Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (3): 249-258.DOI: 10.16819/j.1001-7216.2021.01103
• Research Papers • Previous Articles Next Articles
Zheng TIAN1,2, Chunfang ZHAO2, Yadong ZHANG2, Qingyong ZHAO2, Zhen ZHU2, Ling ZHAO2, Tao CHEN2, Shu YAO2, Lihui ZHOU2, Wenhua LIANG2, Kai LU2, Cailin WANG1,2,*(), Hongsheng ZHANG1,*
Received:
2020-11-02
Revised:
2021-01-07
Online:
2021-05-10
Published:
2021-05-10
Contact:
Cailin WANG, Hongsheng ZHANG
田铮1,2, 赵春芳2, 张亚东2, 赵庆勇2, 朱镇2, 赵凌2, 陈涛2, 姚姝2, 周丽慧2, 梁文化2, 路凯2, 王才林1,2,*(), 张红生1,*
通讯作者:
王才林,张红生
基金资助:
Zheng TIAN, Chunfang ZHAO, Yadong ZHANG, Qingyong ZHAO, Zhen ZHU, Ling ZHAO, Tao CHEN, Shu YAO, Lihui ZHOU, Wenhua LIANG, Kai LU, Cailin WANG, Hongsheng ZHANG. Differences in Eating and Cooking Quality Traits of Semi-waxy japonica Rice Cultivars in Jiangsu Province[J]. Chinese Journal OF Rice Science, 2021, 35(3): 249-258.
田铮, 赵春芳, 张亚东, 赵庆勇, 朱镇, 赵凌, 陈涛, 姚姝, 周丽慧, 梁文化, 路凯, 王才林, 张红生. 江苏省半糯型粳稻蒸煮食味品质性状的差异分析[J]. 中国水稻科学, 2021, 35(3): 249-258.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.01103
Fig. 1. Molecular detections of 39 varieties. M, DNA marker; 1-39, 39 semi-waxy varieties in sequence are Sidao 17425, Yangjing 6084, Changruan 19-3, Huaijing 669, Wuyu 052, Zhendao 3199, Yangchan 1911, Suxiu 828, Wukejing 094, Baohuang 8865, Nanjing 9108, Sidao 18-40, 17MGJ85, Huaijing 918, Jinjing 8882, Ning 8874, Yangjing 8233, Zhongjiangjing 89014, Tianlongjing 8407, Wuyu 377, Huajing 8855, Jindanjing 8917, Ruihua 8911, Wujing 278, Changruan 19-9, Yangjing 7016, Zhendao 5855, Wu 703, Su 4699, Zhendao 668, Zhendao 678, Nanjing 5718, Nanjing 2728, Fengjing 1606, Xudao 9, Nanjing 3908, Nanjing Jinggu, Suxiangjing 100, Nanjing 46; 40, The control without Wxmp gene.
样品类型 Type | 参数 Parameter | 粒长 Grain length /mm | 粒宽 Grain width /mm | 粒长宽比 Length-width ratio | 垩白粒率 Chalky grain rate/% | 垩白度 Chalkiness /% | 透明度 Transparency |
---|---|---|---|---|---|---|---|
低食味值 | 平均值 Mean | 4.83±0.05 A | 2.72±0.03 A | 1.78±0.02 A | 46.71±6.77 A | 15.86±2.72 A | 4.3±0.3 A |
Low taste value | 变幅 Range | 4.48~5.05 | 2.52~2.92 | 1.65~1.87 | 16.13~81.16 | 4.68~30.34 | 2.0~5.0 |
变异系数 CV/% | 4 | 4 | 5 | 5 | 59 | 23 | |
偏度 Skewness | -0.60 | 0.23 | -0.62 | 0.02 | 0.40 | -1.65 | |
峰度 Kurtosis | -0.37 | 0.55 | -1.44 | -1.70 | -1.28 | -0.81 | |
中食味值 | 平均值 Mean | 4.80±0.05 A | 2.81±0.04 A | 1.71±0.03 A | 27.93±3.33 B | 7.89±1.10 B | 3.5±0.2 A |
Mid-taste value | 变幅 Range | 4.61~5.45 | 2.61~3.14 | 1.56~2.06 | 12.78~54.71 | 3.25~17.68 | 2.0~5.0 |
变异系数 CV/% | 4 | 5 | 7 | 49 | 57 | 29 | |
偏度 Skewness | 2.26 | 0.39 | 1.73 | 0.95 | 1.17 | -1.03 | |
峰度 Kurtosis | 6.26 | -0.23 | 3.70 | -0.39 | 0.15 | 0.74 | |
高食味值 | 平均值 Mean | 4.65±0.23 A | 2.77±0.06 A | 1.68±0.06 A | 26.33±17.08 B | 7.61±6.79 B | 3.3±0.8 B |
High taste value | 变幅 Range | 4.15~5.07 | 2.66~2.85 | 1.56~1.77 | 8.61~63.94 | 2.71~25.82 | 2.0~5.0 |
变异系数 CV/% | 5 | 2 | 4 | 65 | 89 | 25 | |
偏度 Skewness | 3.31 | -0.90 | 1.50 | 1.57 | 7.11 | 1.24 | |
峰度Kurtosis | -0.65 | -0.37 | -0.17 | 1.31 | 2.56 | 0.81 |
Table 1 Differences in physicochemical properties between different groups.
