Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (6): 565-572.DOI: 10.16819/j.1001-7216.2021.200803
• 研究报告 • Previous Articles Next Articles
Yafei SUN#, Ke SONG#, Qin QIN, Lijuan SUN, Yong XUE*
Received:
2020-08-03
Revised:
2020-12-04
Online:
2021-11-10
Published:
2021-11-10
Contact:
Yong XUE
About author:
#These authors contributed equally to this work
孙雅菲#, 宋科#, 秦秦, 孙丽娟, 薛永*
通讯作者:
薛永
作者简介:
#共同第一作者
基金资助:
Yafei SUN, Ke SONG, Qin QIN, Lijuan SUN, Yong XUE. Research on the Mechanisim of OsPT4 Regulating the Accumulation and Utilization of Nitrogen and Phosphorus in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(6): 565-572.
孙雅菲, 宋科, 秦秦, 孙丽娟, 薛永. 磷酸盐转运蛋白OsPT4影响水稻氮磷积累与利用的机理研究[J]. 中国水稻科学, 2021, 35(6): 565-572.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.200803
基因名称 Gene name | 引物序列(5'-3') Prime sequence(5'-3') | 退火温度 Annealing temperature/℃ |
---|---|---|
OsPT4 | F: TTCTGCTAGTGTACCAAACAAAATTACA R: GTAAGTGGCATTTATAATATCAACAGTAACC | 55 |
OsActin | F: GGGTTCACAAGTCTGCCTATTGT | 55 |
R: ACGGGACACGACCAAGGA |
Table 1 qRT-PCR primers for OsActin and OsPT4.
基因名称 Gene name | 引物序列(5'-3') Prime sequence(5'-3') | 退火温度 Annealing temperature/℃ |
---|---|---|
OsPT4 | F: TTCTGCTAGTGTACCAAACAAAATTACA R: GTAAGTGGCATTTATAATATCAACAGTAACC | 55 |
OsActin | F: GGGTTCACAAGTCTGCCTATTGT | 55 |
R: ACGGGACACGACCAAGGA |
Fig. 2. Molecular identification of OsPT4 overexpressing lines. A, Identification of copy number in OsPT4 overexpressing lines; B, Relative expression of OsPT4 in the overexpressing lines. Different letters indicate significant difference at 0.05 level. Data are shown as mean (n = 3); Different letters indicate significant difference in the same stage at the level of 0.05. WT, Wild type; Ox1-Ox3, Three OsPT4-overexpression lines.
Fig. 3. Overexpression of OsPT4 increases the biomass and total P concentration under both +P and -P conditions during vegetative growth stage. Data are shown as mean (n = 4); Different letters indicate significant difference in the same stage at the level of 0.05. The same below.
Fig. 7. Total N concentration in reproductive tissues and physiology N use efficiency of OsPT4 overexpressing lines under both +P and -P soil conditions.
[1] | Mimura T.Regulation of phosphate transport and homeostasis in the plant cells[J]. International Review of Cytology, 1999, 191: 149-200. |
[2] | Vance C P, Uhde-Stone C, Allan D L.Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157: 423-447. |
[3] | Schachtman D P, Reid R J, Ayling S M.Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116: 447-453. |
[4] | Raghothama K G.Phosphate acquisition[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 150: 665-693. |
[5] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48: 3404-3414. |
Zhu D, Zhang Y, Chen H, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China.Scientia Agricultura Sinica, 2015, 48: 3404-3414. (in Chinese with English abstract). | |
[6] | Smith F W, Mudge S R, Rae A L, Donna G.Phosphate transporter in plants[J]. Plant and Soil, 2003, 248: 71-83. |
[7] | Gu M, Chen A, Sun S, Xu G.Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: What is missing?[J] Molecular Plant, 2016, 9: 396-416. |
[8] | Poirier Y, Bucher M.Phosphate transport and homeostasis in Arabidopsis[J]. The Arabidopsis Book, 2002, (1): e0024. |
[9] | Remy E, Cabrito T R, Batista R A, Teixeira M C, Sá-Correia I, Duquel P.The Pht1; 9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation[J]. New Phytologist, 2012, 195: 356-371. |
[10] | Paszkowski U, Kroken S, Roux C, Briggs S P.Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 13324-13329. |
[11] | Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G.A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiology, 2012, 159: 1571-1581. |
[12] | Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller A J, Xu G.Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57: 798-809. |
[13] | Zhang F, Wu X, Zhou H, Wang D, Jiang T, Sun Y, Cao Y, Pei W, Sun S, Xu G.Overexpression of rice phosphate transporter gene OsPT6 enhances phosphate uptake and accumulation in transgenic rice plants[J]. Plant and Soil, 2014, 384: 259-270. |
