Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (4): 336-347.DOI: 10.16819/j.1001-7216.2022.210902
• Reviews and Special Topics • Previous Articles Next Articles
LI Xia1,3, JIANG Yanjie1, TAO Yajun1, LI Wenqi1, WANG Fangquan1, CHEN Zhihui1, XU Yang1,3, WANG Jun1,3, FAN Fangjun1, ZHU Jianping1, Sreenivasulu NESE2, YANG Jie1,3,*()
Received:
2021-09-06
Revised:
2021-11-10
Online:
2022-07-10
Published:
2022-07-12
Contact:
YANG Jie
李霞1,3, 蒋彦婕1, 陶亚军1, 李文奇1, 王芳权1, 陈智慧1, 许扬1,3, 王军1,3, 范方军1, 朱建平1, 杨杰1,3,*()
通讯作者:
杨杰
基金资助:
LI Xia, JIANG Yanjie, TAO Yajun, LI Wenqi, WANG Fangquan, CHEN Zhihui, XU Yang, WANG Jun, FAN Fangjun, ZHU Jianping, Sreenivasulu NESE, YANG Jie. Research Progress of Rice with Low Glycemic Index[J]. Chinese Journal OF Rice Science, 2022, 36(4): 336-347.
李霞, 蒋彦婕, 陶亚军, 李文奇, 王芳权, 陈智慧, 许扬, 王军, 范方军, 朱建平, 杨杰. 低升糖指数水稻研究进展[J]. 中国水稻科学, 2022, 36(4): 336-347.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.210902
[1] | 范光森, 许岱, 富志磊, 许春艳, 杨然, 孙宝国, 李秀婷. 血糖生成指数研究进展[J]. 中国食品添加剂, 2016(10): 56-68. |
Fan G S, Xu D, Fu Z L, Xu C Y, Yang R, Sun B G, Li X T. Research progress of glycemic index[J]. China Food Additives, 2016(10): 56-68. (in Chinese with English abstract) | |
[2] | 缪铭, 江波, 张涛. 低血糖生成指数淀粉类衍生物的研究进展[J]. 食品科学, 2008, 29(4): 452-456. |
Miao M, Jiang B, Zhang T. Research progress of low glycemic-index starchy derivatives[J]. Food Science, 2008, 29(4): 452-456. (in Chinese with English abstract) | |
[3] | 世界卫生组织. 关于糖尿病的十个事实[J]. 中国卫生政策研究, 2013, 6(10): 35. |
World Health Organization. 10 facts about diabetes[J]. Chinese Journal Health Policy, 2013, 6(10): 35. (in Chinese) | |
[4] | Wee M S M, Henry C J. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on Asia[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19: 670-702. |
[5] | Global Rice Science Partnership. Rice Almanac[M]. Los Baňos, Philippines: International Rice Research Institute, 2013. |
[6] | Kataoka M, Venn B J, Williams S M, Te Morenga L A, Heemels I M, Mann J I. Glycaemic responses to glucose and rice in people of Chinese and European ethnicity[J]. Diabet Medicine, 2013, 30(3): e101-e107. |
[7] | Jenkins D, Wolever T, Taylor R H, Barker H, Fielden H, Baldwin J M, Bowling A C, Newman H C, Jenkins A L, Goff D V. Glycemic index of foods: A physiological- basis for carbohydrate exchange[J]. American Journal of Clinical Nutrition, 1981, 34(3): 362-366. |
[8] | Butardo Jr V M, Sreenivasulu N. Chapter Two-tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals[J]. International Review of Cell and Molecular Biology, 2016, 323: 31-70. |
[9] | Juliano B O, Bechtel D B. The rice grain and its gross composition//Juliano B O. Rice: Chemistry and Technology[M]. American Association of Cereal Chemistry, St Paul, 1985: 17-57. |
[10] | Zhang G, Malik V S, Pan A, Kumar S, Holmes M, Spiegelman D, Lin X, Hu F B. Substituting brown rice for white rice to lower diabetes risk: A focus-group study in Chinese adults[J]. Journal of the American Dietetic Association, 2010, 110(8): 1216-1221. |
[11] | Juliano B O. Rice in Human Nutrition[M]. Rome: International Rice Research Institute in collaboration with Food and Agriculture Organization, 1993: 35-61. |
[12] | Butardo Jr V M, Sreenivasulu N, Juliano B O. Improving rice grain quality: State-of-the-art and future prospects[J]. Methods in Molecular Biology, 2019, 1892: 19-55. |
