Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (6): 573-585.DOI: 10.16819/j.1001-7216.2021.210110
Previous Articles Next Articles
Jie LI1, Rongrong TIAN1, Tianliang BAI1, Chunyan ZHU1, Jiawei SONG1, Lei TIAN1,*(), Shuaiguo MA1,2, Jiandong LÜ1, Hui HU1, Zhenyu WANG1, Chengke LUO1, Yinxia ZHANG1, Peifu LI1
Received:
2021-01-12
Revised:
2021-03-20
Online:
2021-11-10
Published:
2021-11-10
Contact:
Lei TIAN
李杰1, 田蓉蓉1, 白天亮1, 朱春艳1, 宋佳伟1, 田蕾1,*(), 马帅国1,2, 吕建东1, 胡慧1, 王震宇1, 罗成科1, 张银霞1, 李培富1
通讯作者:
田蕾
基金资助:
Jie LI, Rongrong TIAN, Tianliang BAI, Chunyan ZHU, Jiawei SONG, Lei TIAN, Shuaiguo MA, Jiandong LÜ, Hui HU, Zhenyu WANG, Chengke LUO, Yinxia ZHANG, Peifu LI. Comprehensive Evaluation and QTL Analysis for Flag Leaf Traits Using a Backcross Population in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(6): 573-585.
李杰, 田蓉蓉, 白天亮, 朱春艳, 宋佳伟, 田蕾, 马帅国, 吕建东, 胡慧, 王震宇, 罗成科, 张银霞, 李培富. 水稻回交群体剑叶性状综合评价及QTL定位[J]. 中国水稻科学, 2021, 35(6): 573-585.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.210110
Fig. 1. Flag leaf traits of parents and BC3F2 population. A, Dynamic changes in SPAD values of flag leaf of Bertone and Koshihikari in 2018; B, Morphological traits of flag leaf of parents and representative lines of BC3F2. K, Koshihikari; 1-10, Representative lines of BC3F2; Vertical lines represent 5 cm.
性状 Trait | 亲本 Parent | 世代 Generation | 群体参数 Parameter of two populations | ||||||
---|---|---|---|---|---|---|---|---|---|
越光Koshihikari | Bertone | 均值±标准差 Mean±SD | 分布范围 Range | 变异系数 CV/% | 峰度 Kurtosis | 偏度 Skewness | |||
剑叶SPAD FLSPAD | 35.67 | 44.06** | BC3F1 | 41.16±3.60 | 32.40~52.50 | 8.75 | 0.18 | 0.31 | |
BC3F2 | 36.40±2.71 | 30.40~49.00 | 7.31 | 2.49 | 1.07 | ||||
剑叶长 FLL/cm | 29.28 | 35.38* | BC3F1 | 30.16±5.18 | 15.83~44.53 | 17.18 | -0.02 | -0.24 | |
BC3F2 | 27.76±2.94 | 20.80~40.75 | 10.59 | 2.54 | 0.92 | ||||
剑叶宽 FLW/cm | 1.21 | 1.80** | BC3F1 | 1.20±0.14 | 0.80~1.57 | 11.67 | 0.42 | -0.30 | |
BC3F2 | 1.21±0.08 | 1.00~2.00 | 5.00 | 45.09 | 5.13 | ||||
剑叶长宽比 FLWR | 24.20 | 19.66* | BC3F1 | 25.30±4.43 | 13.61~42.10 | 17.51 | 1.24 | 0.60 | |
BC3F2 | 23.07±2.43 | 16.00~33.96 | 10.64 | 1.66 | 0.45 | ||||
剑叶面积FLA/cm2 | 26.57 | 47.76** | BC3F1 | 27.32±6.23 | 9.50~46.27 | 22.80 | 0.11 | -0.31 | |
BC3F2 | 25.15±3.67 | 17.66~54.53 | 12.81 | 17.77 | 2.85 |
Table 1 Performance of five flag leaf traits of Koshihikari, Bertone and two backcross populations.
