Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (6): 554-564.DOI: 10.16819/j.1001-7216.2021.200915
• 研究报告 • Previous Articles Next Articles
Huan CUI1, Qiaoli GAO1, Lixin LUO1, Jing YANG1, Chun CHEN1, Tao GUO1, Yongzhu LIU1, Yongxiang HUANG2, Hui WANG1, Zhiqiang CHEN1,*(), Wuming XIAO1,*()
Received:
2020-09-23
Revised:
2021-03-04
Online:
2021-11-10
Published:
2021-11-10
Contact:
Zhiqiang CHEN, Wuming XIAO
崔欢1, 高巧丽1, 罗立新1, 杨靖1, 陈淳1, 郭涛1, 刘永柱1, 黄永相2, 王慧1, 陈志强1,*(), 肖武名1,*()
通讯作者:
陈志强,肖武名
基金资助:
Huan CUI, Qiaoli GAO, Lixin LUO, Jing YANG, Chun CHEN, Tao GUO, Yongzhu LIU, Yongxiang HUANG, Hui WANG, Zhiqiang CHEN, Wuming XIAO. Transcriptome Analysis of Hormone Signal Transduction and Glutathione Metabolic Pathway in Rice Seeds at Germination Stage[J]. Chinese Journal OF Rice Science, 2021, 35(6): 554-564.
崔欢, 高巧丽, 罗立新, 杨靖, 陈淳, 郭涛, 刘永柱, 黄永相, 王慧, 陈志强, 肖武名. 水稻萌发期激素信号转导和谷胱甘肽代谢转录分析[J]. 中国水稻科学, 2021, 35(6): 554-564.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.200915
序号 No. | 基因号 Gene ID | 正向引物(5′-3′) Forward primer(5′-3′) | 反向引物(3′-5′) Reverse primer(3′-5′) |
---|---|---|---|
1 | Os01g0764800 | TGATCACTCACTACACTACACG | ACACTGACACCGACTGTATAAG |
2 | Os07g0592600 | CCTCTTCCTCTCGCTACTACTA | TCTCAACCCCGAACAAGAAAAA |
3 | Os05g0143800 | ATACTTCGAGTTCATCCCGTTC | CCGACTTTGTACCGGTACAG |
4 | Os11g0528700 | AACATGTGCTACTACGAGTTCA | GTACAACCCTGTGAAGGTGG |
5 | Os01g0370200 | CGAGGCCATCTATCAAGAAGAT | CTTTTGTTACGAGGCACAAGAA |
6 | Os03g0283100 | AAGATTGTCGCGATTGATCTTG | TGATTGTTGTGCTCAAGTGAAG |
7 | Os10g0528300 | CAAGATCTTCGACGAGGAGAAG | CTCATCTTAGCGAACTCGACC |
8 | Os10g0529300 | GACCTCCACAACAAGAGTGAG | AACTTGTCATTGATGTAGGCGG |
9 | Os03g0718100 | GAATGCTAAGCCAAGAGGAG | AATCACAAGTGAGAACCACAG |
Table 1 Sequences of the primers used in qRT-PCR.
序号 No. | 基因号 Gene ID | 正向引物(5′-3′) Forward primer(5′-3′) | 反向引物(3′-5′) Reverse primer(3′-5′) |
---|---|---|---|
1 | Os01g0764800 | TGATCACTCACTACACTACACG | ACACTGACACCGACTGTATAAG |
2 | Os07g0592600 | CCTCTTCCTCTCGCTACTACTA | TCTCAACCCCGAACAAGAAAAA |
3 | Os05g0143800 | ATACTTCGAGTTCATCCCGTTC | CCGACTTTGTACCGGTACAG |
4 | Os11g0528700 | AACATGTGCTACTACGAGTTCA | GTACAACCCTGTGAAGGTGG |
5 | Os01g0370200 | CGAGGCCATCTATCAAGAAGAT | CTTTTGTTACGAGGCACAAGAA |
6 | Os03g0283100 | AAGATTGTCGCGATTGATCTTG | TGATTGTTGTGCTCAAGTGAAG |
7 | Os10g0528300 | CAAGATCTTCGACGAGGAGAAG | CTCATCTTAGCGAACTCGACC |
8 | Os10g0529300 | GACCTCCACAACAAGAGTGAG | AACTTGTCATTGATGTAGGCGG |
9 | Os03g0718100 | GAATGCTAAGCCAAGAGGAG | AATCACAAGTGAGAACCACAG |
Fig. 1. Differentially expressed gene analysis during different germination stages. A, MA map of DEG in early germination; B, MA map of DEG in late germination; C, Venn diagram of DEG in germination stage; D, Venn diagram of up-regulation and down-regulation DEG in germination stage. C0, 0 h after germination; C1, 24 h after germination; C2, 48 h after germination.