[13] | Panlasigui L N, Thompson L U. Blood glucose lowering effects of brown rice in normal and diabetic subjects[J]. International Journal of Food Sciences and Nutrition, 2006, 57(3-4): 151-158. |
[14] | Hu E A, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review[J]. British Medical Journal, 2012, 344: e1454. |
[15] | Miller J B, Pang E, Bramall L. Rice: A high or low glycemic index food?[J] American Journal of Clinical Nutrition, 1992, 56: 1034-1036. |
[16] | 王勇, 应剑, 董志忠, 任晨刚. 低升糖指数大米研究进展[J]. 生物产业技术, 2017(4): 41-47. |
Wang Y, Ying J, Dong Z Z, Ren C G. Recent development of research on low glycemic index rice[J]. Biotechnology & Business, 2017(4): 41-47. (in Chinese with English abstract) | |
[17] | Wolever T M S, Vorster H H, Björck I, Brand-Miller J, Brighenti F, Mann J I, Ramdath D D, Granfeldt Y, Holt S, Perry T L, Venter C, Wu X M. Determination of the glycemic index of foods: Interlaboratory study[J]. European Journal of Clinical Nutrition, 2003, 57(3): 475-482. |
[18] | 陈静茹, 孟庆佳, 康乐, 陈然, 王梦倩, 应剑, 王黎明, 邵丹青, 向雪松. 低血糖生成指数谷物及其制品研究进展与法规管理现状[J]. 食品工业科技, 2020, 41(18): 338-343. |
Chen J R, Meng Q J, Kang L, Chen R, Wang M Q, Ying J, Wang L M, Shao D Q, Xiang X S. Research progress and regulation status of low glycemic index grain and its products[J]. Science and Technology of Food Industry, 2020, 41(18): 338-343. (in Chinese with English abstract) | |
[19] | Shah B R, Li B, Wang L, Liu S, Li Y, Wei X, Jin W P, Li Z S. Health benefits of konjac glucomannan with special focus on diabetes[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5: 179-187. |
[20] | 谢丽, 李烨琦, 杨艳, 杨莉琴. 糖尿病饮食治疗现状及进展[J]. 现代医药卫生, 2015, 31(1): 75-77. |
Xie L, Li Y Q, Yang Y, Yang L Q. Current situation and progress of diabetes diet treatment[J]. Journal of Mental Health, 2015, 31(1): 75-77. (in Chinese) | |
[21] | Beyer P. Golden rice and Golden crops for human nutrition[J]. New Biotechnology, 2010, 27: 478-481. |
[22] | Anacleto R, Badoni S, Parween S, Butardo V M, Misra G, Cuevas R P, Kuhlmann M, Trinidad T P, Mallillin A C, Acuin C, Bird A R, Morell M K, Sreenivasulu N. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycemic index and texture in rice[J]. Plant Biotechnology Journal, 2019, 17(7): 1261-1275. |
[23] | Liu G D, Gu Z B A, Hong Y, Cheng L, Li C M. Structure, functionality and applications of debranched starch: A review[J]. Trends in Food Science & Technology, 2017, 63: 70-79. |
[24] | Jenkins D J, Kendall C W, Augustin L S, Franceschi S, Hamidi M, Marchie A, Jenkins A L, Axelsen M. Glycemic index: Overview of implications in health and disease[J]. American Journal of Clinical Nutrition, 2002, 76: 266S-273S. |
[25] | Fitzgerald M A, Rahman S, Resurreccion A P, Concepcion J C, Daygon V D, Dipti S S, Kabir K A, Klingner B, Morell M K, Bird A R. Identification of a major genetic determinant of glycaemic index in rice[J]. Rice, 2011, 4: 66-74. |
[26] | 杨瑞芳, 朴钟泽, 万常照, 李钢夑, 龚长春, 白建江. 高抗性淀粉水稻新品种优糖稻2号的选育及其特征特性[J]. 中国稻米, 2020, 26(1): 94-95, 99. |
Yang R F, Piao Z Z, Wan C Z, Li G X, Gong C C, Bai J J. Breeding and characteristics of new rice variety Youtangdao 2 with high resistant starch. China Rice, 2020, 26(1): 94-95, 99. (in Chinese with English abstract) | |
