Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (4): 359-372.DOI: 10.16819/j.1001-7216.2021.201205
• Orginal Article • Previous Articles Next Articles
Chengxing DU#, Huali ZHANG#, Dongqing DAI, Mingyue WU, Minmin LIANG, Junyu CHEN*(), Liangyong MA*()
Received:
2020-12-08
Revised:
2021-01-26
Online:
2021-07-10
Published:
2021-07-10
Contact:
Junyu CHEN, Liangyong MA
About author:
#These authors contributed equally to this work
杜成兴#, 张华丽#, 戴冬青, 吴明月, 梁敏敏, 陈俊宇*(), 马良勇*()
通讯作者:
陈俊宇,马良勇
作者简介:
#共同第一作者
基金资助:
Chengxing DU, Huali ZHANG, Dongqing DAI, Mingyue WU, Minmin LIANG, Junyu CHEN, Liangyong MA. QTL Analysis for Grain Weight and Shape and Validation of qTGW1.2/qGL1.2 [J]. Chinese Journal OF Rice Science, 2021, 35(4): 359-372.
杜成兴, 张华丽, 戴冬青, 吴明月, 梁敏敏, 陈俊宇, 马良勇. 水稻粒重粒形QTL的定位及qTGW1.2/qGL1.2的验证[J]. 中国水稻科学, 2021, 35(4): 359-372.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.201205
群体 Population | 性状Trait | F2:3-TGW | F2:3-GL | F2:3-GW | RIL-TGW | RIL-GL |
---|---|---|---|---|---|---|
F2:3 | 粒长GL | 0.679** | ||||
粒宽GW | 0.725** | 0.279** | ||||
RIL | 千粒重TGW | -0.053 | ||||
粒长GL | 0.020 | 0.753** | ||||
粒宽GW | -0.163 | 0.776** | 0.394** |
Table 1 Correlationship analysis on grain shape traits in EFT/FM9 F2:3 and RIL population.
群体 Population | 性状Trait | F2:3-TGW | F2:3-GL | F2:3-GW | RIL-TGW | RIL-GL |
---|---|---|---|---|---|---|
F2:3 | 粒长GL | 0.679** | ||||
粒宽GW | 0.725** | 0.279** | ||||
RIL | 千粒重TGW | -0.053 | ||||
粒长GL | 0.020 | 0.753** | ||||
粒宽GW | -0.163 | 0.776** | 0.394** |
性状 | 数量性状基因座 | 标记区间 | F2:3 | RIL | 已克隆QTLa Cloned QTLa | |||||
---|---|---|---|---|---|---|---|---|---|---|
Trait | QTL | Marker interval | LOD | PVE/% | Add | LOD | PVE/% | Add | ||
千粒重 | qTGW1.1 | RM246-RM1061 | 3.97 | 3.25 | -0.92 | |||||
TGW | qTGW1.2 | RM315-RM12138 | 5.28 | 3.95 | -1.08 | 4.51 | 4.15 | -0.94 | ||
qTGW2 | RM145-RM71 | 59.83 | 38.33 | -3.70 | 31.8 | 34.24 | -3.00 | GW2[ | ||
qTGW3.1 | THI351-THI468 | 4.25 | 4.24 | -1.07 | ||||||