[14] | Liu F, Wang Z, Ren H, Shen C, Li Y, Ling H-Q, Wu C, Lian X, Wu P.OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice[J]. The Plant Journal, 2010, 62: 508-517. |
[15] | Chang M X, Gu M, Xia Y W, Dai X L, Dai C R, Zhang J, Wang S C, Qu H Y, Yamaji N, Ma J F, Xu G H.OsPHT1;3 mediates uptake, translocation and remobilization of phosphate under extremely low phosphate regimes[J]. Plant Physiology, 2019, 179: 656-670. |
[16] | Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S.Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. The Plant Journal, 2015: 82, 556-569. |
[17] | Jia H F, Ren H Y, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G.The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156: 1164-1175. |
[18] | Wang Y F, Pineros M A, Wang Z Y, Wang W X, Wang W, Li C, Wu Z, Kochian L V, Wu P.Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice[J]. Plant Cell and Environment, 2014, 37: 1159-1170. |
[19] | Marschner H.Mineral Nutrition of Higher Plants[M]. London: Academic Press, 1995. |
[20] | Peng M, Hannam C, Gu H, Bi Y M, Rothstein S J.A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation[J]. The Plant Journal, 2007, 50: 320-337. |
[21] | Kant S, Peng M, Rothstein S J.Genetic regulation by NLA and microRNA827 for maintaining nitrate dependent phosphate homeostasis in Arabidopsis[J]. PLoS Genetics, 2011, 7: e1002021. |
[22] | Lin W Y, Huang T K, Chiou T J.NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis[J]. Plant Cell, 2013, 25: 4061-4074. |
[23] | Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, Gojon A, Crawford N M, Ruffel S, Coruzzi G M, Krouk G.AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip[J]. Nature Communication, 2015, 6: 6274. |
[24] | Kiba T, Inaba J, Kudo T, Ueda N, Konishi M, Mitsuda N, Takiguchi Y, Kondou Y, Yoshizumi T, Ohme-Takagi M, Matsui M, Yano K, Yanagisawa S, Sakakibara H.Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily[J]. Plant Cell, 2018, 30: 925-945. |
[25] | Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T, Ueda Y, Sakakibara H, Yanagisawa S.A NIGT1-centred transcriptional cascade regulates nitrate signaling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9: 1376. |
[26] | Medici A, Szponarsk W, Dangeville P, Safi A, Dissanayake I M, Saenchai C, Emanuel A, Rubio V, Lacombe B, Ruffel S, Tanurdzic M, Rouached H, Krouk G.Nitrogen actively controls the phosphate starvation response in plants[J]. Plant Cell, 2019, 31: 1171-1184. |
[27] | Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi K, Wu P.SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26: 1586-1597. |
[28] | Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants[J]. Nature Plants, 2019, 5: 401-413. |
[29] | 张占田, 孙雅菲, 艾昊, 罗闻真, 冯冰, 孙文献, 徐国华, 孙淑斌. 水稻转录因子基因OsSHR2的时空表达特征及其在营养生长中的调控[J]. 中国水稻科学, 2018, 32: 427-436. |
Zhang Z T, Sun Y F, Ai H, Luo W Z, Feng B, Sun W X, Xu G H, Sun S B.Expression patterns and regulation of transcription factor gene OsSHR2 in vegetative growth in rice[J]. Chinese Journal of Rice Science, 2018, 32: 427-436. (in Chinese with English abstract). | |
[30] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔCT method[J]. Methods, 2001, 25: 402-408. |
[31] | Elliott G C, Lauchli A.Phosphorus efficiency and phosphate iron interactions in maize[J]. Agronomy Journal, 1985, 77: 399-403. |
[32] | Siddiqi M Y, Glass A D M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants[J]. Journal of Plant Nutrition, 1981, 4: 289-302. |
[33] | Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller A J, Xu G.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 7118-7123. |
[34] | Lynch J P.Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2007, 156: 1041-1049. |
[35] | Ye Y, Yuan J, Chang X, Yang M, Zhang L.The phosphate transporter gene OsPht1; 4 is involved in phosphate homeostasis in rice[J]. PLoS ONE, 2015, 10: e0126186. |
[1] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[2] |
TANG Weijie, CHEN Haiyuan, ZHANG Suobing, TANG Jun, LIN Jing, FANG Xianwen, ZHANG Shunan, XIAO Ning, WU Yunyu, LI Aihong, ZHANG Yunhui.