性状 Trait | 亲本 Parent | 世代 Generation | 群体参数 Parameter of two populations | ||||||
---|---|---|---|---|---|---|---|---|---|
越光Koshihikari | Bertone | 均值±标准差 Mean±SD | 分布范围 Range | 变异系数 CV/% | 峰度 Kurtosis | 偏度 Skewness | |||
剑叶SPAD FLSPAD | 35.67 | 44.06** | BC3F1 | 41.16±3.60 | 32.40~52.50 | 8.75 | 0.18 | 0.31 | |
BC3F2 | 36.40±2.71 | 30.40~49.00 | 7.31 | 2.49 | 1.07 | ||||
剑叶长 FLL/cm | 29.28 | 35.38* | BC3F1 | 30.16±5.18 | 15.83~44.53 | 17.18 | -0.02 | -0.24 | |
BC3F2 | 27.76±2.94 | 20.80~40.75 | 10.59 | 2.54 | 0.92 | ||||
剑叶宽 FLW/cm | 1.21 | 1.80** | BC3F1 | 1.20±0.14 | 0.80~1.57 | 11.67 | 0.42 | -0.30 | |
BC3F2 | 1.21±0.08 | 1.00~2.00 | 5.00 | 45.09 | 5.13 | ||||
剑叶长宽比 FLWR | 24.20 | 19.66* | BC3F1 | 25.30±4.43 | 13.61~42.10 | 17.51 | 1.24 | 0.60 | |
BC3F2 | 23.07±2.43 | 16.00~33.96 | 10.64 | 1.66 | 0.45 | ||||
剑叶面积FLA/cm2 | 26.57 | 47.76** | BC3F1 | 27.32±6.23 | 9.50~46.27 | 22.80 | 0.11 | -0.31 | |
BC3F2 | 25.15±3.67 | 17.66~54.53 | 12.81 | 17.77 | 2.85 |
Fig. S1 Parents and BC3F2 population flag leaf characteristicsa: Dynamic changes of SPAD values of Bertone and Koshihikari flag leaf in 2018; b:Morphological characteristics of flag leaf of parents and representative lines of BC3F2; c~g: Boxplots of flag leaf SPAD, flag leaf length, flag leaf width, length to width ratio of flag leaf and flag leaf area of parents and BC3F2 populations ; A: Bertone; B: Koshihikari; 1~10: 10 representative lines of BC3F2; Vertical lines represent 5 cm; *Significant at P<0.05; **Significant at P<0.01; The same as below.
性状 Trait | 剑叶SPAD FLSPAD | 剑叶长 FLL | 剑叶宽 FLW | 剑叶长宽比 FLWR |
---|---|---|---|---|
剑叶长 Flag leaf length | 0.089 | |||
剑叶宽 Flag leaf width | 0.052 | 0.190** | ||
剑叶长宽比 Length to width ratio of flag leaf | 0.069 | 0.897** | -0.259** | |
剑叶面积 Flag leaf area | 0.094 | 0.913** | 0.569** | 0.641** |
Table 2 Correlation analysis on flag leaf traits in BC3F2 population.
性状 Trait | 剑叶SPAD FLSPAD | 剑叶长 FLL | 剑叶宽 FLW | 剑叶长宽比 FLWR |
---|---|---|---|---|
剑叶长 Flag leaf length | 0.089 | |||
剑叶宽 Flag leaf width | 0.052 | 0.190** | ||
剑叶长宽比 Length to width ratio of flag leaf | 0.069 | 0.897** | -0.259** | |
剑叶面积 Flag leaf area | 0.094 | 0.913** | 0.569** | 0.641** |
性状 Trait | CI1 | CI2 | CI3 |
---|---|---|---|
剑叶SPAD Flag leaf SPAD | 0.147 | 0.092 | 0.985 |
剑叶长 Flag leaf length | 0.991 | -0.123 | -0.046 |
剑叶宽 Flag leaf width | 0.306 | 0.948 | -0.082 |
剑叶长宽比 Length to width ratio of flag leaf | 0.838 | -0.545 | -0.004 |
剑叶面积 Flag leaf area | 0.954 | 0.288 | -0.074 |
特征值 Eigenvalue | 2.709 | 1.302 | 0.984 |
贡献率 Contribution / % | 54.171 | 26.043 | 19.683 |
累计贡献率Cumulative contribution / % | 54.171 | 80.214 | 99.897 |
Table 3 Load value, eigenvalue and contribution rate of three principal components of five flag leaf traits.
