Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (5): 439-448.DOI: 10.16819/j.1001-7216.2021.210305
• Research Papers • Previous Articles Next Articles
Zhiming FENG1,2, Guangda WANG1, Jianhua ZHAO1, Ran JU1, Mengchen LI1, Peng GAO1, Keming HU1,2, Zongxiang CHEN1,2, Shimin ZUO1,2,*()
Received:
2021-03-06
Revised:
2021-03-25
Online:
2021-09-10
Published:
2021-09-10
Contact:
Shimin ZUO
冯志明1,2, 王广达1, 赵剑华1, 居冉1, 李梦臣1, 高鹏1, 胡珂鸣1,2, 陈宗祥1,2, 左示敏1,2,*()
通讯作者:
左示敏
基金资助:
Zhiming FENG, Guangda WANG, Jianhua ZHAO, Ran JU, Mengchen LI, Peng GAO, Keming HU, Zongxiang CHEN, Shimin ZUO. Response Characteristics of Rice Cysteine-rich Receptor-like Kinases Family Genes to Rhizoctonia solani and Plant Hormones[J]. Chinese Journal OF Rice Science, 2021, 35(5): 439-448.
冯志明, 王广达, 赵剑华, 居冉, 李梦臣, 高鹏, 胡珂鸣, 陈宗祥, 左示敏. 水稻富含半胱氨酸类受体激酶家族基因对纹枯病菌和植物激素的响应特征分析[J]. 中国水稻科学, 2021, 35(5): 439-448.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.210305
基因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
---|---|---|---|---|---|---|---|
LOC_Os01g23970 | OsCRK1 | 423 | 45.60 | 7.57 | F: R: | TTTGGCTCCTACGGTTCTGACC GCTAGTCCAGTGCTCCCATGTAAC | 66 |
LOC_Os01g38910 | OsCRK2 | 196 | 21.37 | 5.77 | F: R: | GACAATGGCGTTGCCTCTTCTTC AACCGAATGGCATCATCCGCATC | 71 |
LOC_Os02g06160 | OsCRK3 | 649 | 71.16 | 8.71 | F: R: | TGCGAGGTCATCGAATTCTGTCG ACAACATCTGGAGTCTGCTTGC | 101 |
LOC_Os02g12130 | OsCRK4 | 179 | 20.06 | 8.60 | F: R: | GCATGGAAGACAAGTCGGAAGG TCCAGTGGGCATTACTCCCTTG | 137 |
LOC_Os02g48080 | OsCRK5 | 426 | 48.08 | 7.47 | F: R: | ACAAACCCAGATGACATTCAGAGC ACCTTCGGGAAGAACTCCCTTG | 144 |
LOC_Os03g31260 | OsCRK6 | 314 | 35.25 | 9.51 | F: R: | TGCAAGCGTTAGTGGAACACTGG CACCTCGTCCAGACTCACTCATTC | 140 |
LOC_Os04g01860 | OsCRK7 | 217 | 23.41 | 4.38 | F: R: | AAGGGCCGTTTGACTACGAACC TGAATCCCTGTGCAGAATTTGGG | 70 |
LOC_Os04g03370 | OsCRK8 | 328 | 36.04 | 7.00 | F: R: | AGCAGTGGTTCACTCAGCTTTG CATGGTCCAGTGCTCCCATACAAG | 69 |
LOC_Os04g03530 | OsCRK9 | 430 | 49.02 | 10.07 | F: R: | GCTACACGTCATCTTTGGCTGTG AGCAAGGACGATGTCTCAGTGTG | 79 |
LOC_Os04g06090 | OsCRK10 | 183 | 21.23 | 10.58 | F: R: | TCGGTATCGTCCTCCTCGAGATTG TTGGTGTTCCGGTGCCATTACC | 62 |
LOC_Os04g06210 | OsCRK11 | 196 | 22.13 | 4.57 | F: R: | TTCAGGGACGCCACGATCTACTAC GCCGGTCACGTTGTTCATGTTC | 120 |
LOC_Os04g09780 | OsCRK12 | 278 | 28.83 | 5.26 | F: R: | TACGAGTACCTCCCTAACAGAAGC ATTGAGCCCTCTTTCTGGAATCG | 64 |
