 | |||
处理×品种T×V | 15.38** | 9.37** | 11.72** | 20.02** | 17.05** | 0.72 | |||
弱势粒 Inferior grains | 处理(T) | 369.01** | 167.58** | 101.97** | 525.66** | 51.84** | 66.18** | ||
品种(V) | 121.30** | 32.17* | 96.38** | 310.01** | 34.79* | 325.93** | |||
处理×品种T×V | 31.10** | 22.26** | 24.67** | 52.01** | 9.13* | 13.18** |
Table 1. Accumulation rate of amylose under low temperature treatment during grain-filling period. %/d
粒位 Grain position | 品种 Variety | 处理 Treatment | 齐穗后天数Days after full heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|
8~13 | 13~18 | 18~23 | 23~28 | 28~33 | 33~38 | ||||
强势粒 Superior grains | 东农428 Dongnong 428 | D0 | 0.81 a | 0.61 a | 0.48 e | 0.24 e | 0.17 a | 0.07 b | |
D1 | 0.77 b | 0.60 b | 0.52 d | 0.25 d | 0.19 a | 0.06 b | |||
D3 | 0.51 c | 0.47 d | 0.67 c | 0.83 c | 0.03 c | 0.10 a | |||
D5 | 0.38 d | 0.58 c | 0.76 b | 0.90 b | 0.04 b | 0.09 a | |||
D7 | 0.21 e | 0.57 c | 0.93 a | 1.05 a | 0.06 b | 0.10 a | |||
松粳10 Songjing 10 | D0 | 0.81 a | 0.54 c | 0.50 e | 0.32 e | 0.12 a | 0.07 b | ||
D1 | 0.76 b | 0.53 c | 0.52 d | 0.40 d | 0.11 a | 0.09 a | |||
D3 | 0.51 c | 0.63 a | 0.64 c | 0.88 c | 0.06 b | 0.06 b | |||
D5 | 0.20 e | 0.56 b | 0.74 b | 1.28 b | 0.07 b | 0.10 a | |||
D7 | 0.23 d | 0.47 d | 0.89 a | 1.39 a | 0.06 b | 0.08 a | |||
弱势粒 Inferior grains | 东农428 Dongnong 428 | D0 | 0.40 a | 0.79 a | 0.60 d | 0.44 e | 0.19 b | 0.20 a | |
D1 | 0.37 b | 0.78 a | 0.59 d | 0.48 d | 0.27 a | 0.18 b | |||
D3 | 0.34 c | 0.54 b | 0.78 b | 0.83 c | 0.11 c | 0.21 a | |||
D5 | 0.22 d | 0.55 b | 0.73 c | 0.99 b | 0.19 b | 0.15 c | |||
D7 | 0.15 e | 0.44 c | 0.85 a | 1.10 a | 0.19 b | 0.19 a | |||
松粳10 Songjing 10 | D0 | 0.44 a | 0.85 a | 0.56 d | 0.53 e | 0.21 b | 0.10 b | ||
D1 | 0.38 b | 0.85 a | 0.56 d | 0.57 d | 0.23 a | 0.07 c | |||
D3 | 0.29 c | 0.51 b | 0.79 c | 0.94 c | 0.20 b | 0.09 b | |||
D5 | 0.18 d | 0.41 d | 0.84 a | 1.25 b | 0.18 c | 0.12 a | |||
D7 | 0.13 e | 0.43 c | 0.82 b | 1.42 a | 0.20 b | 0.11 a | |||
F值 F value | 强势粒 Superior grains | 处理Treatment(T) | 166.11** | 50.95** | 142.15** | 276.34** | 109.63** | 1.25 | |
品种Variety(V) | 92.37** | 51.36** | 168.62** | 223.58** | 199.02** | 1.06 | |||
处理×品种T×V | 15.38** | 9.37** | 11.72** | 20.02** | 17.05** | 0.72 | |||
弱势粒 Inferior grains | 处理(T) | 369.01** | 167.58** | 101.97** | 525.66** | 51.84** | 66.18** | ||
品种(V) | 121.30** | 32.17* | 96.38** | 310.01** | 34.79* | 325.93** | |||
处理×品种T×V | 31.10** | 22.26** | 24.67** | 52.01** | 9.13* | 13.18** |
粒位 Grain position | 品种 Variety | 处理 Treatment | 齐穗后天数Days after full heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|
8~13 | 13~18 | 18~23 | 23~28 | 28~33 | 33~38 | ||||
强势粒SG | 东农428 Dongnong 428 | D0 | 3.58 a | 2.21 d | 1.18 c | 1.29 b | 0.29 e | 0.32 a | |
D1 | 3.47 b | 2.31 c | 1.16 d | 1.36 a | 0.33 d | 0.28 b | |||
D3 | 3.16 c | 2.65 a | 1.10 e | 1.09 c | 0.46 c | 0.16 d | |||
D5 | 3.14 c | 2.37 b | 1.46 a | 0.70 e | 0.65 a | 0.25 c | |||
D7 | 2.99 d | 2.29 e | 1.44 b | 0.99 d | 0.57 b | 0.14 d | |||
松粳10 Songjing 10 | D0 | 3.69 a | 2.14 b | 1.33 d | 0.95 d | 0.38 e | 0.49 a | ||
D1 | 3.58 b | 1.88 e | 1.61 c | 1.15 c | 0.42 d | 0.39 b | |||
D3 | 3.15 c | 2.10 c | 1.70 b | 1.18 c | 0.46 c | 0.34 c | |||
D5 | 2.38 d | 2.00 d | 1.88 a | 1.72 a | 0.57 b | 0.22 d | |||
D7 | 1.60 e | 2.19 a | 1.89 a | 1.51 b | 0.89 a | 0.32 c | |||
弱势粒IG | 东农428 Dongnong 428 | D0 | 1.46 a | 2.36 a | 1.75 d | 1.76 c | 1.07 b | 0.41 e | |
D1 | 1.06 b | 2.28 b | 1.79 c | 1.72 d | 1.04 c | 0.69 c | |||
D3 | 0.85 c | 2.26 b | 1.80 c | 1.71 d | 1.10 a | 0.43 d | |||
D5 | 0.40 d | 1.95 c | 2.29 b | 1.79 b | 0.83 d | 0.71 b | |||
D7 | 0.40 d | 1.64 d | 2.51 a | 1.84 a | 0.84 d | 0.95 a | |||
松粳10 Songjing 10 | D0 | 1.39 a | 2.59 a | 1.72 d | 1.52 d | 1.11 c | 0.48 c | ||
D1 | 1.14 b | 2.24 b | 1.94 c | 1.52 d | 1.08 c | 0.71 a | |||
D3 | 0.89 c | 1.81 c | 1.94 c | 1.87 a | 1.28 b | 0.33 d | |||
D5 | 0.74 d | 1.48 d | 2.14 b | 1.74 b | 1.39 a | 0.46 c | |||
D7 | 0.42 e | 1.40 e | 2.18 a | 1.72 c | 1.37 a | 0.51 b | |||
F值 F value | 强势粒 Superior grains | 处理Treatment(T) | 205.62** | 359.23** | 296.56** | 126.65** | 119.98** | 86.34* | |
品种Variety(V) | 392.38** | 452.06** | 296.76** | 256.46** | 206.26** | 195.14** | |||
处理×品种T×V | 35.18** | 49.29** | 43.06** | 30.12** | 19.35** | 10.72* | |||
弱势粒 Inferior grains | 处理(T) | 134.45** | 296.52** | 104.46** | 117.96** | 96.88** | 76.14** | ||