qTGW3.2 | THI1668-THI1701 | 16.05 | 6.74 | -1.49 | 8.68 | 7.60 | -1.41 | GS3[ | ||
qTGW3.3 | RM168-RM3867 | 11.15 | 5.89 | -1.39 | 5.82 | 5.92 | -1.24 | GSA1[ | ||
qTGW5.1 | FIF232-FIF345 | 8.53 | 3.67 | 0.95 | GS5[ | |||||
qTGW5.2 | FIF426-FIF738 | 9.86 | 4.64 | 1.11 | 5.95 | 4.97 | 1.14 | GSE5/GW5/qSW5[ | ||
qTGW6.1 | RM136-RM3 | 4.19 | 2.25 | -0.87 | ||||||
qTGW6.2 | RM30-RM340 | 6.12 | 2.80 | -1.04 | ||||||
qTGW7 | RM420-RM172 | 4.35 | 1.76 | -0.76 | ||||||
qTGW9.1 | RM296-RM7424 | 4.97 | 2.68 | -0.96 | DEP1/DN1/qNGR9[ | |||||
qTGW9.2 | RM7048-RM328 | 3.26 | 3.16 | -0.91 | ||||||
qTGW10.1 | RM228-RM590 | 6.70 | 2.64 | -0.92 | ||||||
qTGW10.2 | RM474-TEN400 | 4.12 | 3.43 | -0.96 | ||||||
qTGW12 | RM1103-RM3226 | 6.26 | 2.62 | -0.93 | ||||||
粒长 | qGL1.1 | RM1061-RM128 | 8.29 | 4.05 | -0.16 | |||||
GL | qGL1.2 | RM315-RM12138 | 7.47 | 3.83 | -0.15 | 9.10 | 8.25 | -0.21 | ||
qGL1.3 | RM12283-RM12333 | 2.99 | 2.42 | -0.12 | ||||||
qGL2 | RM145-RM71 | 12.09 | 6.35 | -0.21 | 12.82 | 18.24 | -0.32 | GW2[ | ||
qGL3.1 | THI156-THI214 | 4.86 | 4.01 | -0.15 | ||||||
qGL3.2 | THI301-THI351 | 5.06 | 2.36 | -0.12 | ||||||
qGL3.3 | THI1668-THI1701 | 45.92 | 32.65 | -0.44 | 24.88 | 25.95 | -0.38 | GS3[ | ||
qGL3.4 | RM168-RM3867 | 7.62 | 5.15 | -0.18 | 2.95 | 2.78 | -0.12 | GSA1[ | ||
qGL5 | RM538-RM480 | 5.14 | 2.45 | 0.13 | ||||||
qGL6 | RM589-RM587 | 4.26 | 2.27 | 0.12 | ||||||
qGL7 | RM351-RM234 | 5.78 | 3.32 | -0.14 | ||||||
qGL9 | RM296-RM7424 | 10.43 | 7.67 | -0.22 | DEP1/DN1/qNGR9[ | |||||
qGL11 | RM1355-RM209 | 7.18 | 3.70 | -0.16 | ||||||
粒宽 | qGW2 | RM145-RM71 | 48.09 | 30.95 | -0.20 | 17.85 | 24.96 | -0.17 | GW2[ | |
GW | qGW3 | RM3867-RM571 | 5.30 | 2.93 | -0.05 | GSA1[ | ||||
qGW5.1 | FIF426-FIF738 | 29.68 | 19.25 | 0.15 | 10.84 | 15.49 | 0.13 | GSE5/GW5/qSW5[ | ||
qGW5.2 | FIF738-FIF801 | 9.30 | 4.42 | 0.07 | ||||||
qGW11 | RM21-RM254 | 4.44 | 3.10 | -0.06 | ||||||
qGW12 | RM1103-RM3226 | 7.88 | 4.01 | -0.07 |
Table 2 QTLs for grain weight and shape detected in the F2:3 and RIL populations.