[27] | Fatema K, Rahman F, Sumi N, Kobura K, Liaquat A L. Glycemic index of three common varieties of Bangladeshi rice in healthy subjects[J]. African Journal of Food Science, 2010, 4(8): 531-535. |
[28] | Kumar A, Sahoo U, Baisakha B, Okpani OK, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S G. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]. Journal of Cereal Science, 2018, 79: 348-353. |
[29] | King R A, Noakes M, Bird R, Morell K, Topping D L. An extruded breakfast cereal made from a high amylose barley cultivar has a low glycemic index and lower plasma insulin response than one made from a standard barley[J]. Journal of Cereal Science, 2008, 48: 526-530. |
[30] | Lee K Y, Lee H G. Comparative effects of slowly digestible and resistant starch from rice in high-fat diet-induced obese mice[J]. Food Science and Biotechnology, 2016, 25: 1443-1448. |
[31] | Harazaki T, Inoue S, Imai C, Mochizuki K, Goda T. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue[J]. Nutrition, 2014, 30: 590-595. |
[32] | Marlatt K L, White U A, Beyl R A, Peterson C M, Martin C K, Marco M L, Keenan M J, Martin R J, Aryana K J, Ravussin E. Role of resistant starch on diabetes risk factors in people with prediabetes: Design, conduct, and baseline results of the STARCH trial[J]. Contemporary Clinical Trials, 2018, 65: 99-108. |
[33] | Wang Q, Zheng Y F, Zhuang W J, Lu X, Luo X L, Zheng B D. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]. Food Chemistry, 2018, 264: 427-434. |
[34] | Fan M Z, Archbold T, Lackeyram D, Liu Q, Mine Y, Paliyath G. Consumption of guar gum and retrograded high-amylose corn resistant starch increases IL-10 abundance without affecting pro-inflammatory cytokines in the colon of pigs fed a high-fat diet[J]. Journal of Animal Science, 2012, 90: 278-280. |
[35] | Jiminez J A, Uwiera T C, Abbott D W, Uwiera R R E, Inglis G D. Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice[J]. Gut Pathogens, 2016, 8: 67. |
[36] | Birt D F, Boylston T, Hendrich S, Jane J L, Hollis J, Li L, McClelland J, Moore S, Phillips G J, Rowling M, Schalinske K, Scott M P, Whitley E M. Resistant Starch: Promise for improving human health[J]. Advances in Nutrition, 2013, 4(6): 587-601. |
[37] | Fuentes-Zaragoza E, Riquelme-Navarrete M J, Sanchez-Zapata E, Perez-Alvarez J A. Resistant starch as functional ingredient: A review[J]. Food Research International, 2010, 43: 931-942. |
[38] | Dexter F. Fine structure of starch and its relationship to the organization of starch granules[J]. Journal of the Japanese Society of Starch Science, 1972, 19(1): 8-25. (in Japanese with English abstract) |
[39] | Robin J P, Mercier C, Charbonniere R, Guilbot A. Lintnerized starches gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch[J]. Cereal Chemistry, 1974, 51: 389-406. |
[40] | Gidley M J. Factors affecting the crystalline type (AC) of native starches and model compounds-a rationalization of observed effects in terms of polymorphic structures[J]. Carbohydrate Research, 1987, 161: 301-304. |
[41] | Dhital S, Butardo Jr V M, Jobling S A, Gidley M J. Rice starch granule amylolysis-Differentiating effects of particle size, morphology, thermal properties and crystalline polymorph[J]. Carbohydrate Polymers, 2015, 115: 305-316. |
[42] | Hoover R, Hughes T, Chung H J, Liu Q. Composition, molecular structure, properties, and modification of pulse starches: A review[J]. Food Research International, 2010, 43: 399-413. |