品种(V) | 164.42** | 203.80* | 88.46** | 102.44** | 169.75** | 103.42** | |||
处理×品种T×V | 26.43** | 33.45** | 16.31** | 12.11* | 19.23** | 10.78* |
Table 2. Accumulation rate of amylopectin under low temperature treatment during grain-filling period. %/d
粒位 Grain position | 品种 Variety | 处理 Treatment | 齐穗后天数Days after full heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|
8~13 | 13~18 | 18~23 | 23~28 | 28~33 | 33~38 | ||||
强势粒SG | 东农428 Dongnong 428 | D0 | 3.58 a | 2.21 d | 1.18 c | 1.29 b | 0.29 e | 0.32 a | |
D1 | 3.47 b | 2.31 c | 1.16 d | 1.36 a | 0.33 d | 0.28 b | |||
D3 | 3.16 c | 2.65 a | 1.10 e | 1.09 c | 0.46 c | 0.16 d | |||
D5 | 3.14 c | 2.37 b | 1.46 a | 0.70 e | 0.65 a | 0.25 c | |||
D7 | 2.99 d | 2.29 e | 1.44 b | 0.99 d | 0.57 b | 0.14 d | |||
松粳10 Songjing 10 | D0 | 3.69 a | 2.14 b | 1.33 d | 0.95 d | 0.38 e | 0.49 a | ||
D1 | 3.58 b | 1.88 e | 1.61 c | 1.15 c | 0.42 d | 0.39 b | |||
D3 | 3.15 c | 2.10 c | 1.70 b | 1.18 c | 0.46 c | 0.34 c | |||
D5 | 2.38 d | 2.00 d | 1.88 a | 1.72 a | 0.57 b | 0.22 d | |||
D7 | 1.60 e | 2.19 a | 1.89 a | 1.51 b | 0.89 a | 0.32 c | |||
弱势粒IG | 东农428 Dongnong 428 | D0 | 1.46 a | 2.36 a | 1.75 d | 1.76 c | 1.07 b | 0.41 e | |
D1 | 1.06 b | 2.28 b | 1.79 c | 1.72 d | 1.04 c | 0.69 c | |||
D3 | 0.85 c | 2.26 b | 1.80 c | 1.71 d | 1.10 a | 0.43 d | |||
D5 | 0.40 d | 1.95 c | 2.29 b | 1.79 b | 0.83 d | 0.71 b | |||
D7 | 0.40 d | 1.64 d | 2.51 a | 1.84 a | 0.84 d | 0.95 a | |||
松粳10 Songjing 10 | D0 | 1.39 a | 2.59 a | 1.72 d | 1.52 d | 1.11 c | 0.48 c | ||
D1 | 1.14 b | 2.24 b | 1.94 c | 1.52 d | 1.08 c | 0.71 a | |||
D3 | 0.89 c | 1.81 c | 1.94 c | 1.87 a | 1.28 b | 0.33 d | |||
D5 | 0.74 d | 1.48 d | 2.14 b | 1.74 b | 1.39 a | 0.46 c | |||
D7 | 0.42 e | 1.40 e | 2.18 a | 1.72 c | 1.37 a | 0.51 b | |||
F值 F value | 强势粒 Superior grains | 处理Treatment(T) | 205.62** | 359.23** | 296.56** | 126.65** | 119.98** | 86.34* | |
品种Variety(V) | 392.38** | 452.06** | 296.76** | 256.46** | 206.26** | 195.14** | |||
处理×品种T×V | 35.18** | 49.29** | 43.06** | 30.12** | 19.35** | 10.72* | |||
弱势粒 Inferior grains | 处理(T) | 134.45** | 296.52** | 104.46** | 117.96** | 96.88** | 76.14** | ||
品种(V) | 164.42** | 203.80* | 88.46** | 102.44** | 169.75** | 103.42** | |||
处理×品种T×V | 26.43** | 33.45** | 16.31** | 12.11* | 19.23** | 10.78* |
粒位 Grain position | 品种 Variety | 处理 Treatment | 齐穗后天数Days after full heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|
8~13 | 13~18 | 18~23 | 23~28 | 28~33 | 33~38 | ||||
强势粒SG | 东农428 Dongnong 428 | D0 | 4.39 a | 2.83 d | 1.66 d | 1.53 d | 0.46 d | 0.39 a | |
D1 | 4.25 b | 2.91 c | 1.67 d | 1.61 c | 0.51 c | 0.35 b | |||
D3 | 3.70 c | 3.12 a | 1.76 c | 1.92 b | 0.49 c | 0.25 d | |||
D5 | 3.51 d | 2.95 b | 2.22 b | 1.60 c | 0.69 a | 0.33 c | |||
D7 | 3.20 e | 2.86 e | 2.37 a | 2.05 a | 0.62 b | 0.24 d | |||
松梗10 Songjing 10 | D0 | 4.50 a | 2.68 b | 1.84 e | 1.27 e | 0.50 d | 0.56 a | ||
D1 | 4.35 b | 2.42 d | 2.14 d | 1.56 d | 0.53 c | 0.52 b | |||
D3 | 3.66 c | 2.73 a | 2.34 c | 1.98 c | 0.52 c | 0.50 b | |||
D5 | 2.59 d | 2.56 c | 2.63 b | 2.99 a | 0.64 b | 0.32 c | |||
D7 | 1.83 e | 2.66 b | 2.79 a | 2.90 b | 0.95 a | 0.28 d | |||
弱势粒IG | 东农428 Dongnong 428 | D0 | 1.86 a | 3.19 a | 2.36 e | 2.20 d | 1.26 b | 0.60 c | |
D1 | 1.42 b | 3.05 b | 2.39 d | 2.20 d | 1.31 a | 0.87 b | |||
D3 | 1.19 c | 2.79 c | 2.58 c | 2.55 c | 1.21 c | 0.64 c | |||
D5 | 0.63 d | 2.50 d | 3.03 b | 2.78 b | 1.02 d | 0.86 b | |||
D7 | 0.55 e | 2.26 e | 3.19 a | 2.94 a | 1.03 d | 1.13 a | |||
松梗10 Songjing 10 | D0 | 1.83 a | 3.44 a | 2.29 d | 2.05 d | 1.33 d | 0.58 e | ||
D1 | 1.52 b | 3.08 b | 2.50 c | 2.09 d | 1.40 c | 0.79 b | |||
D3 | 1.17 c | 2.31 c | 2.73 b | 2.81 c | 1.48 b | 0.41 d | |||
D5 | 0.92 d | 1.89 d | 2.99 a | 2.99 b | 1.57 a | 0.84 a | |||
D7 | 0.55 e | 1.82 d | 3.00 a | 3.14 a | 1.56 a | 0.63 c | |||
F值 F value | 强势粒 Superior grains | 处理Treatment(T) | 298.35** | 202.65** | 168.64** | 245.40** | 96.14** | 79.64* | |
品种Variety(V) | 205.46** | 462.62** | 246.13** | 301.14** | 196.45** | 106.54** | |||
处理×品种T×V | 36.65** | 29.35** | 20.02** | 44.54** | 11.69** | 9.47** | |||
弱势粒 Inferior grains | 处理(T) | 163.49** | 341.48** | 116.45** | 99.84** | 67.69** | 56.74** | ||
品种(V) | 196.35** | 160.36* | 156.23** | 134.06** | 106.99** | 70.25** | |||
处理×品种T×V | 22.64** | 22.13** | 19.47** | 12.22** | 9.15** | 6.88** |