Analysis of Nitrogen-response Related Loci in japonica Rice Varieties from Jiangsu Province [J]. Chinese Journal OF Rice Science, 2024, 38(5): 535-543. |
[3] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[4] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[5] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[6] | WU Ziniu, HE Limei, XIONG Ying, CHEN Kairui, YANG Zhiyuan, SUN Yongjian, LÜ Xu, MA Jun. Effect of Nitrogen Fertilizer Topdressing for Panicle Differentiation on Grain Filling of Hybrid indica Rice and Its Relationship with the Activities of Key Enzymes for Starch Synthesis [J]. Chinese Journal OF Rice Science, 2024, 38(1): 48-56. |
[7] | YONG Mingling, YE Miao, ZHANG Yu, TAO Yu, NI Chuan, KANG Yuying, ZHANG Zujian. Rice Starch Structure and Physicochemical Properties of Good Taste japonica Rice Varieties and Their Regulations by Nitrogen [J]. Chinese Journal OF Rice Science, 2024, 38(1): 57-71. |
[8] | TAO Yi, XU Yanan, YE Chang, ZHENG Guangjie, XU Chunmei, CHEN Song, CHU Guang, LIU Yuanhui, WANG Danying. Research Progress on Correlation of Rice Leaf Senescence and Discoloration with Nitrogen Reuse and Volatilization [J]. Chinese Journal OF Rice Science, 2023, 37(6): 553-562. |
[9] | WU Yuhong, LI Yanhua, WANG Lü, QIN Yuhang, LI Shanshan, HAO Xingshun, ZHANG Qinglu, CUI Yuezhen, XIAO Fei. Improvement of Yield and Quality of Rice by Combining Returning of Green Manure (Astragalus smicus L.) and Rice Straw with Reduced Application of Nitrogen Fertilizer in Southern Shaanxi Province [J]. Chinese Journal OF Rice Science, 2023, 37(6): 628-641. |
[10] | YUAN Pei, ZHOU Xuan, YANG Wei, YIN Lingjie, JIN Tuo, PENG Jianwei, RONG Xiangmin, TIAN Chang. Effects of Combined Application of Chemical Fertilizers and Nitrogen Reduction on the Yield of Double-cropping Rice and the Risk of Nitrogen and Phosphorus Loss in Field Water in Dongting Lake Area [J]. Chinese Journal OF Rice Science, 2023, 37(5): 518-528. |
[11] | XIAO Dakang, HU Ren, HAN Tianfu, ZHANG Weifeng, HOU Jun, REN Keyu. Effects of Nitrogen Fertilizer Consumption and Operation on Rice Yield and Its Components in China:A Meta-analysis [J]. Chinese Journal OF Rice Science, 2023, 37(5): 529-542. |
[12] | GAO Qianqing, REN Xiaojian, ZHAI Zhongbing, ZHENG Pubing, WU Yuanfen, CUI Kehui. Effects of Panicle and Bud-promoting Nitrogen Fertilizer Application on Growth of Regenerated Bud and Grain Yield of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 405-414. |
[13] | ZHANG Lu, LIANG Qingduo, WU Longlong, HUANG Jing, TIAN Cang, ZHANG Junhua, CAO Xiaochuang, ZHU Chunquan, KONG Yali, JIN Qianyu, ZHU Lianfeng. Effects of Nitrogen-reducing and Oxygen-increasing Irrigation on Rice Yield and Nitrogen Use Efficiency [J]. Chinese Journal OF Rice Science, 2023, 37(1): 78-88. |
[14] | WANG Yingheng, CHEN Lijuan, CUI Lili, ZHAN Shengwei, SONG Yu, CHEN Shian, XIE Zhenxing, JIANG Zhaowei, WU Fangxi, ZHUO Chuanying, CAI Qiuhua, XIE Huaan, ZHANG Jianfu. Effects of Nitrogen Rate on Photosynthesis, Yield and Grain Quality of Superior Quality Rice “Fuxiangzhan” [J]. Chinese Journal OF Rice Science, 2023, 37(1): 89-101. |
[15] | REN Weichen, CHANG Qingxia, ZHANG Yajun, ZHU Kuanyu, WANG Zhiqin, YANG Jianchang. Characteristics and Physiological Mechanism of Carbon and Nitrogen Accumulation and Translocation of japonica Rice Varieties Differing in Nitrogen Use Efficiency [J]. Chinese Journal OF Rice Science, 2022, 36(6): 586-600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||