LOC_Os04g25060 | OsCRK13 | 262 | 27.29 | 6.94 | F: R: | CTGCACACACATCGATCGCTAATC TTGCAATGGCAGTGATCGTTAAGC | 60 |
LOC_Os04g25650 | OsCRK14 | 281 | 29.18 | 8.02 | F: R: | CTTACATGGCCTACGAGGTACAAG CGAGCTTTGCGTTCATCTCTTCG | 145 |
LOC_Os04g30030 | OsCRK15 | 463 | 52.89 | 6.88 | F: R: | CCCACCGAATTGTTGGAACCTATG TCCTTCGTCCGCTCACAATCTC | 126 |
LOC_Os04g54190 | OsCRK16 | 379 | 42.66 | 8.20 | F: R: | ACTCACCTGGCCAGAGAGATAC GCTCCCACTCTTGATGAAGGTAAC | 77 |
LOC_Os04g56360 | OsCRK17 | 494 | 55.00 | 7.21 | F: R: | GCTCCTACTACAGCGAGCAATC TGGTCCAGTGCTCCCATATAATGC | 60 |
LOC_Os04g56430 | OsCRK18 | 258 | 27.31 | 4.73 | F: R: | GCTTGGGTGATGGCAAGAACAAC AGCTGCCCTGAACCTTTGATGG | 76 |
LOC_Os05g34950 | OsCRK19 | 644 | 68.40 | 6.89 | F: R: | TCCTGGCCTTCATCGTGATTCTC TGAAATACTCGGGTACCTCTGACG | 135 |
LOC_Os06g30130 | OsCRK20 | 434 | 47.86 | 7.04 | F: R: | CGAAGACCTCTTAACCCTTGTGTG ATCACGTCGCTCCACGAGAAAC | 102 |
LOC_Os07g26180 | OsCRK21 | 163 | 18.63 | 7.57 | F: R: | TCGCCGGAACATATGGATACATGG GCTGAACACGTCCGATTTGATTG | 77 |
LOC_Os07g35290 | OsCRK22 | 348 | 37.45 | 8.90 | F: R: | AAGTTCAGGCACTGACGAACAG TGGAGCACTGAATCCAATTGAGC | 64 |
LOC_Os07g35310 | OsCRK23 | 659 | 71.05 | 6.81 | F: R: | TGGGAGCTTTATCTTGTGTTGGTG TCTCACACAGTGAGTTTAGAAGCG | 84 |
LOC_Os07g35580 | OsCRK24 | 696 | 74.78 | 7.90 | F: R: | CGTATACAGCTTCGGTGTGTTGC TTGCCCAATGTTCCCATACGAG | 116 |
LOC_Os07g35650 | OsCRK25 | 682 | 74.58 | 6.98 | F: R: | ACTCCTCTGAATGTTGTCGATGGC TGCCTGCAGTGATGGTTGAGAC | 63 |
LOC_Os07g35660 | OsCRK26 | 711 | 77.02 | 6.70 | F: R: | TGCCTACTCGCTGACGTGCTACA CTCTTGATTCCGTGGGGAGCAAAGC | 134 |
LOC_Os07g35680 | OsCRK27 | 698 | 75.47 | 6.26 | F: R: | AGCTATGCACAAGTTGCTGACG TAGGGCGCATGGAAGCTTTAGG | 115 |
LOC_Os07g35690 | OsCRK28 | 695 | 76.47 | 6.59 | F: R: | AGATGCGACCTATGATGGAGCAAG AGTTTAGGCAACGGCCCATCAC | 64 |
LOC_Os07g35700 | OsCRK29 | 645 | 73.68 | 7.23 | F: R: | AGAACAGACGTTTCTGCCCTACG AACCATACCGAACCCTCCTCTG | 130 |
LOC_Os07g43560 | OsCRK30 | 677 | 73.68 | 6.94 | F: R: | ATAATCATGGACGTGGCGAAGGG TGATGTCCCTGTGGTAGATCGC | 76 |
因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
LOC_Os08g25430 | OsCRK31 | 591 | 65.53 | 5.15 | F: R: | AAGGTGCAAGAACAAGAAGGTTGC AAGCAGTCCCTCAGCTATCCCATC | 80 |
LOC_Os09g16590 | OsCRK32 | 333 | 37.19 | 6.85 | F: R: | AGGAAGGCACTTATAGGCCAGAGC ACATCCCTGTCCTTCTCAAATGGG | 101 |