Fig. 3. KEGG enrichment plots of DEGs at different germination stages. C0, 0 h after germination; C1, 24 h after germination; C2, 48 h after germination.
Fig. 7. Expression patterns of selected DEG were verified by qRT-PCR. C0, 0 h after germination; C1, 24 h after germination; C2, 48 h after germination. FPKM, Fragments per kilobase per million.
[1] | Wei F, Droc G, Guiderdoni E, Hsing Y C.International consortium of rice mutagenesis: Resources and beyond[J]. Rice, 2013, 6: 39. |
[2] | Mahender A, Anandan A, Pradhan S K.Early seedling vigour, an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular markers[J]. Planta, 2015, 241(5): 1027-1050. |
[3] | Miura K, Lin S Y, Araki H, Nagamine T, Kuroki M, Shimizu H, Ando I, Yano M.Genetical studies on germination of seed and seedling establishment for breeding of improved rice varieties suitable for direct seeding culture[J]. Jarq-Japan Agricultural Research Quarterly, 2004, 38(1): 1-5. |
[4] | Hsu S, Tung C.Genetic mapping of anaerobic Germination-associated QTLs controlling coleoptile elongation in rice[J]. Rice, 2015, 8: 38. |
[5] | Wang Z, Wang J, Bao Y, Wu Y, Zhang H.Quantitative trait loci controlling rice seed germination under salt stress[J]. Euphytica, 2011, 178(3): 297-307. |
[6] | Dametto A, Sperotto R A, Adamski J M, Blasi E A R, Cargnelutti D, de Oliveira L F V, Ricachenevsky F K, Fregonezi J N, Mariath J E A, Da Cruz R P, Margis R, Fett J P. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes[J]. Plant Science, 2015, 238: 1-12. |
[7] | Mccormac A C, Keefe P D.Cauliflower(Brassica oleracea L.) seed vigour: imbibition effects[J]. Journal of Experimental Botany, 1990(7): 893-899. |
[8] | Weitbrecht K, Mueller K, Leubner-Metzger G.First off the mark: Early seed germination[J]. Journal of Experimental Botany, 2011, 62(10): 3289-3309. |
[9] | Yang P, Li X, Wang X, Chen H, Chen F, Shen S.Proteomic analysis of rice (Oryza sativa) seeds during germination[J]. Proteomics, 2007, 7(18): 3358-3368. |
[10] | He D, Han C, Yang P.Gene expression profile changes in germinating rice[J]. Journal of Integrative Plant Biology, 2011, 53(10): 835-844. |
[11] | He D, Han C, Yao J, Shen S, Yang P.Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach[J]. Proteomics, 2011, 11(13): 2693-2713. |
[12] | He D, Yang P.Proteomics of rice seed germination[J]. Frontiers in Plant Science, 2013, 4: 246. Doi: 10.3389/fpls.2013.00246. |
[13] | Sano N, Ono H, Murata K, Yamada T, Hirasawa T, Kanekatsu M.Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice[J]. Journal of Experimental Botany, 2015, 66(13): 4035-4046. |
[14] | Wei T, He Z, Tan X, Liu X, Yuan X, Luo Y, Hu S.An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination[J]. Biochemical and Biophysical Research Communications, 2015, 464(1): 176-181. |
[15] | Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel B, Vankova R, Amir R, Miller G.ASCORBATE PEROXIDASE6 protects arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin[J]. Plant Physiology, 2014, 166(1): 370-383. |
[16] | He Y, Zhao J, Feng D, Huang Z, Liang J, Zheng Y, Cheng J, Ying J, Wang Z.RNA-Seq study reveals AP2-Domain-Containing signalling regulators involved in initial imbibition of seed germination in rice[J]. Rice Science, 2020, 27(4): 302-314. |
[17] | Penfield S.Seed dormancy and germination[J]. Current Biology, 2017, 27(17): R874-R878. |
[18] | Gimeno-Gilles C, Lelievre E, Viau L, Malik-Ghulam M, Ricoult C, Niebel A, Leduc N, Limami A M.ABA-Mediated inhibition of germination is related to the inhibition of genes encoding Cell-Wall biosynthetic and architecture: Modifying enzymes and structural proteins in medicago truncatula embryo axis[J]. Molecular Plant, 2009, 2(1): 108-119. |
[19] | Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J.Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353. |
