Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (2): 118-130.DOI: 10.16819/j.1001-7216.2022.210602
• Reviews and Special Topics • Previous Articles Next Articles
XU Qingshan1,#, HUANG Jing1,#, SUN Aijun2, HONG Xiaozhi2, ZHU Lianfeng1, CAO Xiaochuang1, KONG Yali1, JIN Qianyu1, ZHU Chunquan1,*(), ZHANG Junhua1,*()
Received:
2021-06-03
Revised:
2021-11-03
Online:
2022-03-10
Published:
2022-03-11
Contact:
ZHU Chunquan, ZHANG Junhua
徐青山1,#, 黄晶1,#, 孙爱军2, 洪小智2, 朱练峰1, 曹小闯1, 孔亚丽1, 金千瑜1, 朱春权1,*(), 张均华1,*()
通讯作者:
朱春权,张均华
作者简介:
第一联系人:#共同第一作者
基金资助:
XU Qingshan, HUANG Jing, SUN Aijun, HONG Xiaozhi, ZHU Lianfeng, CAO Xiaochuang, KONG Yali, JIN Qianyu, ZHU Chunquan, ZHANG Junhua. Effects of Low Temperature on the Growth and Development of Rice Plants and the Advance of Regulation Pathways: A Review[J]. Chinese Journal OF Rice Science, 2022, 36(2): 118-130.
徐青山, 黄晶, 孙爱军, 洪小智, 朱练峰, 曹小闯, 孔亚丽, 金千瑜, 朱春权, 张均华. 低温影响水稻发育机理及调控途径研究进展[J]. 中国水稻科学, 2022, 36(2): 118-130.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.210602
时期 Stage | 耐低温基因 Cold tolerance gene | 参考文献 Reference |
---|---|---|
芽期 Germination stage | qLTG-9, qLTG3-1 | [ |
苗期 Seedling stage | qCTS4, qCtss11, qSCT1, qSCT11, qLOP2/qPSR2-1, Aox3, COIN, Ctb6, Ctb7, Ctb8, Ctb9, Ctb10, Ctb11, Ctb12, Lti6A, Lti6B | [ |
孕穗期 Booting stage | qCTB7, qCTB8, qCT-3-2, qLTB3, qCTB10-2 | [ |
Table 1 Low temperature tolerance genes in different stages of rice (Oryza sativa L.).
时期 Stage | 耐低温基因 Cold tolerance gene | 参考文献 Reference |
---|---|---|
芽期 Germination stage | qLTG-9, qLTG3-1 | [ |
苗期 Seedling stage | qCTS4, qCtss11, qSCT1, qSCT11, qLOP2/qPSR2-1, Aox3, COIN, Ctb6, Ctb7, Ctb8, Ctb9, Ctb10, Ctb11, Ctb12, Lti6A, Lti6B | [ |
孕穗期 Booting stage | qCTB7, qCTB8, qCT-3-2, qLTB3, qCTB10-2 | [ |
调控代谢类型 Regulatory metabolic type | 基因 Cold tolerance gene | 参考文献 Reference |
---|---|---|
电介质渗透 Dielectric penetration | CBF1, OsLti6, OsZFP245, OsOVP1, OsNAC5 | [ |
过氧化氢 H2O2 | OsAPXa, OsMKK6, OsAPXa, OsMPK3, OsNAC6, OsTrx23 | [ |
自由基 Free radicals | OsAPXa | [ |
可溶性糖 Soluble sugar | OsINV4, OsTPP1, OsTPS1, OsDREB1A, OsNAC5 | [ |
脯氨酸 Proline | OsINV4, OsDREB1A, OsMYB2, OsOVP1, OsNAC5, OsMYB4, OsPRP3, OsZFP245, OsMYB3R-2 | [ |
谷胱甘肽 Glutathione | OsTrx23, OsCPK24 | [ |
脱落酸 ABA | OsPHS1, OsPHS2, OsPHS3-1, OsPHS4, OsPDS, OsABA8ox1 | [ |
Fv/Fm | CBF1, OsAsr1, OsASR3, OsCDPK7 | [ |
丙二醛 MDA | OsAPXa, OsMKK6, OsMPK3, OsNAC6 | [ |
Table 2 Different genes regulate metabolism of low temperature tolerance in rice (Oryza sativa L.).