LOC_Os09g16950 | OsCRK33 | 516 | 56.46 | 8.20 | F: R: | TGCGTGGCGCATTCAAGTGTAG TCTCTCGCTCTGCCAACCTTTG | 104 |
LOC_Os11g11780 | OsCRK34 | 305 | 34.70 | 6.99 | F: R: | CAGTGGCCAAAGAGGTTTGAACG TGGCCACTATCAGCAGTTTGCC | 92 |
LOC_Os11g26140 | OsCRK35 | 408 | 45.39 | 7.95 | F: R: | GGTGAACACCATGTAGCAGGTC ACCTCTGCACTTTGGACAGCAG | 64 |
LOC_Os11g29510 | OsCRK36 | 307 | 34.85 | 8.98 | F: R: | CAAACCAATTGCTGTCCCGATGC GGAGCTTGAGCTTAGATGGTGTGG | 95 |
LOC_Os11g39450 | OsCRK37 | 456 | 51.83 | 7.52 | F: R: | CAGTCACATTGCTGGAACATACGG TCCTTCCCGTGACAATCTCTAGG | 122 |
LOC_Os11g44690 | OsCRK38 | 479 | 53.95 | 6.82 | F: R: | GATATGCAGCTCTTCGCCAACTTC CAGTGAGTTTAGAAGCGCACCAAC | 134 |
LOC_Os11g44860 | OsCRK39 | 527 | 59.22 | 9.85 | F: R: | CGTCAACGCTAACAGCACACAC TTGATCGAGTTGCCATCCTCAAG | 78 |
LOC_Os12g14480 | OsCRK40 | 364 | 41.15 | 9.99 | F: R: | GTGGAGGCCCTAAGAAGAAAGC AGCTCTGGTAAGACTACCTGTGAC | 100 |
LOC_Os12g14610 | OsCRK41 | 485 | 53.55 | 8.20 | F: R: | TGCAAAGCTTCTCCAGGAAATCAC TTCGCAGCAATTTCTGTCCCATC | 117 |
LOC_Os12g41270 | OsCRK42 | 897 | 95.79 | 8.42 | F: R: | AGGACCTCGAAGGATTCAGAGC AGATGCCACTCCAAGCAAGATAGC | 68 |
LOC_Os12g41490 | OsCRK43 | 687 | 74.42 | 5.86 | F: R: | ATGTGCGGCTGGTGTTGGAATC ACCAATTACTCCCTCCGTGTTGG | 73 |
LOC_Os12g41510 | OsCRK44 | 839 | 91.65 | 6.31 | F: R: | GGATGGAGAGATCACAAGAAAGCC CACCATGAGAGAATGGACCACAAC | 95 |
LOC_Os12g41530 | OsCRK45 | 682 | 74.26 | 5.68 | F: R: | GTTGCTGATGGCACTGGAACTC TGCATAACCTCTGTGATGTGCAG | 63 |
Table 1 OsCRK gene family members and their qPCR primers.
基因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
---|---|---|---|---|---|---|---|
LOC_Os01g23970 | OsCRK1 | 423 | 45.60 | 7.57 | F: R: | TTTGGCTCCTACGGTTCTGACC GCTAGTCCAGTGCTCCCATGTAAC | 66 |
LOC_Os01g38910 | OsCRK2 | 196 | 21.37 | 5.77 | F: R: | GACAATGGCGTTGCCTCTTCTTC AACCGAATGGCATCATCCGCATC | 71 |
LOC_Os02g06160 | OsCRK3 | 649 | 71.16 | 8.71 | F: R: | TGCGAGGTCATCGAATTCTGTCG ACAACATCTGGAGTCTGCTTGC | 101 |
LOC_Os02g12130 | OsCRK4 | 179 | 20.06 | 8.60 | F: R: | GCATGGAAGACAAGTCGGAAGG TCCAGTGGGCATTACTCCCTTG | 137 |
LOC_Os02g48080 | OsCRK5 | 426 | 48.08 | 7.47 | F: R: | ACAAACCCAGATGACATTCAGAGC ACCTTCGGGAAGAACTCCCTTG | 144 |
LOC_Os03g31260 | OsCRK6 | 314 | 35.25 | 9.51 | F: R: | TGCAAGCGTTAGTGGAACACTGG CACCTCGTCCAGACTCACTCATTC | 140 |
LOC_Os04g01860 | OsCRK7 | 217 | 23.41 | 4.38 | F: R: | AAGGGCCGTTTGACTACGAACC TGAATCCCTGTGCAGAATTTGGG | 70 |