[43] | 焦桂爱, 唐绍清, 罗炬, Fitzgerald M, Roferos L T, 胡培松. 水稻抗性淀粉突变体抗性淀粉结构的比较研究[J]. 中国水稻科学, 2006, 20(6): 645-648. |
Jiao G A, Tang S Q, Luo J, Fitzgerald M, Roferos L T, Hu P S. Comparative study on resistant starch structure of resistant starch enriched rice mutants[J]. Chinese Journal of Rice Science, 2006, 20(6): 645-648. (in Chinese with English abstract) | |
[44] | Butardo Jr V M, Fitzgerald M A, Bird A R, Gidley M J, Flanagan B M, Larroque O, Resurreccion A P, Laidlaw H K, Jobling S A, Morell M K, Rahman S. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]. Journal of Experimental Botany, 2011, 62(14): 4927-4941. |
[45] | Yang C Z, Shu X L, Zhang L L, Wang X Y, Zhao H J, Ma C X, Wu D X. Starch properties of mutant rice high in resistant starch[J]. Journal of Agricultural and Food Chemistry, 2006, 54(2): 523-528. |
[46] | Butardo Jr V M, Anacleto R, Parween S, Samson I, de Guzman K, Alhambra C M, Misra G, Sreenivasulu N. Systems genetics identifies a novel regulatory domain of amylose synthesis[J]. Plant Physiology, 2017, 173: 887-906. |
[47] | Fredriksson H, Silverio J, Andersson R, Eliasson A C, Aman P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J]. Carbohydrate Polymers, 1998, 35: 119-134. |
[48] | Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch[J]. Cereal Chemistry, 1999, 76(5): 629-637. |
[49] | Shu X L, Jiao G A, Fitzgerald M A, Yang C Z, Shu Q Y, Wu D X. Starch structure and digestibility of rice high in resistant starch[J]. Starch/Stärke, 2006, 58: 411-417. |
[50] | Takeda Y, Hizukuri S, Juliano B O. Structures of rice amylopectins with low and high affinities for iodine[J]. Carbohydrate Research, 1987, 168: 79-88. |
[51] | Ye J P, Hu X T, Luo S J, McClements D J, Liang L, Liu C M. Effect of endogenous proteins and lipids on starch digestibility in rice flour[J]. Food Research International, 2018, 106: 404-409. |
[52] | Pletsch E A, Hamaker B R, Brown rice compared to white rice slows gastric emptying in humans[J]. European Journal of Clinical Nutrition, 2018, 72(3) 367-373. |
[53] | Kim Y, Keogh J B, Clifton P M. Polyphenols and glycemic control[J]. Nutrients, 2016, 8: 17. |
[54] | Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo Jr V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility[J]. Trends in Food Science and Technology, 2019, 88: 10-22. |
[55] | De Guzman M K, Parween S, Butardo V M, Alhambra C M, Anacleto R, Seiler C, Bird A R, Chow C P, Sreenivasulu N. Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination[J]. Scientific Reports, 2017, 7(1): 5854. |
[56] | Barclay A W, Petocz P, McMillan-Price J, Flood V M, Prvan T, Mitchell P, Brand-Miller J C. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies[J]. The American Journal of Clinical Nutrition, 2008, 87: 627-637. |
[57] | ISO. Food products-Determination of the glycemic index (GI) and recommendation for food classification:ISO 26642 [S]. Geneva, Switzerland: ISO, 2010. |
[58] | 中华人民共和国国家卫生健康委员会. 食物血糖生成指数测定方法: WS /T 652-2019 [S]. 北京: 中国标准出版社, 2019. |
National Health Commission of the People’s Republic of China. Standard for determination of food glycemic index: WS /T 652-2019 [S]. Beijing: China Standard Press, 2019. (in Chinese) | |