性状 | 数量性状基因座 | 标记区间 | F2:3 | RIL | 已克隆QTLa Cloned QTLa | |||||
---|---|---|---|---|---|---|---|---|---|---|
Trait | QTL | Marker interval | LOD | PVE/% | Add | LOD | PVE/% | Add | ||
千粒重 | qTGW1.1 | RM246-RM1061 | 3.97 | 3.25 | -0.92 | |||||
TGW | qTGW1.2 | RM315-RM12138 | 5.28 | 3.95 | -1.08 | 4.51 | 4.15 | -0.94 | ||
qTGW2 | RM145-RM71 | 59.83 | 38.33 | -3.70 | 31.8 | 34.24 | -3.00 | GW2[ | ||
qTGW3.1 | THI351-THI468 | 4.25 | 4.24 | -1.07 | ||||||
qTGW3.2 | THI1668-THI1701 | 16.05 | 6.74 | -1.49 | 8.68 | 7.60 | -1.41 | GS3[ | ||
qTGW3.3 | RM168-RM3867 | 11.15 | 5.89 | -1.39 | 5.82 | 5.92 | -1.24 | GSA1[ | ||
qTGW5.1 | FIF232-FIF345 | 8.53 | 3.67 | 0.95 | GS5[ | |||||
qTGW5.2 | FIF426-FIF738 | 9.86 | 4.64 | 1.11 | 5.95 | 4.97 | 1.14 | GSE5/GW5/qSW5[ | ||
qTGW6.1 | RM136-RM3 | 4.19 | 2.25 | -0.87 | ||||||
qTGW6.2 | RM30-RM340 | 6.12 | 2.80 | -1.04 | ||||||
qTGW7 | RM420-RM172 | 4.35 | 1.76 | -0.76 | ||||||
qTGW9.1 | RM296-RM7424 | 4.97 | 2.68 | -0.96 | DEP1/DN1/qNGR9[ | |||||
qTGW9.2 | RM7048-RM328 | 3.26 | 3.16 | -0.91 | ||||||
qTGW10.1 | RM228-RM590 | 6.70 | 2.64 | -0.92 | ||||||
qTGW10.2 | RM474-TEN400 | 4.12 | 3.43 | -0.96 | ||||||
qTGW12 | RM1103-RM3226 | 6.26 | 2.62 | -0.93 | ||||||
粒长 | qGL1.1 | RM1061-RM128 | 8.29 | 4.05 | -0.16 | |||||
GL | qGL1.2 | RM315-RM12138 | 7.47 | 3.83 | -0.15 | 9.10 | 8.25 | -0.21 | ||
qGL1.3 | RM12283-RM12333 | 2.99 | 2.42 | -0.12 | ||||||
qGL2 | RM145-RM71 | 12.09 | 6.35 | -0.21 | 12.82 | 18.24 | -0.32 | GW2[ | ||
qGL3.1 | THI156-THI214 | 4.86 | 4.01 | -0.15 | ||||||
qGL3.2 | THI301-THI351 | 5.06 | 2.36 | -0.12 | ||||||
qGL3.3 | THI1668-THI1701 | 45.92 | 32.65 | -0.44 | 24.88 | 25.95 | -0.38 | GS3[ | ||
qGL3.4 | RM168-RM3867 | 7.62 | 5.15 | -0.18 | 2.95 | 2.78 | -0.12 | GSA1[ | ||
qGL5 | RM538-RM480 | 5.14 | 2.45 | 0.13 | ||||||
qGL6 | RM589-RM587 | 4.26 | 2.27 | 0.12 | ||||||
qGL7 | RM351-RM234 | 5.78 | 3.32 | -0.14 | ||||||
qGL9 | RM296-RM7424 | 10.43 | 7.67 | -0.22 | DEP1/DN1/qNGR9[ | |||||
qGL11 | RM1355-RM209 | 7.18 | 3.70 | -0.16 | ||||||
粒宽 | qGW2 | RM145-RM71 | 48.09 | 30.95 | -0.20 | 17.85 | 24.96 | -0.17 | GW2[ | |
GW | qGW3 | RM3867-RM571 | 5.30 | 2.93 | -0.05 | GSA1[ | ||||
qGW5.1 | FIF426-FIF738 | 29.68 | 19.25 | 0.15 | 10.84 | 15.49 | 0.13 | GSE5/GW5/qSW5[ | ||
qGW5.2 | FIF738-FIF801 | 9.30 | 4.42 | 0.07 | ||||||
qGW11 | RM21-RM254 | 4.44 | 3.10 | -0.06 | ||||||
qGW12 | RM1103-RM3226 | 7.88 | 4.01 | -0.07 |
Fig. 6. Comparison of plant architecture, grain shape and grain weight among different genotypes of qTGW1.2/qGL1.2 in the D1 population (A-C) and the D2 population (D-F) of advanced generations. **Significant at 0.01 level.