LOC_Os04g03370 | OsCRK8 | 328 | 36.04 | 7.00 | F: R: | AGCAGTGGTTCACTCAGCTTTG CATGGTCCAGTGCTCCCATACAAG | 69 |
LOC_Os04g03530 | OsCRK9 | 430 | 49.02 | 10.07 | F: R: | GCTACACGTCATCTTTGGCTGTG AGCAAGGACGATGTCTCAGTGTG | 79 |
LOC_Os04g06090 | OsCRK10 | 183 | 21.23 | 10.58 | F: R: | TCGGTATCGTCCTCCTCGAGATTG TTGGTGTTCCGGTGCCATTACC | 62 |
LOC_Os04g06210 | OsCRK11 | 196 | 22.13 | 4.57 | F: R: | TTCAGGGACGCCACGATCTACTAC GCCGGTCACGTTGTTCATGTTC | 120 |
LOC_Os04g09780 | OsCRK12 | 278 | 28.83 | 5.26 | F: R: | TACGAGTACCTCCCTAACAGAAGC ATTGAGCCCTCTTTCTGGAATCG | 64 |
LOC_Os04g25060 | OsCRK13 | 262 | 27.29 | 6.94 | F: R: | CTGCACACACATCGATCGCTAATC TTGCAATGGCAGTGATCGTTAAGC | 60 |
LOC_Os04g25650 | OsCRK14 | 281 | 29.18 | 8.02 | F: R: | CTTACATGGCCTACGAGGTACAAG CGAGCTTTGCGTTCATCTCTTCG | 145 |
LOC_Os04g30030 | OsCRK15 | 463 | 52.89 | 6.88 | F: R: | CCCACCGAATTGTTGGAACCTATG TCCTTCGTCCGCTCACAATCTC | 126 |
LOC_Os04g54190 | OsCRK16 | 379 | 42.66 | 8.20 | F: R: | ACTCACCTGGCCAGAGAGATAC GCTCCCACTCTTGATGAAGGTAAC | 77 |
LOC_Os04g56360 | OsCRK17 | 494 | 55.00 | 7.21 | F: R: | GCTCCTACTACAGCGAGCAATC TGGTCCAGTGCTCCCATATAATGC | 60 |
LOC_Os04g56430 | OsCRK18 | 258 | 27.31 | 4.73 | F: R: | GCTTGGGTGATGGCAAGAACAAC AGCTGCCCTGAACCTTTGATGG | 76 |
LOC_Os05g34950 | OsCRK19 | 644 | 68.40 | 6.89 | F: R: | TCCTGGCCTTCATCGTGATTCTC TGAAATACTCGGGTACCTCTGACG | 135 |
LOC_Os06g30130 | OsCRK20 | 434 | 47.86 | 7.04 | F: R: | CGAAGACCTCTTAACCCTTGTGTG ATCACGTCGCTCCACGAGAAAC | 102 |
LOC_Os07g26180 | OsCRK21 | 163 | 18.63 | 7.57 | F: R: | TCGCCGGAACATATGGATACATGG GCTGAACACGTCCGATTTGATTG | 77 |
LOC_Os07g35290 | OsCRK22 | 348 | 37.45 | 8.90 | F: R: | AAGTTCAGGCACTGACGAACAG TGGAGCACTGAATCCAATTGAGC | 64 |
LOC_Os07g35310 | OsCRK23 | 659 | 71.05 | 6.81 | F: R: | TGGGAGCTTTATCTTGTGTTGGTG TCTCACACAGTGAGTTTAGAAGCG | 84 |
LOC_Os07g35580 | OsCRK24 | 696 | 74.78 | 7.90 | F: R: | CGTATACAGCTTCGGTGTGTTGC TTGCCCAATGTTCCCATACGAG | 116 |
LOC_Os07g35650 | OsCRK25 | 682 | 74.58 | 6.98 | F: R: | ACTCCTCTGAATGTTGTCGATGGC TGCCTGCAGTGATGGTTGAGAC | 63 |
LOC_Os07g35660 | OsCRK26 | 711 | 77.02 | 6.70 | F: R: | TGCCTACTCGCTGACGTGCTACA CTCTTGATTCCGTGGGGAGCAAAGC | 134 |
LOC_Os07g35680 | OsCRK27 | 698 | 75.47 | 6.26 | F: R: | AGCTATGCACAAGTTGCTGACG TAGGGCGCATGGAAGCTTTAGG | 115 |
LOC_Os07g35690 | OsCRK28 | 695 | 76.47 | 6.59 | F: R: | AGATGCGACCTATGATGGAGCAAG AGTTTAGGCAACGGCCCATCAC | 64 |