性状 Trait | CI1 | CI2 | CI3 |
---|---|---|---|
剑叶SPAD Flag leaf SPAD | 0.147 | 0.092 | 0.985 |
剑叶长 Flag leaf length | 0.991 | -0.123 | -0.046 |
剑叶宽 Flag leaf width | 0.306 | 0.948 | -0.082 |
剑叶长宽比 Length to width ratio of flag leaf | 0.838 | -0.545 | -0.004 |
剑叶面积 Flag leaf area | 0.954 | 0.288 | -0.074 |
特征值 Eigenvalue | 2.709 | 1.302 | 0.984 |
贡献率 Contribution / % | 54.171 | 26.043 | 19.683 |
累计贡献率Cumulative contribution / % | 54.171 | 80.214 | 99.897 |
性状 Trait | 剑叶SPAD FLSPAD | 剑叶长 FLL | 剑叶宽 FLW | 长宽比 FLWR | 剑叶面积 FLA | D值 D value | 株高 PH | 穗长 PL | 分蘖数 TN | 有效穗数 EP | 单株产量 YPP |
---|---|---|---|---|---|---|---|---|---|---|---|
剑叶长FLL | 0.456* | 1.000 | |||||||||
剑叶宽FLW | 0.206 | 0.438* | 1.000 | ||||||||
剑叶长宽比FLWR | 0.422* | 0.889** | -0.015 | 1.000 | |||||||
剑叶面积FLA | 0.417* | 0.930** | 0.735** | 0.663** | 1.000 | ||||||
D值 D value | 0.594** | 0.934** | 0.683** | 0.697** | 0.978** | 1.000 | |||||
株高PH | 0.455* | 0.699** | 0.377* | 0.606** | 0.670** | 0.702** | 1.000 | ||||
穗长PL | 0.449* | 0.776** | 0.350 | 0.697** | 0.726** | 0.748** | 0.653** | 1.000 | |||
分蘖数TN | 0.321 | 0.264 | 0.159 | 0.202 | 0.252 | 0.300 | 0.177 | -0.010 | 1.000 | ||
有效穗数EP | 0.260 | 0.290 | 0.222 | 0.203 | 0.299 | 0.327 | 0.187 | 0.036 | 0.963** | 1.000 | |
单株产YPP | 0.478** | 0.598** | 0.525** | 0.422* | 0.649** | 0.686** | 0.526** | 0.451* | 0.666** | 0.720** | 1.000 |
茎基粗BCT | 0.502** | 0.825** | 0.513** | 0.675** | 0.823** | 0.847** | 0.797** | 0.750** | 0.228 | 0.254 | 0.680** |
Table 4 Correlation matrix of flag leaf-related traits and agronomic traits in BC3F2 lines with high and low D values.
性状 Trait | 剑叶SPAD FLSPAD | 剑叶长 FLL | 剑叶宽 FLW | 长宽比 FLWR | 剑叶面积 FLA | D值 D value | 株高 PH | 穗长 PL | 分蘖数 TN | 有效穗数 EP | 单株产量 YPP |
---|---|---|---|---|---|---|---|---|---|---|---|
剑叶长FLL | 0.456* | 1.000 | |||||||||
剑叶宽FLW | 0.206 | 0.438* | 1.000 | ||||||||
剑叶长宽比FLWR | 0.422* | 0.889** | -0.015 | 1.000 | |||||||
剑叶面积FLA | 0.417* | 0.930** | 0.735** | 0.663** | 1.000 | ||||||
D值 D value | 0.594** | 0.934** | 0.683** | 0.697** | 0.978** | 1.000 | |||||
株高PH | 0.455* | 0.699** | 0.377* | 0.606** | 0.670** | 0.702** | 1.000 | ||||
穗长PL | 0.449* | 0.776** | 0.350 | 0.697** | 0.726** | 0.748** | 0.653** | 1.000 | |||
分蘖数TN | 0.321 | 0.264 | 0.159 | 0.202 | 0.252 | 0.300 | 0.177 | -0.010 | 1.000 | ||
有效穗数EP | 0.260 | 0.290 | 0.222 | 0.203 | 0.299 | 0.327 | 0.187 | 0.036 | 0.963** | 1.000 | |
单株产YPP | 0.478** | 0.598** | 0.525** | 0.422* | 0.649** | 0.686** | 0.526** | 0.451* | 0.666** | 0.720** | 1.000 |
茎基粗BCT | 0.502** | 0.825** | 0.513** | 0.675** | 0.823** | 0.847** | 0.797** | 0.750** | 0.228 | 0.254 | 0.680** |
Fig. 4. Graphical genotypes of the 260 BC3F1 lines of Bertone with Koshihikari genetic background. The blue regions indicate the heterozygous genotype; the red regions indicate the homozygous genotype of Bertone; the gray regions indicate the homozygous genotype of Koshihikari.
Fig. 5. Location and the distribution of QTLs for flag leaf related traits in BC3F1 population on chromosomes in rice. Solid symbol represents the QTL to which SPA is legally assigned;Hollow symbol represents the QTL to which IM is legally assigned.
