Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (5): 476-486.DOI: 10.16819/j.1001-7216.2022.210813
• Research Papers • Previous Articles Next Articles
ZHU Chunquan1,#, WEI Qianqian1,2,#, DANG Caixia3, HUANG Jing1, XU Qingshan1, PAN Lin1, ZHU Lianfeng1, CAO Xiaochuang1, KONG Yali1, XIANG Xingjia2, LIU Jia4, JIN Qianyu1, ZHANG Junhua1()
Received:
2021-08-27
Revised:
2022-01-22
Online:
2022-09-10
Published:
2022-09-09
Contact:
ZHANG Junhua
About author:
First author contact:#These authors contributed equally to the work
朱春权1,#, 魏倩倩1,2,#, 党彩霞3, 黄晶1, 徐青山1, 潘林1, 朱练峰1, 曹小闯1, 孔亚丽1, 项兴佳2, 刘佳4, 金千瑜1, 张均华1()
通讯作者:
张均华
作者简介:
第一联系人:#共同第一作者
基金资助:
ZHU Chunquan, WEI Qianqian, DANG Caixia, HUANG Jing, XU Qingshan, PAN Lin, ZHU Lianfeng, CAO Xiaochuang, KONG Yali, XIANG Xingjia, LIU Jia, JIN Qianyu, ZHANG Junhua. Salicylic Acid Alleviates Low Phosphorus Stress in Rice via a Nitric Oxide-dependent Manner[J]. Chinese Journal OF Rice Science, 2022, 36(5): 476-486.
朱春权, 魏倩倩, 党彩霞, 黄晶, 徐青山, 潘林, 朱练峰, 曹小闯, 孔亚丽, 项兴佳, 刘佳, 金千瑜, 张均华. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476-486.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.210813
Fig. 1. P contents in roots(A) and shoots (B) under low and normal P levels. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L.
Fig. 2. Salicylic acid content and phenylalanine ammonia lyase activity under different exogenous salicylic acid levels. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L.
处理 Treatment | 总根长 Total length/cm | 表面积 Surface area/cm2 | 平均直径 Average diameter/mm | 根系总体积 Root volume/cm3 | 总根尖数 Number of root tips |
---|---|---|---|---|---|
P | 155.99±13.28 c | 14.45±0.97 c | 0.30±0.01 a | 0.11±0.01 c | 745.8±60.3 c |
P+SA | 228.63±18.25 b | 21.00±1.00 ab | 0.28±0.02 a | 0.15±0.01 a | 1034.0±87.6 ab |
LP | 208.66±17.94 b | 20.06±0.84 b | 0.30±0.03 a | 0.13±0.03 b | 1183.8±181.2 b |
LP+SA | 252.27±15.07 a | 22.44±0.54 a | 0.29±0.01 a | 0.15±0.01 a | 1462.5±126.5 a |
Table 1. Indicators associated with rice root development.
处理 Treatment | 总根长 Total length/cm | 表面积 Surface area/cm2 | 平均直径 Average diameter/mm | 根系总体积 Root volume/cm3 | 总根尖数 Number of root tips |
---|---|---|---|---|---|
P | 155.99±13.28 c | 14.45±0.97 c | 0.30±0.01 a | 0.11±0.01 c | 745.8±60.3 c |
P+SA | 228.63±18.25 b | 21.00±1.00 ab | 0.28±0.02 a | 0.15±0.01 a | 1034.0±87.6 ab |
LP | 208.66±17.94 b | 20.06±0.84 b | 0.30±0.03 a | 0.13±0.03 b | 1183.8±181.2 b |
LP+SA | 252.27±15.07 a | 22.44±0.54 a | 0.29±0.01 a | 0.15±0.01 a | 1462.5±126.5 a |
Fig. 3. Phenotype of rice, acid phosphatase activity in rice roots and xylem P concentration. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA,1 μmol/L salicylic acid.
Fig. 4. Relative expression levels of P transporter genes. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L.
Fig. 5. Nitric oxide fluorescence (A), fluorescence intensity (B), NR activity (C), and relative NOS activity (D). Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L salicylic acid.
Fig. 6. Total P content of rice roots (A) and shoots (B) after c-PTIO application. Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L; cPTIO, 1 μmol/L.
Fig. 7. Salicylic acid content of rice roots after 1 μmol/L c-PTIO application. Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L salicylic acid; CP, 1 μmol/L cPTIO.
Fig. 8. NR activity of rice roots after 1 μmol/L c-PTIO application. Mean±SD(n=4). Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L, LP, 18 mmol/L; SA, 1 μmol/L salicylic acid; CP, 1 μmol/L cPTIO.