调控代谢类型 Regulatory metabolic type | 基因 Cold tolerance gene | 参考文献 Reference |
---|---|---|
电介质渗透 Dielectric penetration | CBF1, OsLti6, OsZFP245, OsOVP1, OsNAC5 | [ |
过氧化氢 H2O2 | OsAPXa, OsMKK6, OsAPXa, OsMPK3, OsNAC6, OsTrx23 | [ |
自由基 Free radicals | OsAPXa | [ |
可溶性糖 Soluble sugar | OsINV4, OsTPP1, OsTPS1, OsDREB1A, OsNAC5 | [ |
脯氨酸 Proline | OsINV4, OsDREB1A, OsMYB2, OsOVP1, OsNAC5, OsMYB4, OsPRP3, OsZFP245, OsMYB3R-2 | [ |
谷胱甘肽 Glutathione | OsTrx23, OsCPK24 | [ |
脱落酸 ABA | OsPHS1, OsPHS2, OsPHS3-1, OsPHS4, OsPDS, OsABA8ox1 | [ |
Fv/Fm | CBF1, OsAsr1, OsASR3, OsCDPK7 | [ |
丙二醛 MDA | OsAPXa, OsMKK6, OsMPK3, OsNAC6 | [ |
[1] | 徐伟豪, 柳洪良, 朴雪梅, 韩云哲, 王亮, 张基德, 具红光. 不同生育时期低温胁迫对水稻保护酶的影响[J]. 现代农业研究, 2020,26(5):49-53. |
Xu W H, Liu H L, Pu X M, Han Y Z, Wang L, Zhang J D, Ju H G. Effects of low temperature stress on protective enzymes in rice leaves at different growth stages[J]. Modern Agriculture Research, 2020,26(5):49-53. (in Chinese with English abstract) | |
[2] | 孙擎, 杨再强, 高丽娜, 殷剑敏, 王学林, 李伶俐. 低温对早稻幼穗分化期叶片生理特性的影响及其与产量的关系[J]. 中国生态农业学报, 2014,22(11):1326-1333. |
Sun Q, Yang Z Q, Gao L N, Yin J M, Wang X L, Li L L. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice[J]. Chinese Journal of Eco-Agriculture, 2014,22(11):1326-1333. (in Chinese with English abstract) | |
[3] | 余保生, 王万福, 谢保忠. 极端温度对水稻生产的影响[J]. 现代农业科技, 2010(24): 92, 98. |
Yu B S, Wang W F, Xie B Z. Effect of extreme temperature on rice production[J]. Modern Agriculture Research, 2010(24): 92, 98. (in Chinese) | |
[4] | 王芹. 气候条件对水稻生长的影响[J]. 现代农业科技, 2012(22):242. |
Wang Q. Effects of Climatic conditions on the growth of rice[J]. Modern Agricultural Science and Technology, 2012(22):244. (in Chinese with English abstract) | |
[5] | 陶乐圆, 刘智蕾, 刘婷婷, 于彩莲, 王伟, 李奕, 彭显龙. 营养生长期低温持续时间与水稻生长恢复的关系[J]. 生态学杂志, 2018,37(12):3610-3616. |
Tao L Y, Liu Z L, Liu T T, Yu C L, Wang W, Li Y, Peng X L. The relationship between low temperature duration and growth recovery of rice during the vegetative growth stage[J]. Chinese Journal of Ecology, 2018,37(12):3610-3616. (in Chinese with English abstract) | |
[6] | 杨志涛, 李媛, 张少红, 杨梯丰, 赵均良, 董景芳, 陈光辉, 刘斌. 377份多样性国际稻种低温发芽力评价[J]. 广东农业科学, 2017,44(4):1-6. |
Yang Z T, Li Y, Zhang S H, Yang D F, Zhao J L, Dong J F, Chem G H, Liu B. Evaluation of low temperature germination ability of 377 diversity international rice varieties[J]. Guangdong Academy of Agricultural Sciences, 2017(4):1-6. (in Chinese with English abstract) | |
[7] | 肖宇龙, 邱在辉, 林洪鑫, 胡启锋, 王晓玲, 雷建国, 王智权, 熊宏亮, 余传元. 苗期低温对早稻品种产量相关性状的影响[J]. 江西农业学报, 2014,26(7):1-4. |
Xiao Y L, Qiu Z H, Lin H X, Hu Q F, Wang X L, Lei J G, Wang Z Q, Xiong H L, Yu C Y. Effects of low temperature at seedling stage on yield-related traits of early rice varieties[J]. Acta Agriculturae Jiangxi, 2014,26(7):1-4. (in Chinese with English abstract) | |
[8] | 李健陵, 霍治国, 吴丽姬, 朱庆华, 胡飞. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学, 2014,28(3):277-288. |
Li L J, Huo Z G, Wu L J, Zhu Q H, Hu F. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage[J]. Chinese Journal of Rice Science, 2014,28(3):277-288. (in Chinese with English abstract) | |
[9] | 张金恩, 聂秋生, 李迎春, 田俊, 王尚明, 陆魁东. 颖花分化期低温处理对早稻叶片光合能力和产量的影响[J]. 中国农业气象, 2014,35(4):410-416. |
Zhang J E, Nie Q S, Li Y C, Tian J, Wang S M, Lu K D. Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at the spikelet differentiation stage[J]. Chinese Journal of Agrometeorology, 2014,35(4):410-416. (in Chinese with English abstract) | |
[10] | 张荣萍, 马均, 蔡光泽, 孙永健. 开花期低温胁迫对四川攀西稻区水稻开花结实的影响[J]. 作物学报, 2012,38(9):1734-1742. |
Zhang R P, Ma J, Cai G Z, Sun Y J. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi region[J]. Acta Agronomica Sinica, 2012,8(9):1734-1742. (in Chinese with English abstract) | |
[11] | 钟楚, 朱颖墨, 朱勇, 朱斌, 张茂松, 徐梦莹. 云南不同类型一季稻产量形成及其与气象因子的关系[J]. 应用生态学报, 2013,24(10):2831-2842. |
Zhong C, Zhu Y M, Zhu Y, Zhu B, Zhang M S, Xu M Y. Yield formation of different single-season rice (Oryza sativa L.) types and its relationships with meteorological factors in Yunnan Province of Southwest China[J]. Chinese Journal of Applied Ecology, 2013,24(10):2831-2842. (in Chinese with English abstract) | |