[59] | Woolnough J W, Monro J A, Brennan C S, Bird A R. Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardization. International Journal of Food Science & Technology, 2008, 43, 2245-2256. |
[60] | Kim J C, Kim J I, Kong Y W, Kang M J, Kim M J, Cha I J. Influence of the physical form of processed rice products on the enzymatic hydrolysis of rice starch in vitro and on the postprandial glucose and insulin responses in patients with type 2 diabetes mellitus[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68: 1831-1836. |
[61] | Hur S J, Lim B O, Decker E A, McClements D J. In vitro human digestion models for food applications[J]. Food Chemistry, 2011 125: 1-12. |
[62] | Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992, 46: S33-S50. |
[63] | Goñi I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index[J]. Nutrition Research, 1997, 17: 427-437. |
[64] | Venn B J, Kataoka M, Mann J. The use of different reference foods in determining the glycemic index of starchy and non-starchy test foods[J]. Nutrition Journal, 2014, 13: 50. |
[65] | Atkinson F S, Foster-Powell K, Brand-Miller J C. International tables of glycemic index and glycemic load values: 2008[J]. Diabetes Care, 2008, 31: 2281-2283. |
[66] | Rathinasabapathi P, Purushothaman N, Ramprasad V, Parani M. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index[J]. Scientific Reports, 2015, 5(1): 11303. |
[67] | Hu P S, Zhao H J, Duan Z Y, Zhang L L, Wu D X. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents[J]. Journal of Cereal Science, 2004, 40(3): 231-237. |
[68] | Deepa G, Singh V, Naidu K A. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented (‘Njavara’ and ‘Jyothi’) and a non-pigmented (‘IR 64’) rice varieties[J]. Journal of Food Science and Technology, 2010, 47: 644-649. |
[69] | Chung H J, Liu Q, Huang R L, Yin Y L, Li A K. Physicochemical properties and in vitro starch digestibility of cooked rice from commercially available cultivars in Canada[J]. Cereal Chemistry, 2010, 87: 297-304. |
[70] | Sumczynski D, Bubelova Z, Fisera M. Determination of chemical, insoluble dietary fibre, neutral-detergent fibre and in vitro digestibility in rice types commercialized in Czech markets[J]. Journal of Food Composition and Analysis, 2015, 40: 8-13. |
[71] | Fernandes J M, Madalena D A, Pinheiro A C, Vicente A A. Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study[J]. Journal of Food Science and Technology, 2020, 57(4): 1393-1404. |
[72] | Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo Jr V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility[J]. Trends in Food Science and Technology, 2019, 88: 10-22. |
[73] | Selvaraj R, Singh A K, Singh V K, Abbai R, Habde S V, Singh U M, Kumar A. Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality[J]. Scientific Reports, 2021, 11: 10082. https://doi.org/10.1038/s41598-021-87964-8. |
[74] | Kharabian-Masouleh A, Waters D L, Reinke R F, Ward R, Henry R J. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice[J]. Scientific Reports, 2012, 2(8): 2016-2016. |
[75] | Yang R, Bai J, Fang J, Wang Y, Lee G, Piao Z. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice[J]. Breeding Science, 2016, 66(4): 481-489. DOI: 10.1270/jsbbs.16037 |
[76] | 孙春龙, 白建江, 施标, 朱辉明, 孙志敏, 朴钟泽, 都兴林. 水稻抗性淀粉含量性状含量的配合力分析[J]. 中国农学通报, 2012, 28(12): 24-28. |