样品类型 Type | 参数 Parameter | 粒长 Grain length /mm | 粒宽 Grain width /mm | 粒长宽比 Length-width ratio | 垩白粒率 Chalky grain rate/% | 垩白度 Chalkiness /% | 透明度 Transparency |
---|---|---|---|---|---|---|---|
低食味值 | 平均值 Mean | 4.83±0.05 A | 2.72±0.03 A | 1.78±0.02 A | 46.71±6.77 A | 15.86±2.72 A | 4.3±0.3 A |
Low taste value | 变幅 Range | 4.48~5.05 | 2.52~2.92 | 1.65~1.87 | 16.13~81.16 | 4.68~30.34 | 2.0~5.0 |
变异系数 CV/% | 4 | 4 | 5 | 5 | 59 | 23 | |
偏度 Skewness | -0.60 | 0.23 | -0.62 | 0.02 | 0.40 | -1.65 | |
峰度 Kurtosis | -0.37 | 0.55 | -1.44 | -1.70 | -1.28 | -0.81 | |
中食味值 | 平均值 Mean | 4.80±0.05 A | 2.81±0.04 A | 1.71±0.03 A | 27.93±3.33 B | 7.89±1.10 B | 3.5±0.2 A |
Mid-taste value | 变幅 Range | 4.61~5.45 | 2.61~3.14 | 1.56~2.06 | 12.78~54.71 | 3.25~17.68 | 2.0~5.0 |
变异系数 CV/% | 4 | 5 | 7 | 49 | 57 | 29 | |
偏度 Skewness | 2.26 | 0.39 | 1.73 | 0.95 | 1.17 | -1.03 | |
峰度 Kurtosis | 6.26 | -0.23 | 3.70 | -0.39 | 0.15 | 0.74 | |
高食味值 | 平均值 Mean | 4.65±0.23 A | 2.77±0.06 A | 1.68±0.06 A | 26.33±17.08 B | 7.61±6.79 B | 3.3±0.8 B |
High taste value | 变幅 Range | 4.15~5.07 | 2.66~2.85 | 1.56~1.77 | 8.61~63.94 | 2.71~25.82 | 2.0~5.0 |
变异系数 CV/% | 5 | 2 | 4 | 65 | 89 | 25 | |
偏度 Skewness | 3.31 | -0.90 | 1.50 | 1.57 | 7.11 | 1.24 | |
峰度Kurtosis | -0.65 | -0.37 | -0.17 | 1.31 | 2.56 | 0.81 |
样品类型 Type | 参数 Parameter | 直链淀粉含量AC Amylose content/% | 蛋白质含量PC Protein content/% | 胶稠度GC Gel consistency / mm | 成糊温度PaT Pasting temp/℃ |
---|---|---|---|---|---|
低食味值 | 平均值 Mean | 10.33±0.58 A | 8.17±0.20 A | 70.6±2.4 B | 74.8±0.9 A |
Low taste value | 变幅 Range | 7.23~13.76 | 7.21~9.38 | 56.0~81.0 | 71.2~81.5 |
变异系数 CV/% | 19 | 9 | 12 | 4 | |
偏度 Skewness | 0.01 | 0.18 | 0.22 | 0.91 | |
峰度 Kurtosis | -0.47 | -0.88 | 1.01 | 0.13 | |
中食味值 | 平均值 Mean | 11.23±0.41 A | 7.78±0.14 A | 75.3±2.4 B | 72.6±0.3 A |
Mid-taste value | 变幅 Range | 6.73~13.87 | 6.44~9.06 | 46.0~90.0 | 70.4~75.2 |
变异系数 CV/% | 15 | 8 | 13 | 2 | |
偏度 Skewness | -1.10 | -0.05 | -1.44 | 0.25 | |
峰度 Kurtosis | 2.01 | 1.26 | 4.06 | -0.24 | |
高食味值 | 平均值 Mean | 12.02±1.89 A | 6.56±0.56 B | 85.8±7.9 A | 71.5±1.3 B |
High taste value | 变幅 Range | 8.45~14.16 | 5.86~7.35 | 76.0~102.5 | 68.9~73.6 |
变异系数 CV/% | 16 | 9 | 9 | 2 | |
偏度 Skewness | -0.02 | -1.61 | 1.09 | 1.03 | |
峰度Kurtosis | -0.91 | 0.34 | 0.97 | -0.53 |
Table 2 Differences in physicochemical properties between groups with various ECQ.