[12] | 龚金龙, 张洪程, 胡雅杰, 龙厚元, 常勇, 王艳, 邢志鹏, 霍中洋. 灌浆结实期温度对水稻产量和品质形成的影响[J]. 生态学杂志, 2013,32(2):482-491. |
Long J L, Zhang H C, HuY J, Long H Y, Chang Y, Wang Y, Xing Z P, Huo Z Y. Effects of air temperature during rice grain-filing period on the formation of rice grain yield and its quality[J]. Chinese Journal of Ecology, 2013,32(2):482-491. (in Chinese with English abstract) | |
[13] | 吴立群, 蔡志欢, 张桂莲, 刘逸童, 赵瑞. 低温对不同耐冷性水稻品种秧苗生理特性及根尖解剖结构的影响[J]. 中国农业气象, 2018,39(12):805-813. |
Wu L Q, Cai Z H, Zhang G L, Liu Y D, Zhao R. Effects of Low temperature on physiological characteristics of rice seedlings with different cold tolerance and anatomical structure of root tip[J]. Chinese Journal of Agrometeorology, 2018,39(12):805-813. (in Chinese with English abstract) | |
[14] | 王国莉, 郭振飞. 低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J]. 中国水稻科学, 2005,19(4):381-383. |
Wang G L, Guo Z F. Effects of chilling stress on photosynthetic rate and the parameters of chlorophyll fluorescence in two rice varieties differing in sensitivity[J]. Chinese Journal of Rice Science, 2005,19(4):381-383. (in Chinese with English abstract) | |
[15] | 王亚男, 范思静. 低温胁迫对水稻幼苗叶片生理生化特性的影响[J]. 安徽农业科学, 2017,45(5):8-13. |
Wang Y N, Fan S J. Effects of low-temperature stress on the physiological and biochemical characteristics of rice seedling leaves[J]. Journal of Anhui Agricultural Sciences, 2017,45(5):8-13. (in Chinese with English abstract) | |
[16] | 王艳春, 王士强, 赵海红. 寒地水稻冷害减产原因与生理机制的研究进展[J]. 现代化农业, 2009(9):7-8. |
Wang Y C, Wang S Q, Zhao H H. Research progress on yield reduction causes and physiological mechanism of rice chilling injury in cold regions[J]. Modernizing Agriculture, 2009(9):7-8. (in Chinese) | |
[17] | Yan J, Zou D T, Wang J G, Sha H J, Li H L, Inayat M A, Sun J. Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage[J]. Plant Growth Regulation, 2017,36(1):240-253. |
[18] | 黄伟军. 低温冷害对陆丰市水稻秧苗期的影响与病害防治[J]. 中国农业信息, 2013(5):114. |
Hang W J. Effect of low temperature and chilling injury on rice seedling stage and disease control in Lufeng City[J]. China Agricultural Information, 2013(5):114. (in Chinese with English abstract) | |
[19] | 吕晓, 张兵兵, 杨璐, 战莘晔, 吴航, 高全, 张慧, 高莉莉. 水稻拔节期和抽穗期低温对稻米品质影响[J]. 广东农业科学, 2020,47(2):1-8. |
Lv X, Zhang B B, Yang L, Zhan Z Y, Wu H, Gao Q, Zhang H, Gao L L. Effect of low temperature on rice quality at jointing and heading stages[J]. Guangdong Agricultural Science, 2020,47(2):1-8. (in Chinese with English abstract) | |
[20] | 谭孟祥, 景元书, 薛杨, 曾文全. 水层深度对早稻幼穗分化期遭遇低温过程时叶片生理特性的影响[J]. 中国农业气象, 2015,36(5):553-560. |
Tan M X, Jing Y S, Xue Y, Zeng W Q. Effects of different water depth on leaf physiological characteristics of early rice during panicle primordium suffered to low temperature[J]. Chinese Journal of Agrometeorology, 2015,36(5):553-560. (in Chinese with English abstract) | |
[21] | 任红茹, 荆培培, 胡宇翔, 陈雨霏, 陈梦云, 霍中洋. 孕穗期低温对水稻生长及产量形成的影响[J]. 中国稻米, 2017,23(4):56-62. |
Ren H R, Jing P P, Hu Y X, Chen Y F, Chen M Y, Huo Z Y. Effects of low temperature at booting stage on growth and yield formation of rice[J]. China Rice, 2017,23(4):56-62. (in Chinese with English abstract) | |
[22] | 陆魁东, 罗伯良, 黄晚华, 崔伟. 影响湖南早稻生产的五月低温的风险评估[J]. 中国农业气象, 2011,32(2):283-289. |
Lu K D, Luo B L, Huang W H, Cui W. Risk evaluation of the effects of chilling in may on early rice production in Hunan Province[J]. Chinese Journal of Agrometeorology, 2011,32(2):283-289. (in Chinese with English abstract) | |
[23] | 马树庆, 刘晓航, 邓奎才, 全虎杰, 佟丽媛, 袭祝香, 柴庆荣, 杨军. 幼穗形成期低温对水稻结实的影响[J]. 应用生态学报, 2018,29(1):125-132. |
Ma S Q, Liu X H, Deng K C, Quan H J, Long L Y, Xi Z X, Cai Q Z, Yang J. Impact of low temperature in young ear formation stage on rice seed setting[J]. Chinese Journal of Applied Ecology, 2018,29(1):125-132. (in Chinese with English abstract) | |
[24] | 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 龚明, 邹竹荣. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014,34(9):1916-1926. |
Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zhou Z Z. Generation of reactive oxygen species and their functions and deleterious effects in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014,34(9):1916-1926. (in Chinese with English abstract) | |
[25] | Iqbal M, Ashraf M, Rehman S U, Rha E S. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in Hexaploid wheat (Triticum aestivum L.) plants under salt stress[J] ? Botanical Studies, 2006,47(3):239-250. |
[26] | Yang J H, Gao Y, Li Y M, Qi X H, Zhang M F. Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon[J]. Scientia Horticulturae, 2008,118(3):200-205. |
[27] | Kamal-Eldin A, Appelqvist L A. The chemistry and antioxidant properties of tocopherols and tocotrienols[J]. Lipids, 1996,31(7):671-701. |
[28] | 宋智娟, 赵国先, 张晓云, 李岁寒. 维生素E与硒的抗氧化机理及其相互关系[J]. 饲料博览, 2005(7):6-9. |
Song Z J, Zhao G X, Zhang X Y, Li S H. Antioxidant mechanism and relationship between vitamin E and selenium[J]. Feed Review, 2005(7):6-9. (in Chinese) | |
[29] | Sun L, Zhang H, Li D, Huang L, Hong Y, Ding X S, Nelson R S, Zhou X, Song F. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Molecular Biology, 2013,81(1-2):41-56. |
[30] | Miura K, Jin J B, Lee J, Yoo C Y, Stirm V, Miura T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2007,19(4):1403-1411. |
[31] | Wang Y, Hua J. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance[J]. The Plant Journal, 2010,60(2):340-349. |
[32] | 高红秀, 朱琳, 刘天奇, 张忠臣. 水稻植物激素响应低温胁迫反应的转录组分析[J]. 分子植物育种, 2020(4):1-13. |
Gao H X, Zhu L, Liu T Q, Zhang Z C. Transcriptomic analysis of hormone response to low temperature stress in rice plants[J]. Molecular Plant Breeding, 2020(4):1-13. (in Chinese with English abstract) | |
[33] | Sah S K, Reddy K R, Li J. Abscisic acid and abiotic stress tolerance in crop plants[J]. Frontier in Plant Science, 2016,7:571. |
[34] | 陈莎莎, 兰海燕. 植物对盐胁迫响应的信号转导途径[J]. 植物生理学报, 2011,47(2):119-128. |
Chen S S, Lan H Y. Signal transduction pathways in response to salt stress in plants[J]. Plant Physiology Journal, 2011,47(2):119-128. (in Chinese with English abstract) | |
[35] | Shi Y T, Yang S H. COLD1: A cold sensor in rice[J]. Science China Life Sciences, 2015,58(4):1-2. |
[36] | Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. OsCDPK13, a calcium dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]. Plant Molecular Biology, 2004,55(4):541-552. |
[37] | Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014,84:19-36. |
[38] | Liu C, Ou S, Mao B, Tang J, Wei W. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018,9:3302. |
[39] | Liu C, Michael R. Schlppi, Mao B, Wei W, Wang A, Chu C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019,17(9):1834-1849. |
[40] | Ma Y, Dai X, Xu Y, Luo W, Chong K. COLD1 confers chilling tolerance in rice[J]. Cell, 2015,6(160):1209-1221. |
[41] | Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Overexpression of a single Ca 2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants [J]. The Plant Journal, 2000,23:319-327. |
[42] | Morsy M R, Almutairi A M, Gibbons J, Song J Y, Reyes B G D L. The OsLti6 genes encoding low- molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature[J]. Gene, 2005,344:171-180. |
[43] | Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxinh of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro[J]. FEBS Letters, 2009,583:2734-2738. |
[44] | Li L, Liu X, Xie K, Wang Y, Liu F, Lin Q, Wang W, Yang C, Lu B, Liu S. qLTG-9, a stable quantitative trait locus for low temperature germination in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2013,126(9):2313-2322. |
[45] | Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germ inability in rice[J]. Proceedings of the National Academy of Sciences, 2008,105(34):12623-12628. |
[46] | Andaya V C, Tai T H. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.)[J]. Molecular Breeding, 2007,20(4):349-358. |
[47] | Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang Z X, Minobe Y. Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage[J]. Molecular Genetics & Genomics, 2010,284(1):45-54. |