QTL | 染色体Chromosome | 位置 Position /cM | 标记 Marker | 标记区间 Marker interval | 单标记分析SPA | 区间作图IM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 贡献率PVE/% | 加性效应 Add | LOD | 贡献率PVE/% | 加性效应 Add | 文献 Reference | ||||||
qFLSPAD1 | 1 | 213.8 | RM297 | RM297—RM5310 | 3.91 | 7.00 | 1.51 | 3.16 | 5.57 | 1.21 | [35] | |
qFLSPAD4.1 | 4 | 0.0 | RM16260 | RM16260—RM7585 | 4.17 | 7.00 | -1.39 | 2.81 | 5.00 | -1.18 | ||
qFLSPAD4.2 | 4 | 66.2 | RM7200 | RM7585—RM401 | 9.91 | 17.00 | -2.83 | 4.47 | 7.69 | -1.46 | ||
qFLL8.1 | 8 | 115.0 | RM22720 | RM22720—RM3395 | 11.65 | 19.00 | -3.63 | 11.61 | 19.00 | -3.50 | ||
qFLL8.2 | 8 | 122.3 | RM404 | RM3395—RM404 | 12.26 | 20.00 | -3.44 | 11.29 | 18.00 | -3.15 | ||
qFLW7.1 | 7 | 91.7 | RM5508 | RM182—RM505 | 2.53 | 4.00 | -0.03 | 2.02 | 3.41 | -0.02 | [26] | |
qFLW7.2 | 7 | 101.7 | RM505 | RM5508—RM18 | 4.24 | 7.00 | -0.03 | 2.60 | 4.41 | -0.03 | [42] | |
qFLW8.1 | 8 | 115.0 | RM22720 | RM22720—RM6032 | 9.74 | 16.00 | -0.07 | 9.11 | 14.83 | -0.06 | ||
qFLW8.2 | 8 | 118.8 | RM6032 | RM6032—RM404 | 6.59 | 11.00 | -0.05 | 6.71 | 11.20 | -0.05 | ||
qFLWR8.1 | 8 | 118.8 | RM6032 | RM22720—RM6032 | 4.22 | 7.00 | -1.65 | 3.70 | 6.33 | -1.64 | ||
qFLWR8.2 | 8 | 122.3 | RM404 | RM6032—RM404 | 5.15 | 9.00 | -1.92 | 4.16 | 7.20 | -1.67 | ||
qFLA1 | 1 | 161.1 | RM9 | RM11245—RM488 | 3.74 | 6.00 | -1.60 | 2.38 | 4.17 | -1.30 | ||
qFLA8.1 | 8 | 117.7 | RM3395 | RM22720—RM6032 | 18.26 | 28.00 | -3.96 | 17.78 | 27.00 | -4.43 | ||
qFLA8.2 | 8 | 122.3 | RM404 | RM6032—RM404 | 16.00 | 25.00 | -4.24 | 15.53 | 24.20 | -4.05 | ||
qFLA8.3 | 8 | 140.8 | GR01 | RM404—RM23170 | 2.63 | 5.00 | -1.41 | 4.33 | 7.26 | -1.75 | ||
qD1 | 1 | 161.1 | RM9 | RM11245—RM488 | 4.17 | 7.00 | -0.06 | 2.53 | 4.35 | -0.05 | ||
qD8.1 | 8 | 117.7 | RM3395 | RM22720—RM6032 | 16.70 | 26.00 | -0.14 | 16.77 | 25.50 | -0.16 | ||
qD8.2 | 8 | 122.3 | RM404 | RM6032—RM404 | 14.72 | 23.00 | -0.15 | 14.89 | 23.20 | -0.14 |
Table 5 QTL for traits related to flag leaf of rice detected by two methods.
QTL | 染色体Chromosome | 位置 Position /cM | 标记 Marker | 标记区间 Marker interval | 单标记分析SPA | 区间作图IM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 贡献率PVE/% | 加性效应 Add | LOD | 贡献率PVE/% | 加性效应 Add | 文献 Reference | ||||||
qFLSPAD1 | 1 | 213.8 | RM297 | RM297—RM5310 | 3.91 | 7.00 | 1.51 | 3.16 | 5.57 | 1.21 | [35] | |
qFLSPAD4.1 | 4 | 0.0 | RM16260 | RM16260—RM7585 | 4.17 | 7.00 | -1.39 | 2.81 | 5.00 | -1.18 | ||
qFLSPAD4.2 | 4 | 66.2 | RM7200 | RM7585—RM401 | 9.91 | 17.00 | -2.83 | 4.47 | 7.69 | -1.46 | ||
qFLL8.1 | 8 | 115.0 | RM22720 | RM22720—RM3395 | 11.65 | 19.00 | -3.63 | 11.61 | 19.00 | -3.50 | ||
qFLL8.2 | 8 | 122.3 | RM404 | RM3395—RM404 | 12.26 | 20.00 | -3.44 | 11.29 | 18.00 | -3.15 | ||
qFLW7.1 | 7 | 91.7 | RM5508 | RM182—RM505 | 2.53 | 4.00 | -0.03 | 2.02 | 3.41 | -0.02 | [26] | |
qFLW7.2 | 7 | 101.7 | RM505 | RM5508—RM18 | 4.24 | 7.00 | -0.03 | 2.60 | 4.41 | -0.03 | [42] | |
qFLW8.1 | 8 | 115.0 | RM22720 | RM22720—RM6032 | 9.74 | 16.00 | -0.07 | 9.11 | 14.83 | -0.06 | ||
qFLW8.2 | 8 | 118.8 | RM6032 | RM6032—RM404 | 6.59 | 11.00 | -0.05 | 6.71 | 11.20 | -0.05 | ||
qFLWR8.1 | 8 | 118.8 | RM6032 | RM22720—RM6032 | 4.22 | 7.00 | -1.65 | 3.70 | 6.33 | -1.64 | ||
qFLWR8.2 | 8 | 122.3 | RM404 | RM6032—RM404 | 5.15 | 9.00 | -1.92 | 4.16 | 7.20 | -1.67 | ||