Table 3. Accumulation rate of total starch under low temperature treatment during grain-filling period. %/d
粒位 Grain position | 品种 Variety | 处理 Treatment | 齐穗后天数Days after full heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|
8~13 | 13~18 | 18~23 | 23~28 | 28~33 | 33~38 | ||||
强势粒SG | 东农428 Dongnong 428 | D0 | 4.39 a | 2.83 d | 1.66 d | 1.53 d | 0.46 d | 0.39 a | |
D1 | 4.25 b | 2.91 c | 1.67 d | 1.61 c | 0.51 c | 0.35 b | |||
D3 | 3.70 c | 3.12 a | 1.76 c | 1.92 b | 0.49 c | 0.25 d | |||
D5 | 3.51 d | 2.95 b | 2.22 b | 1.60 c | 0.69 a | 0.33 c | |||
D7 | 3.20 e | 2.86 e | 2.37 a | 2.05 a | 0.62 b | 0.24 d | |||
松梗10 Songjing 10 | D0 | 4.50 a | 2.68 b | 1.84 e | 1.27 e | 0.50 d | 0.56 a | ||
D1 | 4.35 b | 2.42 d | 2.14 d | 1.56 d | 0.53 c | 0.52 b | |||
D3 | 3.66 c | 2.73 a | 2.34 c | 1.98 c | 0.52 c | 0.50 b | |||
D5 | 2.59 d | 2.56 c | 2.63 b | 2.99 a | 0.64 b | 0.32 c | |||
D7 | 1.83 e | 2.66 b | 2.79 a | 2.90 b | 0.95 a | 0.28 d | |||
弱势粒IG | 东农428 Dongnong 428 | D0 | 1.86 a | 3.19 a | 2.36 e | 2.20 d | 1.26 b | 0.60 c | |
D1 | 1.42 b | 3.05 b | 2.39 d | 2.20 d | 1.31 a | 0.87 b | |||
D3 | 1.19 c | 2.79 c | 2.58 c | 2.55 c | 1.21 c | 0.64 c | |||
D5 | 0.63 d | 2.50 d | 3.03 b | 2.78 b | 1.02 d | 0.86 b | |||
D7 | 0.55 e | 2.26 e | 3.19 a | 2.94 a | 1.03 d | 1.13 a | |||
松梗10 Songjing 10 | D0 | 1.83 a | 3.44 a | 2.29 d | 2.05 d | 1.33 d | 0.58 e | ||
D1 | 1.52 b | 3.08 b | 2.50 c | 2.09 d | 1.40 c | 0.79 b | |||
D3 | 1.17 c | 2.31 c | 2.73 b | 2.81 c | 1.48 b | 0.41 d | |||
D5 | 0.92 d | 1.89 d | 2.99 a | 2.99 b | 1.57 a | 0.84 a | |||
D7 | 0.55 e | 1.82 d | 3.00 a | 3.14 a | 1.56 a | 0.63 c | |||
F值 F value | 强势粒 Superior grains | 处理Treatment(T) | 298.35** | 202.65** | 168.64** | 245.40** | 96.14** | 79.64* | |
品种Variety(V) | 205.46** | 462.62** | 246.13** | 301.14** | 196.45** | 106.54** | |||
处理×品种T×V | 36.65** | 29.35** | 20.02** | 44.54** | 11.69** | 9.47** | |||
弱势粒 Inferior grains | 处理(T) | 163.49** | 341.48** | 116.45** | 99.84** | 67.69** | 56.74** | ||
品种(V) | 196.35** | 160.36* | 156.23** | 134.06** | 106.99** | 70.25** | |||
处理×品种T×V | 22.64** | 22.13** | 19.47** | 12.22** | 9.15** | 6.88** |
粒位 Grain position | 参数 Parameters | 东农428 Dongnong 428 | 松粳10 Songjing 10 | ||||||
---|---|---|---|---|---|---|---|---|---|
直链淀粉 含量 Amylose content | 支链淀粉 含量 Amylopectin content | 总淀粉 含量 Total starch content | 直链淀粉 含量 Amylose content | 支链淀粉 含量 Amylopectin content | 总淀粉 含量 Total starch content | ||||
强势粒 Superior grains | 直链淀粉最大积累速率 Maximum accumulation rate of amylose | 0.968** | 0.978** | ||||||
支链淀粉最大积累速率 Maximum accumulation rate of amylopectin | −0.825 | 0.977** | −0.869 | 0.984** | |||||
总淀粉最大积累速率 Maximum accumulation rate of total starch | −0.762 | 0.962** | 0.998** | −0.857 | 0.945* | 0.958* | |||
弱势粒 Inferior grains | 直链淀粉最大积累速率 Maximum accumulation rate of amylose | 0.947* | 0.983** | ||||||
支链淀粉最大积累速率 Maximum accumulation rate of amylopectin | 0.564 | −0.349 | 0.497 | 0.464 | |||||
总淀粉最大积累速率 Maximum accumulation rate of total starch | 0.435 | −0.259 | 0.065 | 0.553 | 0.023 | 0.326 |
Table 4. Correlation analysis between starch content and maximum accumulation rate.
粒位 Grain position | 参数 Parameters | 东农428 Dongnong 428 | 松粳10 Songjing 10 | ||||||
---|---|---|---|---|---|---|---|---|---|
直链淀粉 含量 Amylose content | 支链淀粉 含量 Amylopectin content | 总淀粉 含量 Total starch content | 直链淀粉 含量 Amylose content | 支链淀粉 含量 Amylopectin content | 总淀粉 含量 Total starch content | ||||
强势粒 Superior grains | 直链淀粉最大积累速率 Maximum accumulation rate of amylose | 0.968** | 0.978** | ||||||
支链淀粉最大积累速率 Maximum accumulation rate of amylopectin | −0.825 | 0.977** | −0.869 | 0.984** | |||||
总淀粉最大积累速率 Maximum accumulation rate of total starch | −0.762 | 0.962** | 0.998** | −0.857 | 0.945* | 0.958* | |||
弱势粒 Inferior grains | 直链淀粉最大积累速率 Maximum accumulation rate of amylose | 0.947* | 0.983** | ||||||
支链淀粉最大积累速率 Maximum accumulation rate of amylopectin | 0.564 | −0.349 | 0.497 | 0.464 | |||||
总淀粉最大积累速率 Maximum accumulation rate of total starch | 0.435 | −0.259 | 0.065 | 0.553 | 0.023 | 0.326 |
积累速率 Accumulation rate | 参数 Parameter | 齐穗后天数 DAFH/d | 东农428 Dongnong 428 | 松粳10 Songjing 10 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AGPase | GBSS | SSS | SBE | AGPase | GBSS | SSS | SBE | ||||
总淀粉积累速率 Total starch accumulation rate | 强势粒Superior grains | ||||||||||