Fig. 9. Relative expression levels of P transporter genes. Different letters above the bars mean significant difference at P < 0.05. P, 180 mmol/L; LP, 18 mmol/L; SA, 1 μmol/L salicylic acid; CP, 1 μmol/L cPTIO.
[1] | 朱春权, 曹小闯, 朱练峰, 白志刚, 黄洁, 梁清铎, 金千瑜, 张均华. 硫化氢提高水稻磷吸收转运的生理和分子机制[J]. 中国水稻科学, 2019, 33(6): 532-540. |
Zhu C Q, Cao X C, Zhu L F, Bai Z G, Huang J, Liang Q D, Jin Q Y, Zhang J H. Physiological and molecular mechanisms of hydrogen sulfide enhancing phosphorus absorption and transportation in rice[J]. Chinese Journal of Rice Science, 2019, 33(6): 532-540. (in Chinese with English abstract) | |
[2] | 郎印海. 缺磷胁迫下植物应激反应初步研究及应激物质的诱导、提取分离[D]. 泰安: 山东农业大学, 2000. |
Lang Y H. Preliminary study on plants response to phosphorus deficiency stress and the extraction and separation of stress induction substances[D]. Tai’an: Shandong Agricultural University, 2000. | |
[3] | 张海伟, 黄宇, 叶祥盛, 徐芳森. 低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析[J]. 中国科学: C辑, 2010, 40(5): 418-427. |
Zhang H W, Huang Y, Ye X S, Xu F S. Contribution analysis of phosphorus efficiency for acid phosphatase in Brassica napus L. under low phosphorus stress[J]. Scientia Sinica Vitae, 2010, 40(5): 418-427. (in Chinese) | |
[4] | 李立芹. 植物低磷胁迫适应机制的研究进展[J]. 生物学通报, 2011, 46(2): 13-16. |
Li L Q. Advances in the mechanism of plant adapt to low phosphorus stress[J]. Bulletin of Biology, 2011, 46(2): 13-16. (in Chinese) | |
[5] | 李锋, 潘晓华. 植物适应缺磷胁迫的根系形态及生理特征研究进展[J]. 中国农学通报, 2002, 18(5): 65-69, 76. |
Li F, Pan X H. The research development of morphological and physiological characteristics of plant root system under phosphorus deficiency[J]. Chinese Agricultural Science Bulletin, 2002, 18(5): 65-69, 76. (in Chinese with English abstract) | |
[6] | Plaxton W C, Carswell M C. Metabolic aspects of the phosphate starvation response in plants. Plant responses to environmental stresses: From phytohormones to genome reorganization Marcel Dekker, New York: 1999, 349-372. |
[7] | Zhu X F, Wang Z W, Wan J X, Sun Y, Wu Y R, Li G X, Shen R F, Zheng S J. Pectin enhances rice (Oryza sativa) root phosphorus remobilization[J]. Journal of Experimental Botany, 2015, 66(3): 1017-1024. |
[8] | Yu B, Xu C, Benning C. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth[J]. Proceedings of the National Academy of Sciences, 2002, 99(8): 5732-5737. |
[9] | Bandurska H. An update on biosynthesis and action in plant response to water deficit and performance under drought[C]// Hayat S, Ahmad A, Alyemeni M N. Salicylic Acid, Springer, 2013: 1-14. |
[10] | Yusuf M, Hayat S, Alyemeni M N, Fariduddin Q, Ahmad A. Salicylic acid: Physiological roles in plants[C]// Hayat S, Ahmad A, Alyemeni M N. Salicylic Acid, Springer, 2013: 15-30. |
[11] | Pancheva T V, Popova L P, Uzunova A N. Effects of salicylic acid on growth and photosynthesis in barley plants[J]. Journal of Plant Physiology, 1996, 149(1-2): 57-63. |
[12] | Pancheva T V, Popova L P. Effect of salicylic acid on the synthesis of ribulose-1, 5-bisphosphate carboxylase/ oxygenase in barley leaves[J]. Journal of Plant Physiology, 1998, 152(4): 381-386. |
[13] | 张永福, 黄鹤平, 彭声静, 任禛, 陈泽斌, 刘佳妮, 陈瑞. 铝胁迫下水杨酸对水晶葡萄植株生长及营养积累的影响[J]. 中外葡萄与葡萄酒, 2015(2): 10-15. |
Zhang Y F, Huang H P, Peng S J, Ren C, Chen Z B, Liu J N, Chen R. Effects of salicylic acid on growth and nutrition accumulation of Shuijing seedling under aluminum stress[J]. Sino-Overseas Grapevine & Wine, 2015(2): 10-15. (in Chinese with English abstract) | |
[14] | Janda T, Szalai G, Tari I, Páldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants[J]. Planta, 1999, 208(8): 175-180. |