群体 Population | 分离区别 Segregated region | 性状 Trait | qTGW1.2/qGL1.2EFT | qTGW1.2/qGL1.2FM9 | P值 P value | 加性效应 Additive effect |
---|---|---|---|---|---|---|
E1 | FIR3596-FIR3892 | 千粒重TGW/g | 33.00±1.09 | 34.77±1.03 | 0.0014 | -0.89 |
粒长GL/mm | 9.42±0.17 | 9.85±0.13 | <0.0001 | -0.21 | ||
粒宽GW/mm | 3.09±0.02 | 3.08±0.02 | 0.1703 | |||
E2 | FIR3596-FIR3892 | 千粒重TGW/g | 33.63±0.87 | 35.99±0.88 | <0.0001 | -1.19 |
粒长GL/mm | 9.67±0.17 | 10.11±0.11 | <0.0001 | -0.22 | ||
粒宽GW/mm | 3.10±0.03 | 3.09±0.04 | 0.7305 |
Table 3 Effect of qTGW1.2/qGL1.2 estimated in E1 and E2 populations of advanced generations.
群体 Population | 分离区别 Segregated region | 性状 Trait | qTGW1.2/qGL1.2EFT | qTGW1.2/qGL1.2FM9 | P值 P value | 加性效应 Additive effect |
---|---|---|---|---|---|---|
E1 | FIR3596-FIR3892 | 千粒重TGW/g | 33.00±1.09 | 34.77±1.03 | 0.0014 | -0.89 |
粒长GL/mm | 9.42±0.17 | 9.85±0.13 | <0.0001 | -0.21 | ||
粒宽GW/mm | 3.09±0.02 | 3.08±0.02 | 0.1703 | |||
E2 | FIR3596-FIR3892 | 千粒重TGW/g | 33.63±0.87 | 35.99±0.88 | <0.0001 | -1.19 |
粒长GL/mm | 9.67±0.17 | 10.11±0.11 | <0.0001 | -0.22 | ||
粒宽GW/mm | 3.10±0.03 | 3.09±0.04 | 0.7305 |
Fig. 7. Scanning electron observation and quantitative expression analysis of related genes in qTGW1.2/qGL1.2FM9 and qTGW1.2/qGL1.2EFT. A, Local outer surfaces of qTGW1.2/qGL1.2FM9 and qTGW1.2/qGL1.2EFT spikelet hulls. (Bars = 200 µm); B, Comparison of the cell length and width of outer glume cells (*, **Significant at 0.05 and 0.01 levels, respectively, n=30); C, Two parental homozygous genotypes qTGW1.2/qGL1.2FM9 and qTGW1.2/qGL1.2EFT are involved in the expression levels of cell cycle- and grain shape-related genes in young panicles. CDKA1, Cyclin-dependent kinase A-1; CDKB2;1, B-type cyclin-dependent kinase 2;1; CYCA1;1, A-type cyclin 1;1; CYCA2; 2, A-type cyclin 3;1; CYCB1;1, B-type cyclin 1; CYCB2; 2, B-type cyclin 2;2; CYCD4;1, D-type cyclin 4;1; CYCD4; 2, D-type cyclin 4;2; KN, Syntaxin-related protein KNOLLE; CYCT1, T-type cyclin 1; CYCU4; 3, U-type cyclin 4;3; CDT2, Cadmium tolerant 2; MAD2, Cell expansion-related gene MAD2; E2F2, E2F transcription factor 2; MAPK, Mitogen-activated protein kinase; MCM2, Mini-chromosome maintenance protein 2; MCM3, Mini-chromosome maintenance protein 3; MCM4, Mini-chromosome maintenance protein 4; GW2, Grain weight 2; GS3, Grain size 3; GW5, Grain width 5; OsPIN1a, Pin protein 1a; OsPIN1, Pin-formed 1b; BG1, Big grain 1; OsIAA11, Aux/IAA protein 11; OsARF19, Auxin response factor 19; TSG1, Tillering and small grain 1.