Q1 | 8~13 | 0.913* | 0.982** | 0.892* | 0.964** | 0.968** | 0.882* | 0.979** | 0.969** | ||
Q2 | 13~18 | −0.431 | −0.224 | 0.590 | 0.738 | 0.076 | −0.328 | 0.065 | 0.148 | ||
Q3 | 18~23 | −0.964** | 0.732 | 0.772 | 0.865 | −0.508 | 0.964** | −0.628 | 0.934* | ||
Q4 | 23~28 | −0.242 | 0.608 | −0.385 | −0.132 | 0.642 | 0.951** | 0.876 | −0.521 | ||
Q5 | 28~33 | −0.352 | −0.143 | 0.484 | 0.956** | −0.856 | −0.339 | 0.886* | 0.905* | ||
Q6 | 33~38 | 0.199 | 0.679 | 0.772 | −0.706 | −0.845 | 0.848 | 0.886* | 0.857 | ||
弱势粒Inferior grains | |||||||||||
R1 | 8~13 | 0.885* | 0.889* | 0.877 | 0.418 | 0.918* | 0.966** | 0.891* | −0.216 | ||
R2 | 13~18 | 0.800 | 0.788 | 0.955** | 0.930* | 0.831 | 0.922* | 0.971** | 0.868 | ||
R3 | 18~23 | 0.777 | 0.763 | 0.966** | 0.215 | 0.874 | 0.876 | 0.924* | 0.359 | ||
R4 | 28~28 | 0.090 | 0.979** | −0.827 | 0.861 | −0.704 | 0.992** | −0.967* | 0.890* | ||
R5 | 28~33 | 0.679 | −0.884* | 0.753 | 0.936* | 0.480 | −0.915* | 0.877 | −0.772 | ||
R6 | 33~38 | 0.491 | −0.514 | 0.604 | 0.968** | −0.065 | 0.255 | 0.016 | 0.986** | ||
直链淀粉积累速率 Amylose accumulation rate | 强势粒Superior grains | ||||||||||
Q1 | 8~13 | 0.940* | 0.955* | 0.925* | 0.932* | 0.972** | 0.945* | 0.941* | 0.976** | ||
Q2 | 13~18 | 0.033 | 0.698 | −0.849 | −0.824 | −0.420 | −0.022 | −0.516 | −0.081 | ||
Q3 | 18~23 | −0.904* | 0.883* | 0.866 | 0.772 | −0.259 | 0.911* | −0.699 | 0.843 | ||
Q4 | 23~28 | −0.108 | 0.998** | −0.888* | −0.834 | 0.564 | 0.972** | 0.846 | −0.545 | ||
Q5 | 28~33 | 0.694 | 0.897* | −0.665 | −0.740 | 0.413 | 0.904* | −0.130 | −0.930* | ||
Q6 | 33~38 | −0.392 | −0.826 | −0.930* | 0.949* | 0.473 | −0.213 | 0.137 | −0.521 | ||
弱势粒Inferior grains | |||||||||||
R1 | 8~13 | 0.855 | 0.950* | 0.888* | 0.118 | 0.921* | 0.951** | 0.945* | −0.288 | ||
R2 | 13~18 | 0.893* | 0.942* | 0.790 | 0.826 | 0.792 | 0.981** | 0.986** | 0.889* | ||
R3 | 18~23 | 0.839 | 0.987** | 0.653 | 0.026 | 0.767 | 0.891* | 0.095 | 0.505 | ||
R4 | 23~28 | −0.030 | 0.996** | −0.769 | 0.798 | −0.812 | 0.943* | −0.887* | 0.774 | ||
R5 | 28~33 | −0.355 | 0.248 | −0.486 | −0.136 | −0.764 | 0.900* | −0.838 | 0.830 | ||
R6 | 33~38 | −0.174 | 0.972** | −0.609 | −0.223 | −0.226 | 0.931* | −0.318 | 0.188 | ||
支链淀粉积累速率 Amylopectin accumulation rate | 强势粒Superior grains | ||||||||||
Q1 | 8~13 | 0.785 | 0.795 | 0.990** | 0.761 | 0.949* | 0.845 | 0.974** | 0.949* | ||
Q2 | 13~18 | −0.593 | 0.102 | 0.977** | 0.473 | 0.279 | −0.323 | 0.913* | 0.190 | ||
Q3 | 18~23 | −0.750 | 0.447 | 0.906* | 0.899* | −0.613 | 0.956* | −0.571 | 0.945* | ||
Q4 | 23~28 | −0.120 | −0.931* | 0.821 | 0.924* | 0.776 | 0.882* | 0.910* | −0.458 | ||
Q5 | 28~33 | −0.396 | −0.613 | 0.883* | 0.902* | −0.871 | −0.458 | 0.902* | 0.904* | ||
Q6 | 33~38 | 0.281 | 0.899* | 0.981** | −0.899* | −0.710 | 0.985** | 0.660 | 0.970** | ||
弱势粒Inferior grains | |||||||||||
R1 | 8~13 | 0.880* | 0.861 | 0.862 | 0.483 | 0.911* | 0.966** | 0.867 | −0.189 | ||
R2 | 13~18 | 0.670 | 0.617 | 0.998** | 0.932* | 0.836 | 0.883* | 0.951** | 0.847 | ||
R3 | 18~23 | 0.683 | 0.609 | 0.997** | 0.267 | 0.879* | 0.833 | 0.887* | 0.215 | ||
R4 | 23~28 | 0.724 | 0.601 | −0.910* | 0.956** | −0.253 | 0.874 | −0.935* | 0.969** | ||
R5 | 28~33 | 0.782 | −0.953** | 0.894* | 0.972** | 0.533 | −0.940* | 0.897* | −0.803 | ||
R6 | 33~38 | 0.485 | −0.587 | 0.636 | 0.943* | 0.094 | −0.065 | 0.100 | 0.866 |
Table 5. Correlation analysis of starch accumulation rate and enzyme activity change.
积累速率 Accumulation rate | 参数 Parameter | 齐穗后天数 DAFH/d | 东农428 Dongnong 428 | 松粳10 Songjing 10 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AGPase | GBSS | SSS | SBE | AGPase | GBSS | SSS | SBE | ||||
总淀粉积累速率 Total starch accumulation rate | 强势粒Superior grains | ||||||||||
Q1 | 8~13 | 0.913* | 0.982** | 0.892* | 0.964** | 0.968** | 0.882* | 0.979** | 0.969** | ||
Q2 | 13~18 | −0.431 | −0.224 | 0.590 | 0.738 | 0.076 | −0.328 | 0.065 | 0.148 | ||
Q3 | 18~23 | −0.964** | 0.732 | 0.772 | 0.865 | −0.508 | 0.964** | −0.628 | 0.934* | ||
Q4 | 23~28 | −0.242 | 0.608 | −0.385 | −0.132 | 0.642 | 0.951** | 0.876 | −0.521 | ||
Q5 | 28~33 | −0.352 | −0.143 | 0.484 | 0.956** | −0.856 | −0.339 | 0.886* | 0.905* | ||
Q6 | 33~38 | 0.199 | 0.679 | 0.772 | −0.706 | −0.845 | 0.848 | 0.886* | 0.857 | ||
弱势粒Inferior grains | |||||||||||
R1 | 8~13 | 0.885* | 0.889* | 0.877 | 0.418 | 0.918* | 0.966** | 0.891* | −0.216 | ||