[48] | Kim S M, Suh J P, Lee C K, Lee J H, Kim Y G, Jena K K. QTL mapping and development of candidate gene derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.)[J]. Molecular Genetics & Genomics, 2014,289(3):333-343. |
[49] | Ning X, Huang W N, Li A H, Gao Y, Chen J M. Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings[J]. Theoretical and Applied Genetics, 2015,128(1):173-185. |
[50] | Saika H, Ohtsu K, Hamanaka S, Nakazono M, Tsutsumi N, Hirai A. AOX1c, a novel rice gene for alternative oxidase; comparison with rice AOX1a and AOX1b[J]. Genes & Genetic Systems, 2002,77(1):31-38. |
[51] | Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007,226(4):1007-1016. |
[52] | Li H B, Wang J, Liu A M, Liu K D, Zhang Q, Zou J S. Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis[J]. Theoretical & Applied Genetics, 1997,95(7):1092-1097. |
[53] | Dai L, Lin X, Ye C, Ise K, Saito K, Kato A, Xu F, Yu T, Zhang D. Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice[J]. Breeding Science, 2004,54(3):253-258. |
[54] | Chiba B, Sasaki K, Nagano K, Ueda T, Yano M. Mapping of new quantitative trait loci controlling cold tolerance at booting stage on chromosome 7 in rice[J]. Breeding Research, 2004,6(2):68. |
[55] | El S. Physiological and molecular responses to abiotic stress in rice (Oryza sativa) and characterization of an up-regulated gene family[D]. Fayetteville, USA: University of Arkansas, 2005. |
[56] | Lei Z, Zeng Y, Zheng W, T Bo, Yang S, Zhang H, Li J, Li Z. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]. Theoretical and Applied Genetics, 2010,121(5):895-905. |
[57] | Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Sato A Y. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8[J]. Theoretical and Applied Genetics, 2007,115(5):593-600. |
[58] | Zhu Y, Chen K, Mi X, Chen T, Jauhar A, Ye G, Xu J, Li Z, Qian Q. Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice[J]. PLoS One, 2015,10(12):e0145704. |
[59] | Endo T, Chiba B, Wagatsuma K, Saeki K, Nishio T. Detection of QTLs for cold tolerance of rice cultivar 'Kuchum' and effect of QTL pyramiding[J]. Theoretical and Applied Genetics, 2016, 129(3): 631-640. |
[60] | Ji L, Pan Y H, Guo H F, Zhou L, Yang S M. Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice[J]. Theoretical and Applied Genetics, 2018,131(1):157-166. |
[61] | Oliver S N, Dongen J T V, Alfred S C, Mamun E A, Dolferus R. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility[J]. Plant Cell Environmental, 2005,28(12):1534-1551. |
[62] | Zhang J, Li J, Wang X, Chen J. OVP1, a vacuolar H +- translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance [J]. Plant Physiology Biochemistry, 2011,49(1):33-38. |
[63] | Islam F. 除草剂和盐胁迫对水稻和稗草生理生化和分子水平的比较分析研究[D]. 杭州: 浙江大学, 2017. |
Islam F. Comparative physio-biochemical and molecular analysis of interaction between herbicides and salinity in rice and barnyard grass[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
[64] | Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro[J]. FEBS Letters, 2009,583(17):2734-2738. |
[65] | Yutaka S, Yukari M, Koji S, Seiji M, Kenjiro O. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa[J]. Plant Cell Report, 2011,30(3):399-406. |
[66] | Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011,234(5):1007-1018. |
[67] | Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226(4):1007-1016. |
[68] | Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012,63(7):2541-2556. |
[69] | Park M R, Yun K Y, Mohanty B. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development[J]. Plant Cell Environmental, 2010,33(12):2209-2230. |
[70] | Vannini C, Locatelli F, Bracale M. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J]. Plant Journal, 2004,37(1):115-127. |
[71] | Ma Q B, Dai X P, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X H, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]. Plant Physiology, 2009,150(1):244-256. |