LOC_Os07g35700 | OsCRK29 | 645 | 73.68 | 7.23 | F: R: | AGAACAGACGTTTCTGCCCTACG AACCATACCGAACCCTCCTCTG | 130 |
LOC_Os07g43560 | OsCRK30 | 677 | 73.68 | 6.94 | F: R: | ATAATCATGGACGTGGCGAAGGG TGATGTCCCTGTGGTAGATCGC | 76 |
因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
LOC_Os08g25430 | OsCRK31 | 591 | 65.53 | 5.15 | F: R: | AAGGTGCAAGAACAAGAAGGTTGC AAGCAGTCCCTCAGCTATCCCATC | 80 |
LOC_Os09g16590 | OsCRK32 | 333 | 37.19 | 6.85 | F: R: | AGGAAGGCACTTATAGGCCAGAGC ACATCCCTGTCCTTCTCAAATGGG | 101 |
LOC_Os09g16950 | OsCRK33 | 516 | 56.46 | 8.20 | F: R: | TGCGTGGCGCATTCAAGTGTAG TCTCTCGCTCTGCCAACCTTTG | 104 |
LOC_Os11g11780 | OsCRK34 | 305 | 34.70 | 6.99 | F: R: | CAGTGGCCAAAGAGGTTTGAACG TGGCCACTATCAGCAGTTTGCC | 92 |
LOC_Os11g26140 | OsCRK35 | 408 | 45.39 | 7.95 | F: R: | GGTGAACACCATGTAGCAGGTC ACCTCTGCACTTTGGACAGCAG | 64 |
LOC_Os11g29510 | OsCRK36 | 307 | 34.85 | 8.98 | F: R: | CAAACCAATTGCTGTCCCGATGC GGAGCTTGAGCTTAGATGGTGTGG | 95 |
LOC_Os11g39450 | OsCRK37 | 456 | 51.83 | 7.52 | F: R: | CAGTCACATTGCTGGAACATACGG TCCTTCCCGTGACAATCTCTAGG | 122 |
LOC_Os11g44690 | OsCRK38 | 479 | 53.95 | 6.82 | F: R: | GATATGCAGCTCTTCGCCAACTTC CAGTGAGTTTAGAAGCGCACCAAC | 134 |
LOC_Os11g44860 | OsCRK39 | 527 | 59.22 | 9.85 | F: R: | CGTCAACGCTAACAGCACACAC TTGATCGAGTTGCCATCCTCAAG | 78 |
LOC_Os12g14480 | OsCRK40 | 364 | 41.15 | 9.99 | F: R: | GTGGAGGCCCTAAGAAGAAAGC AGCTCTGGTAAGACTACCTGTGAC | 100 |
LOC_Os12g14610 | OsCRK41 | 485 | 53.55 | 8.20 | F: R: | TGCAAAGCTTCTCCAGGAAATCAC TTCGCAGCAATTTCTGTCCCATC | 117 |
LOC_Os12g41270 | OsCRK42 | 897 | 95.79 | 8.42 | F: R: | AGGACCTCGAAGGATTCAGAGC AGATGCCACTCCAAGCAAGATAGC | 68 |
LOC_Os12g41490 | OsCRK43 | 687 | 74.42 | 5.86 | F: R: | ATGTGCGGCTGGTGTTGGAATC ACCAATTACTCCCTCCGTGTTGG | 73 |
LOC_Os12g41510 | OsCRK44 | 839 | 91.65 | 6.31 | F: R: | GGATGGAGAGATCACAAGAAAGCC CACCATGAGAGAATGGACCACAAC | 95 |
LOC_Os12g41530 | OsCRK45 | 682 | 74.26 | 5.68 | F: R: | GTTGCTGATGGCACTGGAACTC TGCATAACCTCTGTGATGTGCAG | 63 |
Fig. 2. Responses of rice OsCRK to R. solani, ET, JA, SA and CK.Fold change(FC) is expressed as the mean expression value of R. solani-infected or plant hormones-treated relative to mock-treated at each time point. The heat map was generated using Log2 FC. Red and blue colors indicate up- and down-regulated genes, respectively.