[15] | Tasgin E, Attici O, Nalbantoglu B. Effect of salicylic acid and cold on freezing tolerance in winter wheat leaves[J]. Plant Growth Regulation, 2003, 41(3): 231-236. |
[16] | Glass A D. Influence of phenolic acids on ion uptake: I. Inhibition of phosphate uptake[J]. Plant Physiology, 1973, 51(6): 1037-1041. |
[17] | Khorassani R, Hettwer U, Ratzinger A, Ursula H, Reza K, Norbert C. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus[J]. BMC Plant Biology, 2011, 11(1): 121. |
[18] | Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.)[J]. Archives of Agronomy and Soil Science, 2005, 51(6): 687-695. |
[19] | He J Y, Ren Y F, Chen X L, Chen H. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress[J]. Ecotoxicology and Environmental Safety, 2014, 108: 114-119. |
[20] | Singh V P, Srivastava P K, Prasad S M. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings[J]. Plant Physiology and Biochemistry, 2013, 71: 155-163. |
[21] | 李鹏飞. 一氧化氮通过调节磷酸盐吸收与转运促进水稻磷营养[D]. 厦门: 厦门大学, 2017. |
Li P F. Nitric oxide enhances phosphate nutrition in rice seedlings by regulating phosphate uptake and translocation[D]. Xiamen: Xiamen University, 2017. | |
[22] | Zhu C Q, Zhu X F, Hu A Y, Wang C, Wang B, Dong X Y, Shen R F. Differential effects of nitrogen forms on cell wall phosphorus remobilization are mediated by nitric oxide, pectin content, and phosphate transporter expression[J]. Plant Physiology, 2016, 171: 1407-1417. |
[23] | Shao R X, Xin L F, Guo J M, Zheng H F, Mao J, Han X P, Jia L, Jia S J, Du C G, Song R, Yang Q H, Elmore R W. Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling[J]. Photosynthetica, 2018, 56: 1370-1377. |
[24] | Zhang X B, Feng B H, Wang H M, Xu X, Shi Y F, He Y, Chen Z, Sathe A P, Shirle Y L, Wu J L. A substitution mutation in OsPELOTA confers bacterial blight resistance by activating the salicylic acid pathway[J]. Journal of Integrative Plant Biology, 2018, 60(2): 160-172. |
[25] | You C, Zhu H, Xu B, Wang S, Ding Y, Liu Z, Li G, Chen L, Ding C. Effect of removing superior spikelets on grain filling of inferior spikelets in rice[J]. Frontiers in Plant Science, 2016: 7. |
[26] | 李忠光, 龚明. 磺胺比色法测定植物组织硝酸还原酶活性的改进[J]. 植物生理学通讯, 2009, 45(1): 67-68. |
Li Z G, Gong M. Improvement of nitrate reductase activity measurement in plant tissues by sulfa colorimetry method[J]. Plant Physiology Communications, 2009, 45(1): 67-68. (in Chinese) | |
[27] | 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003: 41-43. |
Zhang Z L. Experimental Guidance in Plant Physiology. Beijing: Higher Education Press, 2003: 41-43. (in Chinese) | |
[28] | 徐畅, 安书成. 一氧化氮及一氧化氮合酶的测定[J]. 陕西师范大学继续教育学报, 2004, 21(1): 115-118. |
Xu C, An S C. Determination of nitric oxide and nitric oxide synthase[J]. Journal of Further Education of Shanxi Normal University, 2004, 21(1): 115-118. (in Chinese) | |
[29] | 穆师洋, 胡文忠, 姜爱丽. 水杨酸的信号分子作用及其在鲜切果蔬中的应用[J]. 食品安全质量检测学报, 2015(7): 2434-2438. |
Mu S Y, Hu W Z, Jiang A L. The role of salicylic acid as signal molecule and its application in fresh-cut fruits and vegetables[J]. Journal of Food Safety and Quality, 2015(7): 2434-2438. (in Chinese with English abstract) | |
[30] | 侯爽, 陈锦芬, 刘溶荣, 王瑞, 陈俊鸿, 邹聪明, 谢小玉. 外源水杨酸对烟草幼苗低温胁迫的缓解效应[J]. 湖南农业大学学报: 自然科学版, 2020, 46(1): 14-20. |
Hou S, Chen J F, Liu R R, Wang R, Chen J H, Zou C M, Xie X Y. Mitigative effect of exogenous salicylic acid on low temperature stress in tobacco seedlings[J]. Journal of Hunan Agricultural University: Natural Sciences Edition, 2020, 46(1): 14-20. (in Chinese with English abstract) | |
[31] | Liao H, Yan X L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency[J]. Acta Botanica Sinica, 2000, 42(2): 158-163. (in Chinese with English abstract) |