[72] | Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H S. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the over expression of a gene that encodes the zinc finger protein ZFP245[J]. Biochemical & Biophysical Research Communications, 2009,389(3):556-561. |
[73] | Du H, Wu N, Chang Y, Li X H, Xiao J H, Xiong L Z. Carotenoid deficiency impairs ABA and IAA biosynjournal and differentially affects drought and cold tolerance in rice[J]. Plant Molecular Biology, 2013,83(4-5):475-488. |
[74] | Mega R, Meguro-Maoka A, Endo A, Shimosaka E, Murayama S, Nambara E, Seo M, Kanno Y, Abrams S R, Sato Y. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.)[J]. Scientific Reports, 2015,5:13819. |
[75] | Lee S C, Huh K W, An K, An G, Kim S R. Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.)[J]. Molecules & Cells, 2004,18(1):107-114. |
[76] | Joo J, Lee Y H, Kim Y K, Nahm B H, Song S I. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities[J]. Molecules & Cells, 2013,35(5):421-435. |
[77] | Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca 2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants [J]. Plant Journal, 2000,23(3):319-327. |
[78] | Mustafa M R, Almutairi A M, Gibbons J, Yun S J, Reyes B G. The OsLti6 genes encoding low- molecularweight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature[J]. Gene, 2005,344:171-180. |
[79] | Xie G S, Kato H, Imai R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice[J]. Biochemical Journal, 2012,443(1):95-102. |
[80] | Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant Journal, 2007,51(4):617-630. |
[81] | Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiology, 2006,47(1):141-153. |
[82] | Ge L F, Chao D Y, Shi M, Zhu M Z, Gao J P, Lin H X. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J]. Planta, 2008,228(1):191-201. |
[83] | Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance[J]. Plant Molecular Biology, 2010,72(1-2):125-135. |
[84] | Liu Y, Xu C J, Zhu Y F, Zhang L N, Chen T Y, Zhou F, Chen H, Lin Y J. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice[J]. Journal of Integrative Plant Biology, 2018,60(2):173-188. |
[85] | 向殿军, 张瑜, 殷奎德. 农杆菌介导的转ICE1基因提高水稻的耐寒性[J]. 中国水稻科学, 2001,21(5):482-486. |
Xiang D J, Zhang Y, Yin K D. Transformation of ICE1 gene mediated by agrobacterium improves cold tolerance in transgenie rice[J]. Chinese Journal of Rice Science, 2001,21(5):482-486. (in Chinese with English abstract) | |
[86] | Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong Z. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007,226(4):1007-1016. |
[87] | Yang A, Dai X Y, Zhang W H. AR2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012,63(7):2541-2556. |
[88] | Huang L, Hong Y, Zhang H, Li D, Song F. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology, 2016,16:203. |
[89] | Song S Y, Chen Y, Chen J, Dai X Y, Zhang W H. Physiological mechanisms underlying OsNAC5- dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011,234(2):331-345. |
[90] | 何曙光, 李华平, 戴力, 刘洋, 匡炜, 方宝华, 赵杨. PQQ对低温胁迫下早稻幼苗生理特性的影响[J]. 湖南农业科学, 2020(5):17-20. |
He S G, Li H P, Dai L, Liu Y, Kuang W, Fang B H, Zhao Y. Effects of PQQ on physiological characteristics of early rice seedlings under low temperature stress[J]. Hunan Agricultural Sciences, 2020(5):17-20. (in Chinese with English abstract) | |
[91] | 郁平慧, 符卫蒙, 符冠富, 陶龙兴. 水杨酸与烯唑醇复配对水稻秧苗耐冷性的影响[J]. 中国稻米, 2020,26(3):28-31. |
Yu P H, Fu W M, Fu G F, Tao L X. Effects of salicylic acid and diniconazole combination on the cold tolerance of rice seedlings[J]. China Rice, 2020,26(3):28-31. (in Chinese with English abstract) | |
[92] | 安俊霞, 赵宇, 张正坤, 史海鹏, 纪东铭, 曹洪翼, 杜茜, 李启云. 公主岭霉素诱导对育苗期水稻耐冷性的影响[J]. 中国农业科学, 2020,53(11):2195-2206. |
An J X, Zhao Y, Zhang Z K, Shi H P, Ji D M, Cao H Y, Du X, Li Q Y. Induction of cold tolerance in rice at the breeding stage by Gongzhulingmycin[J]. Scientia Agricultura Sinice, 2020,53(11):2195-2206. (in Chinese with English abstract) | |
[93] | 吴旺嫔, 周伟江, 唐才宝, 刘坤, 曾红丽, 王悦. 2, 4-表油菜素内酯对低温胁迫下水稻种子萌发及生理特性的影响[J]. 分子植物育种, 2020,18(13):4427-4434. |