Fig. 3. The expression pattern of OsCRK in different rice tissues. R, S, L, LS and P indicate root, stem, leaf, leaf sheath and panicle, respectively.
[1] | Jones J D, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. |
[2] | Liang X X, Zhou J M. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling[J]. Annual Review of Plant Biology, 2018, 69(1): 267-299. |
[3] | Chen Z A. Superfamily of proteins with novel cysteine- rich repeats[J]. Plant Physiology, 2001, 126(2): 473-476. |
[4] | Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojärvi J, Rayapuram C, Idänheimo N, Hunter K, Kimura S, et al. Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J]. PLoS Genetics, 2015, 11(7): e1005373. |
[5] | Sawano Y, Miyakawa T, Yamazaki H, Tanokura M, Hatano K. Purification, characterization, and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds[J]. Biological Chemistry, 2007, 388(3): 273-280. |
[6] | Chen K, Du L, Chen Z. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Molecular Biology, 2003, 53(1): 61-74. |
[7] | Acharya B R, Raina S, Maqbool S B, Jagadeeswaran G, Mosher S L, Appel H M, Schultz J C. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae[J]. Plant Journal, 2007, 50(3): 488-499. |
[8] | Czernic P, Visser B, Sun W, Savoure A, Deslandes L, Marco Y, van Montagu M, Verbruggen N. Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack[J]. Plant Journal, 1999, 18(3): 321-327. |
[9] | Chen K, Fan B, Du L, Chen Z. Activation of hypersensitive cell death by pathogen-induced receptor- like protein kinases from Arabidopsis[J]. Plant Molecular Biology, 2004, 56(2): 271-283. |
[10] | Yeh Y H, Chang Y H, Huang P Y, Huang J B, Zimmerli L. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J]. Frontiers in Plant Science, 2015, 6(6): 322. |
[11] | Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, Mähönen A P, Kangasjärvi J. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J]. Biochemical and Biophysical Research Communications, 2014, 445(2): 457-462. |
[12] | Yang K, Rong W, Qi L, Li J, Wei X, Zhang Z. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis[J]. Scientific Reports, 2013, 3: 3021. |
[13] | Chern M, Xu Q, Bart R S, Bai W, Ruan D, Sze-To W H, Canlas P E, Jain R, Chen X, Ronald P C. A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice nh1 (osnpr1)-mediated immunity[J]. PLoS Genetics, 2016, 12(5): e1006049. |
[14] | Li T G, Zhang D D, Zhou L, Kong Z Q, Hussaini A S, Wang D, Li J J, Short D P, Dhar N, Klosterman S J, Wang B L, Yin C M, Subbarao K V, Chen J Y, Dai X F. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in Plant Science, 2018, 9: 1266. |
[15] | Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary S M T, Poucet T, Marande W, Berges H, Xu S, Jaouannet M. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch[J]. Nature Communications, 2021, 12: 433. |
[16] | 左示敏, 张亚芳, 陈宗祥, 陈夕军, 潘学彪. 水稻抗纹枯病遗传育种研究进展[J]. 中国科学: 生命科学, 2010, 40(11): 1014-1023. |
Zuo S M, Zhang Y F, Chen Z X, Pan X B. Current progress on genetics and breeding in resistance to rice sheath blight[J]. Scientia Sinica Vitae, 2010, 40(11): 1014-1023. (in Chinese with English abstract) | |
[17] | Molla K A, Karmakar S, Molla J, Bajaj P, Varshney R K, Datta S K, Datta K. Understanding sheath blight resistance in rice: The road behind and the road ahead[J]. Plant Biotechnology Journal, 2020, 18(4): 895-915. |
[18] | Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis[J]. Plant Journal, 2020, 102(5): 948-964. |
[19] | Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1485-1498. |
[20] | Peng X, Wang H, Jang J C, Xiao T, He H, Jiang D, Tang X. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9: 63. |