[32] | 黄荣, 孙虎威, 刘尚俊, 宋文静, 刘言勋, 余超, 毛颖, 张亚丽, 徐国华. 低磷胁迫下水稻根系的发生及生长素的响应[J]. 中国水稻科学, 2012, 26(5): 563-568. |
Huang R, Sun H W, Liu S J, Song W J, Liu Y X, Yu C, Mao Y, Zhang Y L, Xu G H. Rice Root Growth and Auxin Concentration in Response to Phosphate Deficiency[J]. Chinese Journal of Rice Science, 2012, 26(5): 563-568. (in Chinese with English abstract) | |
[33] | Wissuwa M, Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement[J]. Plant Breeding, 2001, 120: 43-48. |
[34] | Li H, Guo L, Tao C, Yang L M, Wang X Z. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J]. Plant Cell, 2012, 24: 4236-4251. |
[35] | Paszkowski U, Kroken S, Roux C, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Science, 2002, 99: 13324-13329. |
[36] | Wang X, Wang Y, Piñeros M A, Wang Z Y, Wang W X, Li C G, Wu Z C, Kochian L V, Wu P. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice[J]. Plant, Cell and Environment, 2014, 37: 1159-1170. |
[37] | 王文霞. 水稻磷酸盐转运体OsPht1;3和OsPht1;5的功能研究. 杭州: 浙江大学, 2014: 21-30. |
Wang W X. Functional analysis of OsPhtl;3 and OsPht1;5 in Oryza sativa[D]. Hangzhou: Zhejiang University, 2014: 21-30. (in Chinese with English abstract) | |
[38] | Zhang F, Sun Y F, Pei W X, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. Plant Journal, 2015, 82(4): 556-569. |
[39] | Ai P H, Sun S B, Zhao J N, Fan X R, Xin W J, Guo Q, Yu L, Shen Q R, Wu P, Miller A J, Xu G H. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57(5): 798-809. |
[40] | Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G. The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156(3): 1164-1175. |
[41] | 黄沆, 付崇允, 周德贵, 陈光辉, 周少川. 植物磷吸收的分子机理研究进展[J]. 分子植物育种, 2008, 6(1): 117-122. |
Huang H, Fu Z Y, Zhou D G, Chen G H, Zhou S C. Progress in research of molecular mechanism of phosphorus absorption in plants[J]. Molecular Plant Breeding, 2008, 6(1): 117-122. (in Chinese with English abstract) | |
[42] | Klessig D F, Durner J, Noad R, Navarre D A, Wendehenne D, Kumar D, Zhou J M, Shah J, Zhang S Q, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense[J]. Proceedings of the National Academy of Science, 2000, 97(16): 8849-8855. |
[43] | Song F, Goodman R M. Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance[J]. Molecular Plant-Microbe Interactions, 2001, 14(12): 1458-1462. |
[44] | Zottini M, Costa A, Michele R D, Ruzzene M, Carimi F. Salicylic acid activates nitric oxide synthesis in Arabidopsis[J]. Journal of Experimental Botany, 2007, 6 (58): 1397-1405. |
[45] | Meng Z B, Chen L Q, Suo D, Li G X, Tang C X, Zheng S J. Nitric oxide is the shared signaling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus)[J]. Annals of Botany, 2012, 109: 1055-1064. |
[46] | Shen J B, Yuan L X, Zhang J L, Li H G, Bai Z H, Chen H P, Zhang W F, Zhang F S. Phosphorus dynamics: From soil to plant[J]. Plant Physiology, 2011, 156: 997-1005. |
[47] | Ae N, Shen R F. Root cell-wall properties are proposed to contribute to phosphorus (P) mobilization by groundnut and pigeonpea[J]. Plant and Soil, 2002, 245: 95-103. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385. |
[5] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[6] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[7] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[8] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[9] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[10] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[11] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[12] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[13] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[14] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[15] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||