R2 | 13~18 | 0.800 | 0.788 | 0.955** | 0.930* | 0.831 | 0.922* | 0.971** | 0.868 | ||
R3 | 18~23 | 0.777 | 0.763 | 0.966** | 0.215 | 0.874 | 0.876 | 0.924* | 0.359 | ||
R4 | 28~28 | 0.090 | 0.979** | −0.827 | 0.861 | −0.704 | 0.992** | −0.967* | 0.890* | ||
R5 | 28~33 | 0.679 | −0.884* | 0.753 | 0.936* | 0.480 | −0.915* | 0.877 | −0.772 | ||
R6 | 33~38 | 0.491 | −0.514 | 0.604 | 0.968** | −0.065 | 0.255 | 0.016 | 0.986** | ||
直链淀粉积累速率 Amylose accumulation rate | 强势粒Superior grains | ||||||||||
Q1 | 8~13 | 0.940* | 0.955* | 0.925* | 0.932* | 0.972** | 0.945* | 0.941* | 0.976** | ||
Q2 | 13~18 | 0.033 | 0.698 | −0.849 | −0.824 | −0.420 | −0.022 | −0.516 | −0.081 | ||
Q3 | 18~23 | −0.904* | 0.883* | 0.866 | 0.772 | −0.259 | 0.911* | −0.699 | 0.843 | ||
Q4 | 23~28 | −0.108 | 0.998** | −0.888* | −0.834 | 0.564 | 0.972** | 0.846 | −0.545 | ||
Q5 | 28~33 | 0.694 | 0.897* | −0.665 | −0.740 | 0.413 | 0.904* | −0.130 | −0.930* | ||
Q6 | 33~38 | −0.392 | −0.826 | −0.930* | 0.949* | 0.473 | −0.213 | 0.137 | −0.521 | ||
弱势粒Inferior grains | |||||||||||
R1 | 8~13 | 0.855 | 0.950* | 0.888* | 0.118 | 0.921* | 0.951** | 0.945* | −0.288 | ||
R2 | 13~18 | 0.893* | 0.942* | 0.790 | 0.826 | 0.792 | 0.981** | 0.986** | 0.889* | ||
R3 | 18~23 | 0.839 | 0.987** | 0.653 | 0.026 | 0.767 | 0.891* | 0.095 | 0.505 | ||
R4 | 23~28 | −0.030 | 0.996** | −0.769 | 0.798 | −0.812 | 0.943* | −0.887* | 0.774 | ||
R5 | 28~33 | −0.355 | 0.248 | −0.486 | −0.136 | −0.764 | 0.900* | −0.838 | 0.830 | ||
R6 | 33~38 | −0.174 | 0.972** | −0.609 | −0.223 | −0.226 | 0.931* | −0.318 | 0.188 | ||
支链淀粉积累速率 Amylopectin accumulation rate | 强势粒Superior grains | ||||||||||
Q1 | 8~13 | 0.785 | 0.795 | 0.990** | 0.761 | 0.949* | 0.845 | 0.974** | 0.949* | ||
Q2 | 13~18 | −0.593 | 0.102 | 0.977** | 0.473 | 0.279 | −0.323 | 0.913* | 0.190 | ||
Q3 | 18~23 | −0.750 | 0.447 | 0.906* | 0.899* | −0.613 | 0.956* | −0.571 | 0.945* | ||
Q4 | 23~28 | −0.120 | −0.931* | 0.821 | 0.924* | 0.776 | 0.882* | 0.910* | −0.458 | ||
Q5 | 28~33 | −0.396 | −0.613 | 0.883* | 0.902* | −0.871 | −0.458 | 0.902* | 0.904* | ||
Q6 | 33~38 | 0.281 | 0.899* | 0.981** | −0.899* | −0.710 | 0.985** | 0.660 | 0.970** | ||
弱势粒Inferior grains | |||||||||||
R1 | 8~13 | 0.880* | 0.861 | 0.862 | 0.483 | 0.911* | 0.966** | 0.867 | −0.189 | ||
R2 | 13~18 | 0.670 | 0.617 | 0.998** | 0.932* | 0.836 | 0.883* | 0.951** | 0.847 | ||
R3 | 18~23 | 0.683 | 0.609 | 0.997** | 0.267 | 0.879* | 0.833 | 0.887* | 0.215 | ||
R4 | 23~28 | 0.724 | 0.601 | −0.910* | 0.956** | −0.253 | 0.874 | −0.935* | 0.969** | ||
R5 | 28~33 | 0.782 | −0.953** | 0.894* | 0.972** | 0.533 | −0.940* | 0.897* | −0.803 | ||
R6 | 33~38 | 0.485 | −0.587 | 0.636 | 0.943* | 0.094 | −0.065 | 0.100 | 0.866 |
年份 Year | 品种/处理Variety /Treatment | 有效穗数 Effective panicle number per hill | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 产量 Yield/(kg·hm−2) | |||
---|---|---|---|---|---|---|---|---|---|
2020 | 东农428 Dongnong 428 | ||||||||
D0 | 13.96 a | 101.37 a | 93.02 a | 23.49 a | 7728.81 a | ||||
D1 | 13.03 a | 100.90 a | 91.79 b | 23.40 a | 7058.57 b | ||||
D3 | 12.85 a | 99.83 a | 87.82 c | 22.47 b | 6328.40 c | ||||
D5 | 13.23 a | 99.87 a | 84.05 d | 20.93 c | 5811.78 d | ||||
D7 | 12.88 a | 99.97 a | 81.58 e | 19.67 d | 5164.90 e | ||||
松粳10 Songjing 10 | |||||||||
D0 | 12.86 a | 99.57 a | 92.74 a | 22.84 a | 6781.19 a | ||||
D1 | 12.20 a | 99.07 a | 89.27 b | 21.65 b | 5838.55 b | ||||
D3 | 11.82 a | 98.90 a | 86.74 c | 20.58 c | 5217.13 c | ||||
D5 | 12.16 a | 98.52 a | 81.28 d | 19.11 d | 4651.47 d | ||||
D7 | 11.68 a | 97.67 a | 78.31 e | 18.35 e | 4097.28 e | ||||
2021 | 东农428 Dongnong 428 | ||||||||
D0 | 13.26 a | 99.59 a | 95.25 a | 23.17 a | 7286.92 a | ||||
D1 | 12.83 a | 99.02 a | 92.79 b | 22.84 a | 6729.61 b | ||||
D3 | 12.85 a | 98.93 a | 86.57 c | 21.80 b | 5997.54 c | ||||
D5 | 13.03 a | 98.77 a | 83.07 d | 20.93 c | 5593.39 d | ||||
D7 | 12.68 a | 98.25 a | 80.84 e | 19.38 d | 4899.06 e | ||||
松梗10 Songjing 10 | |||||||||
S0 | 13.09 a | 98.71 a | 93.67 a | 22.92 a | 6934.78 a | ||||
S1 | 12.86 a | 98.20 a | 90.08 b | 21.69 b | 6168.00 b | ||||
S3 | 12.72 a | 98.06 a | 85.26 c | 20.14 c | 5353.79 c | ||||
S5 | 12.96 a | 98.01 a | 80.65 d | 19.04 d | 4876.06 d | ||||
S7 | 12.48 a | 97.67 a | 77.14 e | 18.03 e | 4237.58 e |
Table 6. Effect of low temperature stress on rice yield components during grain filling period.