[1] | Wang A H, Hou Q Q, Si L Z, Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B.The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180(4): 2077-2090. |
[2] | 罗玉坤, 朱智伟, 陈能, 段彬伍, 章林平. 中国主要稻米的粒型及其品质特性[J]. 中国水稻科学, 2004(2): 49-53. |
Luo Y K, Zhu Z W, Chen N, Duan B W, Zhang L P.Grain types and related quality characteristics of rice in China[J]. Chinese Journal of Rice Science, 2004(2): 49-53. (in Chinese with English abstract) | |
[3] | 杨联松, 白一松, 张培江, 许传万, 胡兴明, 王伍梅, 佘德红, 陈桂芝. 谷粒形状与稻米品质相关性研究[J]. 杂交水稻, 2001(4): 51-53, 57. |
Yang L S, Bai Y S, Zhang P J, Xu C W, Hu X M, Wang W M.Studies on the correlation between grain shape and grain quality in rice[J]. Hybrid Rice, 2001(4): 51-53, 57. (in Chinese with English abstract) | |
[4] | Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L.Genetic bases of rice grain shape: So many genes, so little known[J]. Trends in Plant Science, 2013, 18(4): 218-226. |
[5] | Xing Y Z, Zhang Q F.Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology, 2010, 61(1): 421-442. |
[6] | Chan A N, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y, Zhuang Z H. Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J]. Theoretical and Applied Genetics, 2021, 134: 327-337. . |
[7] | Li N, Xu R, Duan P, Li Y H.Control of grain size in rice[J]. Plant Reproduction, 2018, 31: 237-251. |
[8] | 康艺维, 陈玉宇, 张迎信. 水稻粒型基因克隆研究进展及育种应用展望[J]. 中国水稻学, 2020, 34(6): 479-490. |
Kang Y W, Chen Y Y, Zhang Y X.Research progress and breeding prospects of grain size associated genes in rice[J]. Chinese Journal of Rice Science, 2020, 34(6): 479-490. (in Chinese with English abstract) | |
[9] | Yamamoto T, Yonemaru J, Yano M.Towards the understanding of complex traits in rice: Substantially or superficially[J]. DNA Research, 2009, 16: 141-154. |
[10] | Takai T, Ikka T, Kondo K, Nonoue Y, Ono N, Arai-Sanoh Y, Yoshinaga S, Nakano H, Yano M, Kondo M, Yamamoto T.Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines[J]. BMC Plant Biology, 2014, 14(1): 295. |
[11] | Nagata K, Ando T, Nonoue Y, Mizubayashi T, Kitazawa N, Shomura A, Matsubara K, Ono N, Mizobuchi R, Shabaya T, Ogisotanaka E, Hori K, Yano M, Fukuoka S.Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica ×indica cross[J]. Breeding Science, 2015, 65(4): 308-318. |
[12] | 王琳琳, 陈玉宇, 郭梁, 张宏伟, 樊叶杨, 庄杰云. 水稻第1染色体qTGW1.2区域粒重组分性状QTL的剖析[J]. 中国水稻科学, 2015, 29(3): 232-240. |
Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection of quantitative trait loci for grain weight and its component traits in the qTGW1.2 region on chromosome 1 of rice[J]. Chinese Journal of Rice Science, 2015, 29(3): 232-240. (in Chinese with English abstract) | |
[13] | 朱安东, 孙志超, 朱玉君, 张荟, 牛小军, 樊叶杨, 张振华, 庄杰云. 应用剩余杂合体衍生群体定位水稻粒重粒形QTL[J]. 中国水稻科学, 2019, 33(2): 144-151. |
Zhu A D, Sun Z C, Zhu Y J, Zhang H, N X J, Fan Y Y, Zhang Z H, Zhuang J Y. Identification of QTL for grain weight and grain shape using populations derived from residual heterozygous lines of indica rice[J]. Chinese Journal of Rice Science, 2019, 33(2): 144-151. (in Chinese with English abstract) | |
[14] | Ye H, Foley M E, Gu X Y.New seed dormancy loci detected from weedy rice-derived advanced populations with major QTL alleles removed from the background[J]. Plant Science, 2010, 179(6): 612-619. |
[15] | Bai X, Wu B, Xing Y.Yield-related QTLs and their applications in rice genetic improvement[J]. Journal of Integrative Plant Biology, 2012, 54: 300-311. |
[16] | Wang Z, Chen J Y, Zhu Y J, Fan Y Y, Zhuang J Y.Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2017, 16(1): 16-26. |