Sun C L, Bai J J, Shi B, Zhu H M, Sun Z M, Piao Z Z, Du X L. Analysis on combining ability of resistant starch content in rice grain[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 24-28. (in Chinese with English abstract) | |
[77] | Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush G S, Zhu C, Fraser P D, Christou P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42): 26503-26512. |
[78] | Lin L S, Zhang L, Cai X L, Liu Q Q, Zhang C Q, Wei C X. The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents[J]. Food Hydrocolloids, 2018, 84: 406-413. https://doi.org/10.1016/j.foodhyd.2018.06.029. |
[79] | Wani A A, Singh P, Shah M A. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties[J]. Comprehensive Reviews in Food Science and Food Safety, 2012, 11: 417-436. |
[80] | Huang L C, Li Q F, Zhang C Q, Chu R, Gu Z W, Tan H Y, Zhao D S, Fan XL, Liu Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18: 2164-2166 |
[81] | Biselli C, Cavalluzzo D, Perrini R, Gianinetti A, Bagnaresi P, Urso S, Orasen G, Desiderio F, Lupotto E, Cattivelli L, Valè G. Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining[J]. Rice, 2014, 7(1): 1-18. |
[82] | Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice[J]. Theoretical and Applied Genetics, 2008, 116(7): 979-989. |
[83] | Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars[J]. Breeding Science, 2014, 64: 142-148. |
[84] | Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18: 2385-2387. |
[85] | Zhou Z K, Robards K, Helliwell S, Blanchard C. Composition and functional properties of rice. Journal of Food Science and Technology, 2002, 37: 849-868. |
[86] | Bao J S, Zhou X, Xu F F, He Q, Park Y J. Genome-wide association study of the resistant starch content in rice grains[J]. Starch/Stärke, 2017, 69(7-8): 1600343. |
[87] | 魏明亮, 杜娟, 曾亚文, 杨树明, 普晓英, 杨涛. 云南稻微核心种质及其回交高代糙米功能成分含量的遗传变异. 湖南农业大学学报: 自然科学版, 2013, 39(2): 121-126. |
Wei M L, Du J, Zeng Y W, Yang S M, Pu X Y, Yang T. Genetic variation of functional components in brown rice of mini core collection of Yunnan landrace rice and its advanced backcross lines[J]. Journal of Hunan Agricultural University: Natural Sciences, 2013, 39(2): 121-126. (in Chinese with English abstract) | |
[88] | Raja R B, Agasimani S, Jaiswal S, Thiruvengadam V, Sabariappan R, Chibbar R N, Ram S G. EcoTILLING by sequencing reveals polymorphisms in genes encoding starch synthases that are associated with low glycemic response in rice[J]. BMC Plant Biology, 2017, 17: 13. DOI 10.1186/s12870-016-0968-0 |
[89] | Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J, Yu H, Smitha S M, Wu D X, Li J Y. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12844-12849. |
[90] | 杨树明, 夏小环, 赵旭, 方晓东, 杜娟, 曾亚文, 普晓英, 杨涛, 彭潞波. 不同基因型粳稻籽粒产量与功能成分的生态变异. 湖南农业大学学报: 自然科学版, 2012, 38(5): 464-471. |
Yang S M, Xia X H, Zhao X, Fang X D, Du J, Zeng Y W, Pu X Y, Yang T, Peng L B. Ecological variations in yield and functional components in different genotypes of japonica rice[J]. Journal of Hunan Agricultural University: Natural Sciences, 2012, 38(5) : 464-471. (in Chinese with English abstract) | |
[91] | 牟方贵, 闫宗武, 冉瑞林, 滕建勋, 陈永波, 杨朝柱, 李明辉, 吴殿星. 水稻抗性淀粉相关SSR标记的初步研究. 分子植物育种, 2008, 6(3): 432-438. |
Mou F G, Yan Z W, Ran R L, Teng J X, Chen Y B, Yang C Z, Li M G, Wu D X. Preliminary studies on resistant starch-linked SSR marker in rice[J]. Molecular Plant Breeding, 2008, 6(3): 432-438. (in Chinese with English abstract) | |