年份 Year | 品种/处理Variety /Treatment | 有效穗数 Effective panicle number per hill | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 产量 Yield/(kg·hm−2) | |||
---|---|---|---|---|---|---|---|---|---|
2020 | 东农428 Dongnong 428 | ||||||||
D0 | 13.96 a | 101.37 a | 93.02 a | 23.49 a | 7728.81 a | ||||
D1 | 13.03 a | 100.90 a | 91.79 b | 23.40 a | 7058.57 b | ||||
D3 | 12.85 a | 99.83 a | 87.82 c | 22.47 b | 6328.40 c | ||||
D5 | 13.23 a | 99.87 a | 84.05 d | 20.93 c | 5811.78 d | ||||
D7 | 12.88 a | 99.97 a | 81.58 e | 19.67 d | 5164.90 e | ||||
松粳10 Songjing 10 | |||||||||
D0 | 12.86 a | 99.57 a | 92.74 a | 22.84 a | 6781.19 a | ||||
D1 | 12.20 a | 99.07 a | 89.27 b | 21.65 b | 5838.55 b | ||||
D3 | 11.82 a | 98.90 a | 86.74 c | 20.58 c | 5217.13 c | ||||
D5 | 12.16 a | 98.52 a | 81.28 d | 19.11 d | 4651.47 d | ||||
D7 | 11.68 a | 97.67 a | 78.31 e | 18.35 e | 4097.28 e | ||||
2021 | 东农428 Dongnong 428 | ||||||||
D0 | 13.26 a | 99.59 a | 95.25 a | 23.17 a | 7286.92 a | ||||
D1 | 12.83 a | 99.02 a | 92.79 b | 22.84 a | 6729.61 b | ||||
D3 | 12.85 a | 98.93 a | 86.57 c | 21.80 b | 5997.54 c | ||||
D5 | 13.03 a | 98.77 a | 83.07 d | 20.93 c | 5593.39 d | ||||
D7 | 12.68 a | 98.25 a | 80.84 e | 19.38 d | 4899.06 e | ||||
松梗10 Songjing 10 | |||||||||
S0 | 13.09 a | 98.71 a | 93.67 a | 22.92 a | 6934.78 a | ||||
S1 | 12.86 a | 98.20 a | 90.08 b | 21.69 b | 6168.00 b | ||||
S3 | 12.72 a | 98.06 a | 85.26 c | 20.14 c | 5353.79 c | ||||
S5 | 12.96 a | 98.01 a | 80.65 d | 19.04 d | 4876.06 d | ||||
S7 | 12.48 a | 97.67 a | 77.14 e | 18.03 e | 4237.58 e |
[1] | 周明旭. 黑龙江省水稻生产可持续发展研究[D]. 长春: 吉林大学, 2014. |
Zhou M X. Study on sustainable development of rice production in heilongjiang province[D]. Changchun: Jilin University, 2014. (in Chinese with English abstract) | |
[2] | Shimono H, Okada M, Kanda E, Arakawa I. Low temperature-induced sterility in rice: Evidence for the effects of temperature before panicle initiation[J]. Field Crops Research, 2006, 101(2): 221-231. |
[3] | 王主玉, 申双和. 水稻低温冷害研究进展[J]. 安徽农业科学, 2010, 22: 11971-11973. |
Wang Z Y, Shen S H. Research progress on low temperature and chilling injury of rice[J]. Journal of Anhui Agricultural Sciences, 2010, 22: 11971-11973. (in Chinese with English abstract) | |
[4] | Zhang J, Dong P, Zhang H Y, Meng C R, Zhang X J, Hou J W, Wei C Z. Low soil temperature reducing the yield of drip irrigated rice in arid area by influencing anther development and pollination[J]. Journal of Arid Land, 2019, 11(3): 103-114. |
[5] | 窦志. 灌浆期开放式增温对水稻籽粒灌浆和品质的影响及氮素粒肥的调控效应[D]. 南京: 南京农业大学, 2017. |
Dou Z. Effects of Free-air during grain filling stage on grain filling and quality of rice and regulation effect of nitrogen spikelet fertilizer[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract) | |
[6] | 张荣萍, 马均, 王贺正, 李艳, 李旭毅, 汪仁全. 不同灌水方式对水稻籽粒灌浆特性的影响[J]. 西昌学院学报: 自然科学版, 2007, 21(4): 23-27. |
Zhang R P, Ma J, Wang H Z, Li Y, Li X Y, Wang R Q. Effects of different irrigation methods on grain filling characteristics of rice[J]. Journal of Xichang University: Natural Science Edition, 2007, 21(4): 23-27. (in Chinese with English abstract) | |
[7] | 黄锦文, 梁义元, 梁康迳, 林文雄. 不同类型水稻籽粒灌浆的生理生化特性研究[J]. 中国生态农业学报, 2003, 11(1): 10-13. |
Huang J W, Liang Y Y, Liang K J, Lin W X. Physiological and biochemical characteristics of grain filling in different types of rice[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 10-13. (in Chinese with English abstract) | |
[8] | 徐富贤, 郭晓艺, 张林, 熊洪, 朱永川, 刘茂, 周兴兵. 杂交中稻库源结构对弱势粒灌浆结实的影响[J]. 中国农业科技导报, 2013, 15(1): 96-101. |
Xu F X, Guo X Y, Zhang L, Xiong H, Zhu Y C, Liu M, Zhou X B. Effects of sink-source structure of hybrid middle rice on grain filling of weak grains[J]. Journal of Agricultural Science and Technology, 2013, 15(1): 96-101. (in Chinese with English abstract) | |
[9] | 谈桂露, 张耗, 付景, 王志琴, 刘立军, 杨建昌. 超级稻花后强、弱势粒多胺浓度变化及其与籽粒灌浆的关系[J]. 作物学报, 2009, 35(12): 2225-2233. |
Tan G L, Zhang H, Fu J, Wang Z Q, Liu L J, Yang J C. Variation of polyamine concentration in strong and weak grains of super rice after flowering and its relationship with grain filling[J]. Acta Agronomica Sinica, 2009, 35(12): 2225-2233. (in Chinese with English abstract) | |
[10] | 杨建昌, 袁莉民, 唐成, 王志琴, 刘立军, 朱庆森. 结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J]. 作物学报, 2005, 31(8): 1052-1057. |
Yang J C, Yuan L M, Tang C, Wang Z Q, Liu L J, Zhu Q S. Effects of alternate wet and dry irrigation on rice quality and some enzyme activities in grain[J]. Acta Agronomica Sinica, 2005, 31(8): 1052-1057. (in Chinese with English abstract) | |
[11] | Du X D, Zhao H W, Wang J G, Liu H L, Yang L, Xu J, Song J T. Changes in starch accumulation and activity of enzymes associated with starch synthesis under different nitrogen applications in Japonica rice in cold region[J]. Acta Agronomica Sinica, 2012, 38(1): 159-167. |
[12] | Yan Z, Ding J, Song J, Humphreys G, Peng Y X, Li C Y, Zhu X K, Guo W S. Author correction: Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.)[J]. Scientific Reports, 2018, 8(1): 12-16. |
[13] | 胡博文, 谷娇娇, 贾琰, 沙汉景, 张君颜, 黄书勤, 赵宏伟. 盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响[J]. 华北农学报, 2019, 34(1): 119-127. |
Hu B W, Gu J J, Jia Y, Sha H J, Zhang J Y, Huang S Q, Zhao H W. Effects of salt stress on grain starch formation, accumulation and yield of japonica rice in cold regions[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 119-127. (in Chinese with English abstract) | |
[14] | Maung T Z, Yoo J M, Chu S H, Kim K W, Chung I M, Park Y J. Haplotype variations and evolutionary analysis of the granule-bound starch synthase I gene in the Korean World Rice Collection[J]. Frontiers in Plant Science, 2021, 12(1708): 707237. |
[15] | 刘奇华, 蔡建, 李天. 水稻籽粒中的淀粉合成关键酶及其与籽粒灌浆和稻米品质的关系[J]. 植物生理学报, 2006, 42(6): 1211-1216. |
Liu Q H, Cai J, Li T. Key enzymes of starch synthesis in rice grains and their relationship with grain filling and rice quality[J]. Plant Physiology Journal, 2006, 42(6): 1211-1216. (in Chinese with English abstract) | |
[16] | Liu J, Qian Z, Zhou L, Cao Z Z, Shi C H, Cheng F M. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties[J]. Journal of Cereal Science, 2017, 76: 42-55 |
[17] | Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types[J]. Plant Production Science, 2007, 10(4): 442-450. |