样品类型 Type | 参数 Parameter | 直链淀粉含量AC Amylose content/% | 蛋白质含量PC Protein content/% | 胶稠度GC Gel consistency / mm | 成糊温度PaT Pasting temp/℃ |
---|---|---|---|---|---|
低食味值 | 平均值 Mean | 10.33±0.58 A | 8.17±0.20 A | 70.6±2.4 B | 74.8±0.9 A |
Low taste value | 变幅 Range | 7.23~13.76 | 7.21~9.38 | 56.0~81.0 | 71.2~81.5 |
变异系数 CV/% | 19 | 9 | 12 | 4 | |
偏度 Skewness | 0.01 | 0.18 | 0.22 | 0.91 | |
峰度 Kurtosis | -0.47 | -0.88 | 1.01 | 0.13 | |
中食味值 | 平均值 Mean | 11.23±0.41 A | 7.78±0.14 A | 75.3±2.4 B | 72.6±0.3 A |
Mid-taste value | 变幅 Range | 6.73~13.87 | 6.44~9.06 | 46.0~90.0 | 70.4~75.2 |
变异系数 CV/% | 15 | 8 | 13 | 2 | |
偏度 Skewness | -1.10 | -0.05 | -1.44 | 0.25 | |
峰度 Kurtosis | 2.01 | 1.26 | 4.06 | -0.24 | |
高食味值 | 平均值 Mean | 12.02±1.89 A | 6.56±0.56 B | 85.8±7.9 A | 71.5±1.3 B |
High taste value | 变幅 Range | 8.45~14.16 | 5.86~7.35 | 76.0~102.5 | 68.9~73.6 |
变异系数 CV/% | 16 | 9 | 9 | 2 | |
偏度 Skewness | -0.02 | -1.61 | 1.09 | 1.03 | |
峰度Kurtosis | -0.91 | 0.34 | 0.97 | -0.53 |
Fig. 4. Frequency distribution of physicochemical properties. A, Frequency distribution of amylose content, B, Frequency distribution of protein content, C, Frequency distribution of gel consistency, D, Frequency distribution of gelatinization temperature.