qFLA1 | 1 | 161.1 | RM9 | RM11245—RM488 | 3.74 | 6.00 | -1.60 | 2.38 | 4.17 | -1.30 | ||
qFLA8.1 | 8 | 117.7 | RM3395 | RM22720—RM6032 | 18.26 | 28.00 | -3.96 | 17.78 | 27.00 | -4.43 | ||
qFLA8.2 | 8 | 122.3 | RM404 | RM6032—RM404 | 16.00 | 25.00 | -4.24 | 15.53 | 24.20 | -4.05 | ||
qFLA8.3 | 8 | 140.8 | GR01 | RM404—RM23170 | 2.63 | 5.00 | -1.41 | 4.33 | 7.26 | -1.75 | ||
qD1 | 1 | 161.1 | RM9 | RM11245—RM488 | 4.17 | 7.00 | -0.06 | 2.53 | 4.35 | -0.05 | ||
qD8.1 | 8 | 117.7 | RM3395 | RM22720—RM6032 | 16.70 | 26.00 | -0.14 | 16.77 | 25.50 | -0.16 | ||
qD8.2 | 8 | 122.3 | RM404 | RM6032—RM404 | 14.72 | 23.00 | -0.15 | 14.89 | 23.20 | -0.14 |
[1] | 李可, 禹晴, 徐云姬, 杨建昌. 水稻叶片早衰突变体的农艺与生理性状研究进展[J]. 中国水稻科学, 2020, 34(2): 104-114. |
Li K, Yu Q, Xu Y J, Yang J C.Research progress in agronomic and physiological traits of early leaf senescence mutants in rice[J]. Chinese Journal of Rice Science, 2020, 34(2): 104-114. (in Chinese with English abstract) | |
[2] | Lü W K, Hu H, He L P, Zhang X C, Ou X X, Chen H Y, Yu S B, Xu J L, Qiu X J, Li Z X, Xu J Y, Wang X Y, Liu Z Y, Wang C R, Jiang J F, Lou J.Characterization and fine mapping of two white panicle genes with duplicated effect in rice[J]. International Journal of Agriculture and Biology, 2018, 20: 2805-2811. |
[3] | 童汉华, 梅捍卫, 邢永忠, 曹一平, 余新桥, 章善庆, 罗利军. 水稻生育后期剑叶形态和生理特性的QTL定位[J]. 中国水稻科学, 2007, 21(5): 493-499. |
Tong H H, Mei H W, Xing Y Z, Cao Y P, Yu X Q, Zhang S Q, Luo L J.QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice[J]. Chinese Journal of Rice Science, 2007, 21(5): 493-499. (in Chinese with English abstract) | |
[4] | Zhang B, Ye W J, Ren D Y, Tian P, Peng Y L, Gao Y, Ruan B P, Wang L, Zhang G H, Guo L B, Qian Q, Gao Z Y.Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice[J]. Rice, 2015, 8(1):1-10. |
[5] | Shen B, Yu W D, Zhu Y J, Fan Y Y, Zhuang J Y.Fine mapping of a major quantitative trait locus, qFLL6.2, controlling flag leaf length and yield traits in rice (Oryza sativa L.)[J]. Euphytica, 2012, 184(1): 57-64. |
[6] | 朱双兵, 吕文恺, 何丽萍, 邢丹英, 杨隆维, 邱先进, 徐建龙. 全基因组关联分析解析水稻剑叶及单株产量的遗传基础[J]. 植物遗传资源学报, 2020, 21(3): 663-673. |
Zhu S B, Lü W K, He L P, Xing D Y, Yang L W, Qiu X J, Xu J L.Genetic dissection of flag leaf related traits and grain yield per plant using genome-wide association analysis[J]. Journal of Plant Genetic Resources, 2020, 21(3): 663-673. (in Chinese with English abstract) | |
[7] | Ye W J, Hu S K, Wu L W, Ge C W, Cui Y T, Chen P, Xu J, Dong G J, Guo L B, Qian Q.Fine mapping a major QTL qFCC7L for chlorophyll content in rice (Oryza sativa L.) cv. PA64s[J]. Plant Growth Regulation, 2017, 81(1): 81-90. |
[8] | 周勇, 陶亚军, 姚锐, 李畅, 谭文琛, 裔传灯, 龚志云, 梁国华. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657. |
Zhou Y, Tao Y J, Yao R, Li C, Tan W C, Yi C D, Gong Z Y, Liang G H.QTL mapping for leaf morphological traits of rice using chromosome segment substitution lines[J]. Acta Agronomica Sinica, 2017, 43(11): 1650-1657. (in Chinese with English abstract) | |
[9] | 胡娟, 林晗, 徐娜, 焦然, 戴志俊, 鲁草林, 饶玉春, 王跃星. 水稻叶倾角分子机制及育种应用的研究进展[J]. 中国水稻科学, 2019, 33(5): 391-400. |
Hu J, Lin H, Xu N, Jiao R, Dai Z J, Lu C L, Rao Y C, Wang Y X.Advances in molecular mechanisms of rice leaf inclination and its application in breeding[J]. Chinese Journal of Rice Science, 2019, 33(5): 391-400. (in Chinese with English abstract) | |