[17] | Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]. BMC Genetics, 2016, 17: 98. |
[18] | 王建康. 数量性状基因的完备区间作图方法[J]. 作物学报, 2009, 35(2): 239-245. |
Wang J K.Inclusive composite interval mapping of quantitative trait genes[J]. Acta Agronomica Sinica, 2009, 35(2): 239-245. (in Chinese with English abstract) | |
[19] | McCouch S R, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
[20] | Ruan B P, Shang L S, Zhang B, Hu J, Wang Y X, LIN H, Zhang A P, Liu C L, P Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020, 227(2): 629-640. |
[21] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39: 623-630. |
[22] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112: 1164-1171. |
[23] | Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107: 19579-19584. |
[24] | Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic fux redirection in rice[J]. Nature Communications, 2020, 11: 2629. |
[25] | Li Y B, Fan CC, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1266-1269. |
[26] | Xu C J, Liu Y, Li Y B, Xu X B, Xu C J, Li X H, Xiao J H, Zhang Q F.Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany, 2015, 66(9): 2611-2623. |
[27] | Duan P G, Xu J S, Zeng D L, Zhang B L, Geng M F, Zhang G Z, Huang K, Huang L J, Xu R, Ge S, Qian Q, Li Y H.Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10: 685-694. |
[28] | Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Cheng Z, Zhou K, Lin Q, Zhang X, Guo X, Wang J, Wang H, Wan J.GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3: 17043. |
[29] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40: 1023-1028. |
[30] | Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan J M.Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5[J]. Genetics, 2008, 179: 2239-2252. |
[31] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18: 1199-1209. |
[32] | Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2007, 115(8): 1093-1100. |
[33] | Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X.Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. |
[34] | Fumio T S, Yasushi K, Hiroshi K, Haruko O, Akemi T, Naho H, Akio M, Hirohiko H, Hidemi K, Masahiro Y, Seiichi T.A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets[J]. Breeding Science, 2011, 61(1): 17-25. |
[35] | Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X.Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46(4): 652-656. |
[36] | Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H.Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2016, 7: 377. |
[37] | Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, 9: 852. |
[38] | Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q.A G-protein pathway determines grain size in rice[J]. Nature Communications, 2018, 9: 851. |
[39] | Li N, Li Y H. Signaling pathways of seed size control in plants[J]. Current Opinion in Plant Biology, 2016, 33: 23-32. |
[40] | Yu S. B, Li J. X, Xu C. G, Tan Y. F, Gao Y. J, Li X. H, Zhang Q F, Maroof S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of the Sciences of the United States of America, 1997, 94: 9226-9231. |
[41] | Zeng Y X, Ji Z J, Wen Z H, Liang Y, Yang C D.Combination of eight alleles at four quantitative trait loci determines grain length in rice[J]. PLoS ONE, 2016, 11: 3. |
[42] | Odonkor S, Choi S, Chakraborty D, Martinez-Bello L, Wang X, Bahri B A, Tenaillon M I, Panaud O, Devos K M.QTL mapping combined with comparative analyses identified candidate genes for reduced shattering in Setaria italica[J]. Frontiers in Plant Science, 2018, 9: 918. |