[92] | 罗曦, 黄锦峰, 朱永生, 谢鸿光, 吴方喜, 张木清, 张建福, 谢华安. 水稻功米3号高抗性淀粉性状的遗传分析. 农业生物技术学报, 2014, 22(1): 10-16. |
Luo X, Huang J F, Zhu Y S, Xie H G, Wu F X, Zhang M Q, Zhang J S, Xie H A. Genetic analysis of high resistant starch characteristics for rice variety Gongmi 3(Oryza sativa ssp. indica)[J]. Journal of Agricultural Biotechnology, 2014, 22(1): 10-16. (in Chinese with English abstract) | |
[93] | Yang R, Sun C, Bai J, Luo Z, Shi B, Zhang J, Yan W, Piao Z. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.)[J]. PloS One, 2012, 7: e43026. |
[94] | Kumar A, Sahoo U, Baisakha B, Okpani O K, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S G. Resistant starch could be decisive in determining the glycemic index of rice cultivars[J]. Journal of Cereal Sciences, 2018, 79: 348-353. |
[95] | Zhu F. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology, 2015, 43(2), 129-143. |
[96] | Chusak C, Pasukamonset P, Chantarasinlapin P, Adisakwattana S, Glycemia P, Insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich Riceberry Rice[J]. Nutrients, 2020, 12: 782. DOI: 10.3390/nu12030782 |
[97] | Parween S, Anonuevo J J, Butardo V M, Misra G, Anacleto R, Llorente C, Kosik O, Romero M V, Bandonill E H, Mendioro M S, Lovegrove A, Fernie A R, Brotman Y, Sreenivasulu N. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: Its genetics and molecular physiological mechanisms[J]. Plant Biotechnology Journal, 2020, 18(8): 1763-1777. |
[98] | 吴伟, 刘成梅, 李俶, 刘伟, 万婕, 徐雨佳. 高膳食纤维营养强化大米的制备研究. 食品科学, 2009, 30: 76-80. |
Wu W, Liu C M, Li T, Liu W, Wan J, Xu Y J. Preparation of nutritional rice fortified with dietary fiber[J]. Food Science, 2009, 30: 76-80. (in Chinese with English abstract) | |
[99] | Liu D, Wang W, Cai X. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.)[J]. Plant Biotechnology Journal, 2014, 12: 1297-1307 |
[100] | Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 20202021, 63(5):889-901 |
[101] | Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60: 369-375. DOI: 10.1111/jipb.12620 |
[102] | Shu X, Xu J, Wang Y, Rasmussen S K, Wu D. Effects of gamma irradiation on starch digestibility of rice with different resistant starch content[J]. International Journal of Food Science & Technology, 2013, 48(1): 35-43. https://doi.org/10.1111/j.1365-2621. 2012.03154. |
[103] | Park J, Oh S W, Chung H J, Park H J. Structural and physicochemical properties of native starches and non-digestible starch residues from Korean rice cultivars with different amylose contents[J]. Food Hydrocolloids, 2020, 102: 105544. |
[104] | 沈伟桥, 舒小丽, 张琳琳, 夏英武, 吴殿星. 加工型功能早籼稻新品种浙辐201 的选育与特性[J]. 核农学报, 2006, 20(4) : 312-314. |
Shen W Q, Shu X L, Zhang L L, Xia Y W, Wu DX. Development and characteristics of processing- functional indica early rice cultivar “Zhefu 201”[J]. Journal of Nuclear Agricultural Sciences, 2006, 20(4) : 312-314. (in Chinese with English abstract) | |
[105] | 杨朝柱, 李春寿, 舒小丽, 张志转, 张磊, 赵海军, 马传喜, 吴殿星. 富含抗性淀粉水稻突变体的淀粉特性[J]. 中国水稻科学, 2005, 19(6): 516-520. |
Yang C Z, Li C S, Shu X L, Zhang Z Z, Zhang L, Zhao H J, Ma C X, Wu D X. Starch properties of rice mutant enriched with resistant starch[J]. Chinese Journal of Rice Science, 2005, 19(6): 516-520. (in Chinese with English abstract) | |