[10] | 朱长丰, 梁利君, 曾思远, 李天伟, 董冠杉, 洪德林. 水稻剑叶角度qFla-8-2位点的精细定位[J]. 中国水稻科学, 2016, 30(1): 27-34. |
Zhu C F, Liang L J, Zeng S Y, Li T W, Dong G S, Hong D L.Fine mapping of qFla-8-2 for flag leaf angle in rice[J]. Chinese Journal of Rice Science, 2016, 30(1): 27-34. (in Chinese with English abstract) | |
[11] | 张孝波, 谢佳, 张晓琼, 田维江, 何沛龙, 刘思岑, 何光华, 钟秉强, 桑贤春. 水稻矮化剑叶卷曲突变体dcfl1的鉴定与基因精细定位[J]. 中国农业科学, 2017, 50(9): 1551-1558. |
Zhang X B, Xie J, Zhang X Q, Tian W J, He P L, Liu S C, He G H, Zhong B Q, Sang X C.Identification and gene mapping of a dwarf and curled flag leaf mutant dcfl1 in rice[J]. Scientia Agricultura Sinica, 2017, 50(9): 1551-1558. (in Chinese with English abstract) | |
[12] | 阿加拉铁, 曾龙军, 薛大伟, 胡江, 曾大力, 高振宇, 郭龙彪, 李仕贵, 钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(1): 61-66. |
A J L T, Zeng L J, Xue D W, Hu J, Zeng D L, Gao Z Y, Guo L B, Li S G, Qian Q. QTL analysis for chlorophyll content in four grain-filling stage in rice[J]. Acta Agronomica Sinica, 2008, 34(1): 61-66. (in Chinese with English abstract) | |
[13] | 周丽慧, 赵春芳, 赵凌, 张亚东, 朱镇, 陈涛, 赵庆勇, 姚姝, 于新, 王才林. 利用染色体片段置换系群体检测水稻叶片形态QTL[J]. 中国水稻科学, 2013, 27(1): 26-34. |
Zhou L H, Zhao C F, Zhao L, Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Yao S, Yu X, Wang C L.QTL detection for leaf morphology of rice using chromosome segment substitution lines[J]. Chinese Journal of Rice Science, 2013, 27(1): 26-34. (in Chinese with English abstract) | |
[14] | 张强, 陈凯, 梁云涛, 章禄标, 郑天清, 徐建龙, 张文忠, 黎志康. 利用双向导入系剖析水稻源、库相关性状的QTL[J]. 核农学报, 2013, 27(3): 261-271. |
Zhang Q, Chen K, Liang Y T, Zhang L B, Zheng T Q, Xu J L, Zhang W Z, Li Z K.QTL mapping of sink-source related traits using two sets of reciprocal introgression lines in rice[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 261-271. (in Chinese with English abstract) | |
[15] | 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力. 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL[J]. 中国水稻科学, 2014, 28(6): 589-597. |
Wang L, Huang L C, Dai L P, Yang Y L, Xu J, Leng Y J, Zhang G H, Hu J, Zhu L, Gao Z Y, Dong G J, Guo L B, Qian Q, Zeng D L.QTL analysis for rice leaf morphology at maturity stage using a recombinant inbred line population derived from a cross between Nipponbare and 9311[J]. Chinese Journal of Rice Science, 2014, 28(6): 589-597. (in Chinese with English abstract) | |
[16] | 彭伟业, 孙平勇, 潘素君, 李魏, 戴良英. 水稻品种魔王谷粒形、剑叶性状和株高QTL定位[J]. 作物学报, 2018, 44(11): 1673-1680. |
Peng W Y, Sun P Y, Pan S J, Li W, Dai L Y.Mapping QTLs for grain shape, flag leaf traits, and plant height in rice variety Mowanggu[J]. Acta Agronomica Sinica, 2018, 44(11): 1673-1680. (in Chinese with English abstract) | |
[17] | Chen M L, Luo J, Shao G N, Wei X J, Tang S Q, Sheng Z H, Song J, Hu P S.Fine mapping of a major QTL for flag leaf width in rice, qFLW4 , which might be caused by alternative splicing of NAL1[J]. Plant Cell Reports, 2012, 31(5): 863-872. |
[18] | Farooq M, Tagle A G, Santos R E, Ebron L A, Kobayashi N.Quantitative trait loci mapping for leaf length and leaf width in rice cv. IR64 derived lines[J]. Journal of Integrative Plant Biology, 2010, 52(6): 578-584. |