[43] | Li J X, Yu S B, Xu C G, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F.Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid[J]. Theoretical and Applied Genetics, 2000, 101: 248-254. |
[44] | 庄杰云, 樊叶杨, 吴建利, 夏英武, 郑康乐. 应用二种定位法比较不同世代水稻产量性状QTL的检测结果[J]. 遗传学报, 2001(5): 458-464. |
Zhuang J Y, Fan Y Y, Wu J L, Xia Y W, Zheng K L.Comparison of the detection of QTL for yield traits in different generations of a rice cross using two mapping approaches[J]. Acta Genetica Sinica, 2001(5): 458-464. | |
[45] | 姜树坤, 张喜娟, 黄成, 邢亚南, 郑旭, 徐正进, 陈温福. 基于粳稻F2和F2:6群体的连锁图谱及剑叶性状QTL比较分析[J]. 中国水稻科学, 2010, 24(4): 372-378. |
Jiang S K, Zhang X J, Huang C, Xing Y N, Zheng X, Xu Z J, Chen W F.Comparison of genetic linkage map and QTLs controlling flag leaf traits based on F2 and F2:6 populations derived from japonica rice[J]. Chinese Journal of Rice Science, 2010, 24(4): 372-378. (in Chinese with English abstract) | |
[46] | 郭小蛟, 张涛, 蒋开锋, 杨莉, 曹应江, 杨乾华, 游书梅, 万先齐, 罗婧, 李昭祥, 高磊, 郑家奎. 水稻籼粳交F8、F2群体穗长QTL比较分析[J]. 中国农业科学, 2013, 46(23): 4849-4857. |
Guo X J, Zhang T, Jiang K F, Yang L, Cao Y J, Yang Q H, You S M, Wan X Q, Luo J, Li Z X, Gao L, Zheng J K.Comparison of panicle length QTL based on F2 and F8 populations derived from rice subspecies cross[J]. Scientia Agricultura Sinica, 2013, 46(23): 4849-4857. (in Chinese with English abstract) | |
[47] | Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: Challenges and prospects[J]. Nature Reviews Genetics, 2009, 10: 565-577. |
[48] | Kumar J, Gupta D S, Gupta S, Dubey S, Gupta P, Kumar S.Quantitative trait loci from identification to exploitation for crop improvement[J]. Plant Cell Reports, 2017, 36: 1187-1213. |
[49] | 李盼盼, 朱玉君, 郭梁, 庄杰云, 樊叶杨. 利用剩余杂合体衍生的近等基因系精细定位水稻粒长微效QTL qGL1.1[J]. 中国水稻科学, 2020, 34(2): 125-134. |
Li P P, Zhu Y J, Guo L, Zhuang J Y, Fan Y Y.Fine mapping of qGL1.1, a minor QTL for grain length, using near isogenic lines derived from residual heterozygotes in rice[J]. Chinese Journal of Rice Science, 2020, 34(2): 125-134. (in Chinese with English abstract) | |
[50] | Zhang B, Shang L G, Ruan B P, Zhang A P, Yang S L, Jiang H Z, Liu C L, Hong K, Lin H, Gao Z Y, Hu J, Zeng D L, Guo L B, Qian Q.Development of three sets of high-throughput genotyped rice chromosome segment substitution lines and QTL mapping for eleven traits[J]. Rice, 2019, 12: 33. |
[51] | Ma F Y, Du J, Wang D C, Wang H, Zhao B B,. He G H, Yang Z L, Zhang T, Wu R H, Zhao F M.Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice[J]. Journal of Integrative Agriculture, 2020, 19(5): 1163-1169. |
[52] | Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.)[J]. Euphytica, 2015, 202: 119-127. |
[53] | Wang W H, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y.Fine-mapping of qTGW1.2a, a quantitative trait locus for 1000-grain weight in rice[J]. Rice Science, 2019, 26(4): 220-228. |
[54] | Dong Q, Zhang Z H, Wang L L, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]. Rice, 2018, 11: 44. |
[55] | Yan S, Zou G H, Li S J, Wang H, Li·H Q, Zhai G W, Guo P, Song H M, Yan C H, Tao Y Z. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics, 2011 123: 1173-1181. |
[56] | Lu L, Shao D, Qiu X J, Sun L, Yan W H, Zhou X C, Yang L, He Y Q, Yu S B, Xing W Z.Natural variation and artificial selection in four genes determine grain shape in rice[J]. New Phytologist, 2013, 200(4): 1269-1280. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||