[18] | 夏楠, 赵宏伟, 吕艳超, 赵振东, 邹德堂, 刘化龙, 王敬国, 贾琰. 灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉积累及相关酶活性的影响[J]. 中国水稻科学, 2016, 30(1): 62-74. |
Xia N, Zhao H W, Lv Y C, Zhao Z D, Zou D T, Liu H L, Wang J G, Jia Y. Effects of cold water stress on grain starch accumulation and related enzyme activities of japonica rice in cold regions[J]. Chinese Journal of Rice Science, 2016, 30(1): 62-74. (in Chinese with English abstract) | |
[19] | 沈鹏, 金正勋, 罗秋香, 金学泳, 孙艳丽. 水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质的关系[J]. 中国水稻科学, 2006, 20(1): 58-64. |
Shen P, Jin Z X, Luo Q X, Jin X Y, Sun Y L. The relationship between key enzyme activities of grain starch synthesis and cooking and eating quality during rice filling process[J]. Chinese Journal of Rice Science, 2006, 20(1): 58-64. (in Chinese with English abstract) | |
[20] | 宋兴年. 夜间温度对水稻弱势籽粒灌浆充实的作用机制研究[D]. 郑州: 河南农业大学, 2011. |
Song X N. Mechanism of nighttime temperature on grain filling and enrichment of weak grains in rice[D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese with English abstract) | |
[21] | 钟连进, 程方民. 水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异[J]. 作物学报, 2003, 29(3): 452-456. |
Zhong L J, Cheng F M. The accumulation of amylose during grain filling in rice and the differences in related enzymes among cultivars[J]. Acta Agronomica Sinica, 2003, 29(3): 452-456. (in Chinese with English abstract) | |
[22] | 王士强, 宋晓慧, 赵海红, 孙明明, 萧长亮, 顾春梅, 那永光, 解保胜, 曹立勇, 程式华. 孕穗期低温胁迫对寒地水稻产量和品质的影响[J]. 农业现代化研究, 2016, 37(3): 579-586. |
Wang S Q, Song X H, Zhao H H, Sun M M, Xiao C L, Gu C M, Na Y G, Xie B S, Cao L Y, Cheng S H. Effects of low temperature stress at booting stage on yield and quality of rice in cold regions[J]. Research of Agricultural Modernization, 2016, 37(3): 579-586. (in Chinese with English abstract) | |
[23] | 王艳华. 持续低温对沈阳地区水稻的影响及品种搭配决策研究[D]. 沈阳: 沈阳农业大学, 2013. |
Wang Y H. Effects of persistent low temperature on rice in Shenyang area and research on variety combination decision[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese with English abstract) | |
[24] | Ali I, Tang L, Dai J. Responses of grain yield and yield related parameters to post-heading low-temperature stress in Japonica rice[J]. Plants, 2021, 10(7): 1425. |
[25] | 付景, 徐云姬, 陈露, 袁莉民, 王志琴, 杨建昌. 超级稻花后强、弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系[J]. 中国水稻科学, 2012, 26(3): 302-310. |
Fu J, Xu Y J, Chen L, Yuan L M, Wang Z Q, Yang J C. Changes of enzyme activities and hormone contents related to starch synthesis in strong and weak grains of super rice after flowering and their relationship with grain filling[J]. Chinese Journal of Rice Science, 2012, 26(3): 302-310. (in Chinese with English abstract) | |
[26] | 沈直, 唐设, 张海祥, 陈文珠, 丁艳锋, 王绍华. 灌浆期开放式增温对水稻强势粒和弱势粒淀粉代谢关键酶相关基因表达水平的影响[J]. 南京农业大学学报, 2016, 39: 906. |
Shen Z, Tang S, Zhang H Y, Chen W Z, Ding Y F, Wang S H. Effects of open warming at grain filling stage on the expression levels of genes related to key enzymes in starch metabolism in superior and inferior grains of rice[J]. Journal of Nanjing Agricultural University, 2016, 39: 906. (in Chinese with English abstract) | |
[27] | 李健陵, 霍治国, 吴丽姬, 朱庆华, 胡飞. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学, 2014, 28(3): 277-288. |
Li J L, Huo Z G, Wu L J, Zhu Q H, Hu F. Effects of low temperature at booting stage on rice yield and its physiological mechanism[J]. Chinese Journal of Rice Science, 2014, 28(3): 277-288. (in Chinese with English abstract) | |
[28] | Seyede S, Fallah A. Corrigendum to "temperature effect on yield and yield components of different rice cultivars in flowering stage"[J]. International Journal of Agronomy, 2020, 2020: 1-1. |
[29] | 韩涛. 孕穗期冷水胁迫对水稻碳水化合物形成积累规律的影响[D]. 哈尔滨: 东北农业大学, 2014. |
Han T. Booting stage cold water stress on rice carbohydrates form accumulation pattern[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
[30] | 武琦. 不同生育时期低温胁迫下寒地粳稻淀粉积累规律的研究[D]. 哈尔滨: 东北农业大学, 2013. |
Wu Q. Research on starch accumulation rule in different growth stages of japonica rice in cold region[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese with English abstract) | |
[31] | 何照范. 谷物淀粉组份分离及测试方法评述[J]. 粮食储藏, 1985, 6: 32-38. |
He Z F. Review on separation and testing methods of grain starch components[J]. Grain Storage, 1985, 6: 32-38. (in Chinese with English abstract) | |
[32] | 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究[J]. 作物学报, 1997, 23(3): 338-344. |
Li T G, Shen B, Chen N, Luo Y K. Study on the role of Q enzyme in the formation of chalky rice grains[J]. Acta Agronomica Sinica, 1997, 23(3): 338-344. (in Chinese with English abstract) | |
[33] | Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize[J]. Plant Physiology, 1988, 86(4): 1013-1019. |
[34] | 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J]. 作物学报, 2001, 27(2): 201-206. |
Cheng F M, Jiang D A, Wu P, Shi C H. Changes and temperature effects of starch synthase during grain filling in early indica rice[J]. Acta Agronomica Sinica, 2001, 27(2): 201-206. (in Chinese with English abstract) | |
[35] | 杨志奇, 杨春刚, 汤翠凤, 郭桂珍, 余腾琼, 张俊国, 曹桂兰, 阿新祥, 徐福荣, 张三元, 戴陆园, 韩龙植. 中国粳稻地方品种孕穗期耐冷性评价及聚类分析[J]. 植物遗传资源学报, 2008, 9(4): 485-491. |
Yang Z Q, Yang C G, Yang C F, Guo G Z, Yu T Q, Zhang J G, Cao G L, A X F, Xu F R, Zhang S Y, Dai L Y, Han L Z. Evaluation and cluster analysis of cold tolerance of Chinese japonica rice landraces at booting stage[J]. Journal of Plant Genetic Resources, 2008, 9(4): 485-491. (in Chinese with English abstract) | |
[36] | 张文倩. 昼夜高温对水稻颖花发育及籽粒结实的影响[D]. 北京: 中国农业科学院, 2019. |
Zhang W Q. Effects of day and night high temperature on rice spikelet development and grain setting[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
[37] | Yang J, Peng S, Visperas R M. Grain filling pattern and cytokinin content in the grains and roots of rice plants[J]. Plant Growth Regulation, 2000, 30(3): 261-270. |
[38] | 王新鹏. 孕穗期干旱胁迫对寒地粳稻碳代谢及产量形成影响的研究[D]. 哈尔滨: 东北农业大学, 2020. |
Wang X P. Effects of drought stress at booting stage on carbon metabolism and yield formation of japonica rice in cold regions[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract) | |
[39] | Hu Y, Li L, Tian J. Effects of dynamic low temperature during the grain filling stage on starch morphological structure, physicochemical properties, and eating quality of soft japonica rice[J]. Cereal Chemistry, 2020, 97(2): 540-550. |