[19] | Tian Y H, Zhang H Y, Xu P Z, Chen X Q, Liao Y X, Han B L, Chen X B, Fu X D, Wu X J.Genetic mapping of a QTL controlling leaf width and grain number in rice[J]. Euphytica, 2015, 202(1): 1-11. |
[20] | Bian J M, He H H, Shi H, Zhu G Q, Li C J, Zhu C L, Peng X S, Yu Q Y, Fu J R, He X P, Chen X R, Hu L F, Lin J, Ou-Yang L J. Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population[J]. Plant Breeding, 2014, 133(2): 203-209. |
[21] | Wang P, Zhou G L, Yu H H, Yu S B.Fine mapping a major QTL for flag leaf size and yield-related trait in rice[J]. Theoretical and Applied Genetics, 2011, 123: 1319-1330. |
[22] | 谈聪, 翁小煜, 鄢文豪, 白旭峰, 邢永忠. 多效性基因Ghd7调控水稻剑叶面积[J]. 遗传, 2012, 34(7): 901-906. |
Tan C, Weng X Y, Yan W H, Bai X F, Xing Y Z.Ghd7, a pleiotropic gene controlling flag leaf area in rice[J]. Hereditas(Beijing), 2012, 34(7): 901-906. (in Chinese with English abstract) | |
[23] | 穆平, 李自超, 李春平, 张洪亮, 王象坤. 水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析[J]. 遗传学报, 2004(7): 717-723. |
Mu P, Li Z C, Li C P, Zhang H L, Wang X K.QTL analysis for lodging resistance in rice using a DH population under lowland and upland ecosystems[J]. Acta Genetica Sinica, 2004(7): 717-723. (in Chinese with English abstract) | |
[24] | 田蕾, 陈亚萍, 刘俊, 马晓刚, 王娜, 杨兵, 李莹, 郭海东, 李娟, 胡慧, 张银霞, 李培富. 粳稻种质资源芽期耐盐性综合评价与筛选[J]. 中国水稻科学, 2017, 31(6): 631-642. |
Tian L, Chen Y P, Liu J, Ma X G, Wang N, Yang B, Li Y, Guo H D, Li J, Hu H, Zhang Y X, Li P F.Comprehensive evaluation and selection of rice (Oryza sativa japonica) germplasm for saline tolerance at germination stage[J]. Chinese Journal of Rice Science, 2017, 31(6): 631-642. (in Chinese with English abstract) | |
[25] | 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525. |
Wang X L, Li W X, Zeng B H, Sun X T, Ou-Yang L J, Chen X R, He H H, Zhu C L. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines[J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525. (in Chinese with English abstract) | |
[26] | 张玲, 李晓楠, 王伟, 杨生龙, 李清, 王嘉宇. 水稻株型相关性状的QTL分析[J]. 作物学报, 2014, 40(12): 2128-2135. |
Zhang L, Li X N, Wang W, Yang S L, Li Q, Wang J Y.Analysis of QTLs for plant type traits in rice (Oryza sativa)[J]. Acta Agronomica Sinica, 2014, 40(12): 2128-2135. (in Chinese with English abstract) | |
[27] | Fu Q, Zhang P J, Tan L B, Zhu Z F, Ma D, Fu Y C, Zhan X C, Cai H W, Sun C Q.Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.)[J]. Journal of Genetics and Genomics, 2010, 37(2): 147-157. |
[28] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
[29] | 顾骏飞, 周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 杨建昌. 水稻低叶绿素含量突变对光合作用及产量的影响[J]. 作物学报, 2016, 42(4): 551-560. |
Gu J F, Zhou Z X, Li Z K, Dai Q X, Kong X S, Wang Z Q, Yang J C.Effects of the mutant with low chlorophyll content on photosynthesis and yield in rice[J]. Acta Agronomica Sinica, 2016, 42(4): 551-560. (in Chinese with English abstract) | |
[30] | Takai T, Kondo M, Yano M, Yamamoto T.A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice[J]. Rice, 2010, 3(2): 172-180. |
[31] | 殷延勃, 马洪文. 粳稻剑叶不同发育时期SPAD值遗传效应分析[J]. 西北农业学报, 2008, 17(5): 171-173, 193. |
Yin Y B, Ma H W.Analysis of genetic effects at different growth stages SPAD values in flag leaf of paddy rice[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2008, 17(5): 171-173, 193. (in Chinese with English abstract) | |