[21] | Helliwell E E, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal, 2013, 11(1): 33-42. |
[22] | Sadumpati V, Kalambur M, Vudem D R, Kirti P B. Transgenic indica rice lines, expressing Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens[J]. Journal of Biotechnology, 2013, 166(3): 114-121. |
[23] | Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, Matsui H, Yamamoto M, Ichinose Y, et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon[J]. New Phytologist, 2017, 217(2): 771-783. |
[24] | Xue X, Cao Z X, Zhang X T, Wang Y, Zhang Y F, Chen Z X, Zuo S M. Overexpression of OsOSM1 enhances resistance to rice sheath blight[J]. Plant Disease, 2016, 100(8): 1634-1642. |
[25] | Zhang F, Zeng D, Zhang C S, Lu J L, Chen T J, Xie J P, Zhou Y L. Genome-wide association analysis of the genetic basis for sheath blight resistance in rice[J]. Rice, 2019, 12: 93. |
[26] | 薛芗, 冯志明, 曹文磊, 王雨, 陈宗祥, 马玉银, 张亚芳, 潘学彪, 左示敏. 乙烯信号参与调控水稻纹枯病抗性的研究[J]. 植物病理学报, 2020, 50(4): 462-470. |
Xue X, Feng Z M, Cao W L, Wang Y, Chen Z X, Ma Y Y, Zhang Y F, Pan X B, Zuo S M. A study on ethylene signaling involving in regulating resistance to rice sheath blight. Acta Phytopathologica Sinica, 2020, 50(4): 462-470. (in Chinese with English abstract) | |
[27] | 左示敏, 薛芗, 张亚芳, 陈宗祥, 潘学彪. 细胞分裂素在调控水稻对纹枯病的抗性中的应用: ZL201610643969.X[P]. 2018.08.07. |
Zuo S M, Xue X, Zhang Y F, Chen Z X, Pan X B. Application of cytokinin in regulating rice resistance to sheath blight: ZL201610643969.X[P]. 2018.08.07. | |
[28] | 左示敏, 章慧敏, 冯志明, 陈宗祥, 张亚芳. OsCKX7蛋白质及其编码基因在调控植物纹枯病抗性中的应用: CN201910071781.6[P]. 2019.01.25. |
Zuo S M, Zhang H M, Feng Z M, Chen Z X, Zhang Y F. Application of OsCKX7 in regulating rice resistance to sheath blight: CN201910071781.6[P]. 2019.01.25. (in Chinese) | |
[29] | 贺闽, 尹俊杰, 冯志明, 朱孝波, 赵剑华, 左示敏, 陈学伟. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 48-58. |
He M, Yin J J, Feng Z M, Zhu X B, Zhao J H, Zuo S M, Chen X W. Evaluation of rice resistance to blast disease and sheath blight disease[J]. Chinese Bulletin of Botany, 2020, 55(5): 48-58. (in Chinese with English abstract) | |
[30] | De Vleesschauwer D, Yang Y, Cruz C V, Höfte M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling[J]. Plant Physiology, 2010, 152(4): 2036-2052. |
[31] | Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus[J]. Plant and Cell Physiology, 2004, 46(6): 803-809. |
[32] | Leon-Reyes A, Du Y J, Koomeef A, Proietti S, Körbes A P, Memelink J, Pieterse C M J. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid[J]. Molecular Plant-Microbe Interactions, 2010, 23(2): 187-197. |
[33] | Shinshi H. Ethylene-regulated transcription and crosstalk with jasmonic acid[J]. Plant Science, 2008, 175(1): 18. |
[34] | Yang Y X, Ahammed G J, Wu C. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein & Peptide Science, 2015, 16(5): 450-461. |
[35] | Tena G, Asai T, Chiu W L, Sheen J. Plant mitogen- activated protein kinase signaling cascades[J]. Current Opinion in Plant Biology, 2001, 4(5): 392-400. |
[36] | Yang Y X, Ahammed G, Wu C, Fan S Y, Zhou Y H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein and Peptide Science, 2015, 16(5): 450-461. |
[37] | Spoel S H, Johnson J S, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles[J]. Proceedings of the National Academy of Sciences of the USA, 2007, 104(47): 18842-18847. |
[38] | Bari R, Jones J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4): 473-488. |
[39] | Jung Y H, Rakwal R. Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm)[J]. Journal of Proteome Research, 2006, 5(10): 2586-2598. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||