Wu W B, Zhou W J, Tang C B, Liu K, Zeng H L, Wang Y. Effects of exogenous 2,4-epibrassinolide on germination and physiological characteristics of rice seeds under chilling stress[J]. Molecular Plant Breeding, 2020,18(13):4427-4434. (in Chinese with English abstract) | |
[94] | Tábata B, Bianca R, Ceciliato P H O, Carlos G A J, Silva-Filho M C, Moura D S. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation[J]. Journal of Experimental Botany, 2014(8):2219. |
[95] | 项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响[J]. 草业学报, 2019,28(4):81-94. |
Xiang H T, Qi D Q, Li W, Zheng D F, Wang Y X, Wang D D, Wang L Z, Zeng X N, Yang C J, Zhou X, Zhao H D. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress[J]. Acta Prataculturae Sinica, 2019,28(4):81-94. (in Chinese with English abstract) | |
[96] | 项洪涛, 王彤彤, 郑殿峰, 王立志, 洛育, 李琬. 孕穗期低温条件下ABA对水稻结实率及叶片生理特性的影响[J]. 中国农学通报, 2016,32(36):16-23. |
Xiang H T, Wang D D, Wang L Z, Luo Y, Li W. Effect of ABA on seed-setting rate and physiological characteristics of rice leaves under low temperature stress at booting stage[J]. Chinese Agricultural Science Bulletin, 2016,32(36):16-23. (in Chinese with English abstract) | |
[97] | 李馨园, 杨晔, 张丽芳, 左师宇, 李丽杰, 焦健, 李晶. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节[J]. 作物学报, 2017,43(1):141-148. |
Li Q Y, Yang Y, Zhang L F, Zuo S Y, Li L J, Jiao J, Li J. Regulation on contents of endogenous hormones and asr1 gene expression of maize seedling by exogenous ABA under low-temperature stress[J]. Acta Agronomica Sinica, 2017,43(1):141-148. (in Chinese with English abstract) | |
[98] | Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynjournal[J]. Plant Molecular Biology, 2010,73(3):241-249. |
[99] | 朱春权, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华. 不同属性特征基质对早稻秧苗耐低温的影响[J]. 中国水稻科学, 2021,35(5):503-512. |
Zhu C Q, Xu Q S, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Zhang J H. Effects of substrates with different properties on chilling tolerance of early rice seedlings[J]. Chinese Journal of Rice Science, 2021,35(5):503-512. (in Chinese with English abstract) | |
[100] | 曹娜, 陈小荣, 贺浩华, 朱昌兰, 才硕, 徐涛, 谢亨旺, 刘方平. 幼穗分化期喷施磷钾肥对早稻抵御低温及产量和生理特性的影响[J]. 应用生态学报, 2017,28(11):3562-3570. |
Cao N, Chen X R, He H H, Zhu C L, Cai S, Xu T, Xie H W, Liu F P. Effects of spraying P and K fertilizers during panicle primordium differentiation stage on cold resistance, yield and physiological characteristics of early rice[J]. Chinese Journal of Applied Ecology, 2017,28(11):3562-3570. (in Chinese with English abstract) | |
[101] | 房玉军. 浅谈水稻栽培条件与冷害的关系[J]. 现代化农业, 2008(8):43-44. |
Fang Y J. A brief discussion on the relationship between rice cultivation conditions and chilling injury[J]. Moderning agriculture, 2008(8):43-44. (in Chinese with English abstract) | |
[102] | 李海波, 于广星, 陈盈, 赵琦, 付亮, 马亮, 代贵金, 侯守贵. 氮磷钾不同施用比例对抽穗开花期水稻低温伤害的预防效果研究. 中国作物学会. 2014年全国青年作物栽培与生理学术研讨会论文集[C]. 扬州: 中国作物学会, 2014: 1. |
Li H B, Yu G X, Chen Y, Zhao Q, Fu L, Dai J G, Hou S H. Study on the preventive effect of different application ratio of nitrogen, phosphorus and potassium on low temperature injury of rice at heading and flowering stage[C]. Yangzhou: Crop Society of China, 2014: 1. (in Chinese with English abstract) | |
[103] | Sun X C, Hu C X, Tan Q L, Liu J S, Liu H G. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress[J]. Annals of Botany, 2009(2):345-356. |
[104] | 梁颖, 王三根. Ca2+对低温下水稻幼苗膜的保护作用[J]. 作物学报, 2001(1):59-64. |
Liang Y, Wang S Y. Protective effect of Ca 2+ on membrane of Rice seedlings at low temperature [J]. Acta Agronomica Sinica, 2001,27(1):59-64. (in Chinese with English abstract) | |
[105] | 康丽敏. 低温与CaCl2处理对水稻幼苗的影响[J]. 农业科技通讯, 2011(3):48-50. |
Kang L M. Effects of low temperature and CaCl2 treatment on rice seedlings[J]. Bulletin of Agricultural Science and Technology, 2011(3):48-50. (in Chinese) | |
[106] | 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展[J]. 中国农业科学, 2021,54(11):2287-2301. |