[32] | Huang L C, Dai L P, Wang L, Leng Y J, Yang Y L, Xu J, Hu J, Rao Y C, Zhang G H, Zhu L, Dong G J, Guo L B, Qian Q, Zeng D L.Genetic dissection for chlorophyll content of the top three leaves during grain filling in rice ( Oryza sativa L.)[J]. Journal of Plant Growth Regulation, 2015, 34(2): 381-391. |
[33] | 胡茂龙, 王春明, 杨权海, 翟虎渠, 陆巍, 张荣铣, 万建民. 水稻光合功能相关性状QTL分析[J]. 遗传学报, 2005, 32(8): 818-824. |
Hu M L, Wang C M, Yang Q H, Zhai H Q, Lu W, Zhang R X, Wan J M.QTL analysis for traits associated with photosynthetic functions in rice (Oryza sativa L. )[J]. Acta Genetica Sinica, 2005, 32(8): 818-824. (in Chinese with English abstract) | |
[34] | 刘进, 王嘉宇, 姜树坤, 徐正进. 水稻叶绿素含量动态QTL分析[J]. 植物生理学报, 2012, 48(6): 577-583. |
Liu J, Wang J Y, Jiang S K, Xu Z J.Detection and analysis of dynamic QTL of leaf chlorophyll content in rice (Oryza sativa L.)[J] Plant Physiology Journal, 2012, 48(6): 577-583. (in Chinese with English abstract) | |
[35] | Yue B, Xue W Y, Luo L J, Xing Y Z.QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice[J]. Acta Genetica Sinica, 2006, 33(9): 824-832. |
[36] | Jiang S K, Zhang X J, Wang J Y, Chen W F, Xu Z J.Fine mapping of the quantitative trait locus qFLL9 controlling flag leaf length in rice[J]. Euphytica, 2010, 176(3): 341-347. |
[37] | Tang X X, Gong R, Sun W Q, Zhang C P, Yu S B.Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2018, 131(4): 801-815. |
[38] | Lin L H, Zhao Y F, Liu F, Chen Q, Qi J C.Narrow leaf 1 (NAL1) regulates leaf shape by affecting cell expansion in rice (Oryza sativa L.)[J]. Biochemical and Biophysical Research Communications, 2019, 516(3): 957-962. |
[39] | Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G, Ren F G, Palme K, Zhao B R, Chen J F, Chen M S, Li C Y.Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1947-1959. |
[40] | Zhang G H, Li S Y, Wang L, Ye W J, Zeng D L, Rao Y C, Peng Y L, Hu J, Yang Y L, Xu J, Ren D Y, Gao Z Y, Zhu L, Dong G J, Hu X M, Yan M X, L, Guo L B, Li C Y, Qian Q. LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11[J]. Molecular Plant, 2014, 7(8): 1350-1364. |
[41] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[42] | 邵高能, 唐绍清, 罗炬, 焦桂爱, 唐傲, 胡培松. 水稻剑叶形态与稻米粒形QTL分析及相应剩余杂合体衍生群体的构建[J]. 分子植物育种, 2009, 7(1): 16-22. |
Shao G N, Tang S Q, Luo J, Jiao G A, Tang A, Hu P S.QTL analysis for flag leaf and grain shape and populations construction derived from related residual heterozygous lines in rice[J]. Molecular Plant Breeding, 2009, 7(1): 16-22. (in Chinese with English abstract) | |
[43] | 吴亚辉, 陶星星, 肖武名, 郭涛, 刘永柱, 王慧, 陈志强. 水稻穗部性状的QTL分析[J]. 作物学报, 2014, 40(2): 214-221. |
Wu Y H, Tao X X, Xiao W M, Guo T, Liu Y Z, Wang H, Chen Z Q.Dissection of QTLs for panicle traits in rice (Oryza sativa)[J]. Acta Agronomica Sinica, 2014, 40(2): 214-221. (in Chinese with English abstract) | |
[44] | Wang P, Zhou G L, Cui K H, Li Z K, Yu S B.Clustered QTL for source leaf size and yield traits in rice ( Oryza sativa L.)[J]. Molecular Breeding, 2012, 29(1): 99-113. |
[45] | Xu F F, Huang Y, Bao J S.Identification of QTLs for agronomic traits in indica rice using an RIL population[J]. Genes Genomics, 2015, 37(10): 809-817. |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||