[40] | 李晓光, 刘海英, 金正勋, 刘洪亮, 黄星, 徐美兰. 水稻杂交后代灌浆成熟期籽粒淀粉合成关键酶和谷氨酰胺合成酶活性变化的初步研究[J]. 中国水稻科学, 2009, 4: 443-446. |
Li X G, Liu H Y, Jin Z X, Liu H L, Huang X, Xu M L. Preliminary study on the changes of key enzymes in grain starch synthesis and glutamine synthase activities during grain filling and maturity of rice hybrid offspring[J]. Chinese Journal of Rice Science, 2009, 4: 443-446. (in Chinese with English abstract) | |
[41] | 李银银, 陈静, 周群, 许更文, 芮梦凯, 徐心杰, 张耗. 水稻籽粒灌浆的研究进展与展望[J]. 中国稻米, 2015, 21(4): 20-24. |
Li Y Y, Chen J, Zhou Q, Xu G W, Rui M K, Xu X J, Zhang H. Research progress and prospect of rice grain filling[J]. China Rice, 2015, 21(4): 20-24. (in Chinese with English abstract) | |
[42] | Weng F, Zhang W, Wu X. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice[J]. Scientific Reports, 2017, 7(1): 9983-10004. |
[43] | 郭连安, 胡运高, 杨国涛, 鄢圣敏, 易军. 不同直链淀粉含量水稻籽粒淀粉积累及其相关酶的活性变化研究[J]. 云南大学学报:自然科学版, 2014, 36(6): 942-949. |
Guo L A, Hu Y G, Yang G T, Yan S M, Yi J. Study on the accumulation of starch in rice grains with different amylose contents and changes in the activities of related enzymes[J]. Journal of Yunnan University: Natural Sciences Edition, 2014, 36(6): 942-949. (in Chinese with English abstract) | |
[44] | 金正勋, 杨静, 钱春荣, 刘海英, 金学泳, 秋太权. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响[J]. 中国水稻科学, 2005, 19(4): 377-380. |
Jin Z X, Yang J, Qian C R, Liu H Y, Jin X Y, Qiu T Q. Effects of temperature at grain filling maturity on the activities and quality of key enzymes for starch synthesis in rice grains[J]. Chinese Journal of Rice Science, 2005, 19(4): 377-380. (in Chinese with English abstract) | |
[45] | 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12): 32-42. |
Wang J K, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhu D F, Zhang Y P. Mechanism of high temperature affecting rice grain carbon and nitrogen metabolism at the early stage of grain filling[J]. Chinese Journal of Agrometeorology, 2020, 41(12): 32-42. (in Chinese with English abstract) | |
[46] | Hao Z, Li H W, Yang L M. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice[J]. Journal of Experimental Botany, 2012, 63(1): 215-227. |
[47] | Chen L, Deng Y, Zhu H L, Hu Y X, Jiang Z G, Tang S, Wang S H, Ding Y F. The initiation of inferior grain filling is affected by sugar translocation efficiency in large panicle rice.[J]. Rice, 2019, 12(1): 75. |
[48] | 朱红. 抽穗后低温胁迫对水稻若干生理特性的影响[D]. 合肥: 安徽农业大学, 2015. |
Zhu H. Effects of low temperature stress after heading on some physiological characteristics of rice[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese with English abstract) | |
[49] | 杨建昌, 彭少兵, 顾世梁, Visperas R M. 水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化[J]. 作物学报, 2001, 27(2): 157-164. |
Yang J C, Peng S B, Gu S L, Visperas R M. Changes in the activities of three enzymes related to starch synthesis in rice grains at grain filling stage[J]. Acta Agronomica Sinica, 2001, 27(2): 157-164. (in Chinese with English abstract) | |
[50] | 赵步洪, 张文杰, 常二华, 王志琴, 杨建昌. 水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系[J]. 中国农业科学, 2004(8): 1123-1129. |
Zhao B H, Zhang W J, Chang E H, Wang Z Q, Yang J C. Activity changes of key enzymes in starch synthesis in rice grains during grain filling and their relationship with grain filling rate and cooking quality[J]. Scientia Agricultura Sinica, 2004(8): 1123-1129. (in Chinese with English abstract) | |
[51] | Dobo M, Ayres N, Walker G. Polymorphism in the GBSS gene affects amylose content in US and European rice germplasm[J]. Journal of Cereal Science, 2010, 52(3): 450-456. |
[52] | Du X D, Zhao H W, Wang J G. Changes in starch accumulation and activity of enzymes associated with starch synthesis under different nitrogen applications in japonica rice in cold region[J]. Acta Agronomica Sinica, 2012, 38(1): 159-167. |
[53] | 徐云姬. 三种禾谷类作物强、弱势粒灌浆差异机理及其调控技术[D]. 扬州: 扬州大学, 2016. |
Xu Y J. Mechanisms of grain filling differences between strong and weak grains of three cereal crops and their control techniques[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract) | |
[54] | Okamura M, Arai-sanoh Y, Yoshida H. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield[J]. Field Crops Research, 2018, 219, 139-147. |
[55] | Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J]. Plant Growth Regulation, 2001, 35(1): 81-91. |
[56] | 朱宽宇, 展明飞, 陈静, 王志琴, 杨建昌, 赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响[J]. 中国水稻科学, 2018, 32(2): 155-168. |
Zhu K Y, Zhan M F, Chen J, Wang Z Q, Yang J C, Zhao B H. Effects of irrigation methods at fruiting stage on grain filling and yield of weak grains in rice under different nitrogen fertilizer levels[J]. Chinese Journal of Rice Science, 2018, 32(2): 155-168. (in Chinese with English abstract) | |
[57] | 张诚信. 灌浆结实期低温弱光复合胁迫对水稻产量和品质的影响[D]. 扬州: 扬州大学, 2020. |
Zhang C X. Effects of low temperature and low light compound stress on rice yield and quality at grain filling stage[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[58] | Tanno H, Kiuchi H, Hirayama Y, Kikuchi H. Development of a simple testing method for cool weather tolerance at the flowering stage of rice using an air conditioned room[J]. Japanese Journal of Crop Science, 2000, 69(1): 43-48. |
[59] | 曾研华, 张玉屏, 潘晓华, 朱德峰, 向镜, 陈惠哲, 张义凯. 花后低温对水稻籽粒灌浆与内源激素含量的影响[J]. 作物学报, 2016, 42(10): 1551-1559. |
Zeng Y H, Zhang Y P, Pan X H, Zhu D F, Xiang J, Chen H Z, Zhang Y K. Effects of low temperature after flowering on grain filling and endogenous hormone content in rice[J]. Acta Agronomica Sinica, 2016, 42(10): 1551-1559. (in Chinese with English abstract) | |
[60] | Chu G, Wang Z, Zhang H, Yang J C, Zhang J H. Agronomic and physiological performance of rice under integrative crop management[J]. Agronomy Journal, 2016, 108(1): 117-128. |
[61] | Xue Y, Duan H, Liu L, Xue Y, Duan H, Liu L,. An improved crop management increases grain yield and nitrogen and water use efficiency in rice[J]. Crop Science, 2013, 53(1): 271-284. |
[62] | Fang M S, Song J B, Yang L M, Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies W J, Zhang F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2012, 63(1): 13-24. |
[63] | Chand J U, Abhishek B, Rintu J. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.[J]. Plant Cell Reports, 2017, 36(1): 1-35. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||