Wang X, Cai J, Zhou Q, Dai T B, Jiang D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review[J]. Scientia Agricultura Sinica, 2021,54(11):2287-2301. (in Chinese with English abstract) | |
[107] | 胡国辉. 生物可降解膜覆盖对机插水稻生长及甲烷排放的影响[D]. 北京: 中国农业科学院, 2020. |
Hu G H. Effects of biodegradable film mulching on growth and methane emission of mechanically implanted rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract) | |
[108] | 王洪军, 贺萍. 低温冷害对水稻生育的影响及防御措施[J]. 黑龙江气象, 2012,29(1):37-38. |
Wang H J, He P. Effects of chilling injury on rice growth and preventive measures[J]. Heilongjiang Meteorology, 2012,29(1):37-38. (in Chinese) | |
[109] | 陈大洲, 肖叶青, 赵社香, 皮勇华, 熊焕金, 罗利军. 东乡野生稻苗期耐寒性的遗传研究[J]. 江西农业大学学报, 1997,19(4):58-61. |
Chen D Z, Ye X Q, Zhao S X, Pi Y H, Xiong H J, Luo L J. Genetic study on cold tolerance of dongxiang wild rice at seedling stage[J]. Acta Agriculturae Universitatis Jiangxiensis, 1997,19(4):58-61. (in Chinese with English abstract) |
[1] | FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385. |
[2] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[3] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[4] | HU Li, YANG Fanmin, CHEN Weilan, YUAN Hua. Research Progress in Biological Functions of SPL Family Transcription Factors in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 223-232. |
[5] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[6] | GAO Junru, QUAN Hongyu, YUAN Liuzhen, LI Qinying, QIAO Lei, LI Wenqiang. Map-based Cloning and Functional Analysis of a New Allele of D1, a Gene Controlling Plant Height in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2024, 38(2): 140-149. |
[7] | LIANG Chuyan, WU Mingming, HUANG Fengming, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Prospects for the Application of Gene Editing and Genomic Selection in Rice Breeding [J]. Chinese Journal OF Rice Science, 2024, 38(1): 1-12. |
[8] | CHENG Zuxin, XIAO Changchun, ZHANG Yuting, HUANG Xinying, SHI Xialei, LING Bo, WANG Hongchao, CHEN Xiaoling, LIN Lihui. Genetic Effects of Antioxidant Components in Red Rice and Its Interactions with Environment [J]. Chinese Journal OF Rice Science, 2024, 38(1): 25-32. |
[9] | WANG Tengjiao, CHEN Chen. Mechanisms Behind Aleurone Development in Cereals and Its Application in Breeding [J]. Chinese Journal OF Rice Science, 2023, 37(5): 459-469. |
[10] | CHEN Mingliang, XIONG Wentao, SHEN Yumin, XIONG Huanjin, LUO Shiyou, WU Xiaoyan, HU Lanxiang, XIAO Yeqing. Genetic Dissection of Broad Spectrum Resistance of the Rice Maintainer Ganxiang B [J]. Chinese Journal OF Rice Science, 2023, 37(5): 470-477. |
[11] | HUANG Qina, XU Youxiang, LIN Guanghao, DANG Hongyang, ZHENG Zhenquan, ZHANG Yan, WANG Han, SHAO Guosheng, YIN Xianyuan. Effects of Silicon on Antioxidant Enzyme System and Expression Levels of Genes Related to Cd2+ Uptake and Transportation in Rice Seedlings Under Cadmium Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 486-496. |
[12] | XU Huan, ZHOU Tao, SUN Yue, WANG Mumei, YANG Yachun, MA Hui, LI Hao, XU Dawei, ZHOU Hai, YANG Jianbo, NI Jinlong. Characterization and Gene Mapping of a Glume Lesion Mimic Mutant glmm1 in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(5): 497-506. |
[13] | XIA Yang, LI Chuanming, LIU Qin, HAN Guangjie, XU Bin, HUANG Lixin, QI Jianhang, LU Yurong, XU Jian. Effects of Piriformospora indica on the Growth and Antioxidant System of Rice Seedlings Under Salt Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 543-552. |
[14] | LI Gang, GAO Qingsong, LI Wei, ZHANG Wenxia, WANG Jian, CHEN Baoshan, WANG Di, GAO Hao, XU Weijun, CHEN Hongqi, JI Jianhui. Directed Knockout of SD1 Gene Improves Lodging Resistance and Blast Resistance of Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 359-367. |
[15] | GAO Qianqing, REN Xiaojian, ZHAI Zhongbing, ZHENG Pubing, WU Yuanfen, CUI Kehui. Effects of Panicle and Bud-promoting Nitrogen Fertilizer Application on Growth of Regenerated Bud and Grain Yield of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 405-414. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||