[106] | 林静, 孙宝霞, 方先文, 王艳平, 张所兵, 汪迎节. 富含抗性淀粉稻米淀粉特性研究[J]. 华北农学报, 2013, 28(1): 58-61. |
Lin J, Sun B X, Fang X W, Wang Y P, Zhang S B, Wang Y J. Starch properties of rice enriched with resistant starch[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(1): 58-61. (in Chinese with English abstract) | |
[107] | 田亲亲, 陆长梅, 刘小龙, 李霞, 魏晓东, 方先文, 张所兵, 宗寿余, ‘扎西玛’与‘南粳46’籼粳杂交F1花药培养及再生体系的建立[J]. 西北农业学报, 2014, 23(6): 88-95. |
Tian Q Q, Lu C M, Liu X L, Li X, Wei X D, Fang X W, Zhang S B, Zong S Y. Anther culture of hybrid F1 of indica and japonica varieties ‘Zaxima’/‘Nanjing 46’[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(6): 88-95. (in Chinese with English abstract) | |
[108] | 杨树明, 曾亚文, 王江民, 杜娟, 普晓英, 杨涛, 王雨辰, 普正贵, 方晓东, 粳型水稻高钙新品系功米1号的选育与营养评价[J]. 西南农业学报, 2008, 21(6): 1515-1518. |
Yang S M, Zeng Y W, Wang J M, Du J, Pu X Y, Yang T, Wang Y C, Pu Z G, Fang X D. Breeding and nutrient valuation on japonica rice strain Gongmi 1 with high Ca content[J]. Southwest China Journal of Agricultural Sciences, 2008, 21(6): 1515-1518. (in Chinese with English abstract) | |
[109] | Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia LQ. Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science, 2017, 8: 298. https://doi.org/10.3389/fpls.2017.00298 |
[110] | 白建江, 张建明, 朴钟泽, 方军, 李刚燮, 王亚, 杨瑞芳. 应用CRISPR/Cas9系统编辑水稻SBE3基因获得高抗性淀粉水稻新品系[J]. 分子植物育种, 2018, 16(5): 1510-1516. |
Bai J J, Zhang J M, Piao Z Z, Fang J, Li G X, Wang Y, Yang R F. 9 system[J]. Molecular Plant Breeding, 2018, 16(5): 1510-1516. (in Chinese with English abstract) | |
[111] | Jukanti A K, Pautong P A, Liu Q Q, Sreenivasulu N. Low glycemic index rice-a desired trait in starchy staples[J]. Trends in Food Science and Technology, 2020, 106: 132-149. https://doi.org/10.1016/j.tifs.2020.10.006 |
[112] | 魏霞, 徐延浩, 丁保淼, 王容, 胡倩文, 张文英. 抗性淀粉及其遗传改良研究进展[J]. 长江大学学报: 自然科学版), 2019, 16(8): 101-107. |
Wei X, Xu Y H, Ding B M, Wamg R, Hu Q W, Zhang W Y. Research progress of resistant starch and its genetic improvement[J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(8): 101-107. (in Chinese) | |
[113] | Swamy H K M, Anila M, Kale R R, Rekha G, Bhadana V P, Anantha M S, Brajendra P, Balachiranjeevi C H, Hajira S K, Prasanna B L, Pranathi K, Dilip T, Kousik M B V N, Harika G, Surekha K, Kumar R M, Cheralu C, Shankar V G, Laha G S, Prasad M S, Rao L V S, Madhav M S, Balachandran S M, Sundaram R M. Marker assisted improvement of low soil phosphorus tolerance in the bacterial blight resistant, fine-grain type rice variety, Improved Samba Mahsuri[J]. Scientific Reports, 2020, 10: 21143. |
[114] | Kim D Y, Kim Y, Lim H. Glycemic indices and glycemic loads of common Korean carbohydrate-rich foods[J]. British Journal of Nutrition, 2019, 121(4): 416-425. |
[115] | Tripathy S K, Maharana M, Ithape D M, Mohanty M R, Dash A P, Reshmi R K R, Ganik N, Panda S. An insight into the glycemic index of rice[J]. Molecular Plant Breeding, 2016, 7(30): 1-6. |
[116] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325. |
Hu S K, Hu P S. Research progress and prospect of functional rice[J]. Chinese Journal of Rice Science, 35(4): 311-325. (in Chinese with English abstract) | |
[117] | 魏兴华. 我国水稻品种资源研究进展与展望[J]. 中国稻米, 2019, 25(5): 8-11. |
Wei X H. Progress and prospect of rice germplasm research in China[J]. China Rice, 2019, 25(5): 8-11. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||