[20] | Shu K, Liu X, Xie Q, He Z.Two faces of one seed: Hormonal regulation of dormancy and germination[J]. Molecular Plant, 2016, 9(1): 34-45. |
[21] | Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K.Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport[J]. Plant and Cell Physiology, 2010, 51(11): 1821-1839. |
[22] | Nee G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe W J J. DELAY of GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy[J]. Nature Communications, 2017, 8: 72. |
[23] | Song S, Wang G, Wu H, Fan X, Liang L, Zhao H, Li S, Hu Y, Liu H, Ayaad M, Xing Y.OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice[J]. Plant Journal, 2020, 103(2): 532-546. |
[24] | Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang H, Luan S, Li J, He Z.Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490. |
[25] | He Y, Zhao J, Yang B, Sun S, Peng L, Wang Z.Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice[J]. Plant Biotechnology Journal, 2020, 18(9): 1933-1945. |
[26] | Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. Ethylene, a key factor in the regulation of seed dormancy[J]. Frontiers in Plant Science, 2014, 5: 539. |
[27] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. |
[28] | Dharmasiri N, Dharmasiri S, Estelle M.The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445. |
[29] | Soon F, Ng L, Zhou X E, West G M, Kovach A, Tan M H E, Suino-Powell K M, He Y, Xu Y, Chalmers M J, Brunzelle J S, Zhang H, Yang H, Jiang H, Li J, Yong E, Cutler S, Zhu J, Griffin P R, Melcher K, Xu H E. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases[J]. Science, 2012, 335(6064): 85-88. |
[30] | Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R.Abscisic acid: Emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010: 651-679. |
[31] | Chapman E J, Estelle M.Mechanism of Auxin-Regulated gene expression in plants[J]. Annual Review of Genetics, 2009, 43(1): 265-285. |
[32] | Jain M, Kaur N, Tyagi A K, Khurana J P.The auxin-responsive GH3 gene family in rice (Oryza sativa)[J]. Functional & Integrative Genomics, 2006, 6(1): 36-46. |
[33] | Zagorchev L, Seal C E, Kranner I, Odjakova M.A central role for thiols in plant tolerance to abiotic stress[J]. International Journal of Molecular Sciences, 2013, 14(4): 7405-7432. |
[34] | Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang S.Expansion mechanisms and functional divergence of the glutathione S-Transferase family in sorghum and other higher plants[J]. DNA Research, 2011, 18(1): 1-16. |
[35] | Jo S H, Lee S H, Chun H S, Lee S M, Koh H J, Lee S E, Chun J S, Park J W, Huh T L.Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)- dependent isocitrate dehydrogenase[J]. Biochemical and Biophysical Research Communications, 2002, 292(2): 542-549. |
[36] | Jo S, Son M, Koh H, Lee S, Song I, Kim Y, Lee Y, Jeong K, Kim W B, Park J, Song B J, Huhe T.Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase[J]. Journal of Biological Chemistry, 2001, 276(19): 16168-16176. |
[37] | Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer C H.Glutathione in plants: An integrated overview[J]. Plant Cell and Environment, 2012, 35(2SI): 454-484. |
[38] | Moons A.Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTS)[J]// Vitamins and Hormones, 2005,72: 155-202. |
[39] | Miller G.Reactive oxygen signaling and abiotic stress[J]. Physiologia Plantarum, 2010, 133(3): 481-489. |
[40] | Murata Y, Pei Z M, Mori I C, Schroeder J.Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants[J]. Plant Cell, 2002, 14(1): 287. |
[41] | Kusumi K, Yaeno T, Kojo K, Hirayama M, Hirokawa D, Yara A, Iba K.The role of salicylic acid in the glutathione-mediated protection against photooxidative stress in rice[J]. Physiologia Plantarum, 2006, 128(4): 651-661. |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||