样品类型 Type | 峰值黏度PKV | 热浆黏度TV | 崩解值BDV | 最终黏度FV | 回复值CSV | 消减值SBV | 峰值时间 Pt/min |
---|---|---|---|---|---|---|---|
平均值 Mean | 2706.91±121.85 A | 1477.33±95.88 A | 1229.58±79.69 A | 2110.17±102.77 A | 616.18±86.91 A | -596.75±88.51 A | 6.07±0.08 A |
变幅 Range | 1994~3472 | 994~2094 | 888~1776 | 1584~2699 | 454~724 | -1181~-212 | 5.53~6.40 |
变异系数 CV/% | 16 | 22 | 22 | 17 | 14 | 51 | 4 |
偏度 Skewness | 0.11 | 0.42 | 0.64 | 0.25 | -0.73 | -0.53 | -0.53 |
峰度 Kurtosis | -0.07 | -0.58 | -0.32 | -1.10 | -0.57 | -0.66 | -0.22 |
平均值 Mean | 2813.76±57.24 A | 1641.47±44.54 A | 1172.29±33.58 A | 2289.18±43.10 A | 647.71±54.35 A | -524.59±39.68 A | 6.24±0.03 A |
变幅 Range | 2420~3067 | 1396~1952 | 921~1348 | 1962~2549 | 566~719 | -768~-268 | 6.07~6.53 |
变异系数 CV/% | 8 | 11 | 12 | 8 | 8 | 31 | 2 |
偏度 Skewness | -0.06 | 0.26 | -0.54 | -0.30 | -0.23 | 0.430 | 0.82 |
峰度 Kurtosis | -1.22 | -1.35 | -0.86 | -1.04 | -1.60 | -1.123 | 1.33 |
平均值 Mean | 2724.20±182.07 A | 1490.30±229.92 A | 1233.90±173.78 A | 2122.70±272.49 A | 632.40±71.96 A | -601.50±235.71 A | 6.13±0.26 A |
变幅 Range | 2438~3128 | 999~1757 | 1035~1525 | 1539~2341 | 500~724 | -1025~-311 | 5.6~6.4 |
变异系数 CV/% | 7 | 15 | 14 | 13 | 11 | 3 | 4 |
偏度 Skewness | 2.46 | 1.33 | -1.24 | 1.51 | -0.42 | -0.60 | 1.32 |
峰度Kurtosis | 0.87 | -1.16 | 0.44 | -1.59 | -0.73 | -0.66 | -1.51 |
Table 3 Differences in physicochemical properties between groups with various ECQ. cP
样品类型 Type | 峰值黏度PKV | 热浆黏度TV | 崩解值BDV | 最终黏度FV | 回复值CSV | 消减值SBV | 峰值时间 Pt/min |
---|---|---|---|---|---|---|---|
平均值 Mean | 2706.91±121.85 A | 1477.33±95.88 A | 1229.58±79.69 A | 2110.17±102.77 A | 616.18±86.91 A | -596.75±88.51 A | 6.07±0.08 A |
变幅 Range | 1994~3472 | 994~2094 | 888~1776 | 1584~2699 | 454~724 | -1181~-212 | 5.53~6.40 |
变异系数 CV/% | 16 | 22 | 22 | 17 | 14 | 51 | 4 |
偏度 Skewness | 0.11 | 0.42 | 0.64 | 0.25 | -0.73 | -0.53 | -0.53 |
峰度 Kurtosis | -0.07 | -0.58 | -0.32 | -1.10 | -0.57 | -0.66 | -0.22 |
平均值 Mean | 2813.76±57.24 A | 1641.47±44.54 A | 1172.29±33.58 A | 2289.18±43.10 A | 647.71±54.35 A | -524.59±39.68 A | 6.24±0.03 A |
变幅 Range | 2420~3067 | 1396~1952 | 921~1348 | 1962~2549 | 566~719 | -768~-268 | 6.07~6.53 |
变异系数 CV/% | 8 | 11 | 12 | 8 | 8 | 31 | 2 |
偏度 Skewness | -0.06 | 0.26 | -0.54 | -0.30 | -0.23 | 0.430 | 0.82 |
峰度 Kurtosis | -1.22 | -1.35 | -0.86 | -1.04 | -1.60 | -1.123 | 1.33 |
平均值 Mean | 2724.20±182.07 A | 1490.30±229.92 A | 1233.90±173.78 A | 2122.70±272.49 A | 632.40±71.96 A | -601.50±235.71 A | 6.13±0.26 A |
变幅 Range | 2438~3128 | 999~1757 | 1035~1525 | 1539~2341 | 500~724 | -1025~-311 | 5.6~6.4 |
变异系数 CV/% | 7 | 15 | 14 | 13 | 11 | 3 | 4 |
偏度 Skewness | 2.46 | 1.33 | -1.24 | 1.51 | -0.42 | -0.60 | 1.32 |
峰度Kurtosis | 0.87 | -1.16 | 0.44 | -1.59 | -0.73 | -0.66 | -1.51 |
样品类型 Type | 参数 Parameter | 外观 Appearance | 硬度 Hardness | 黏度 Stickiness | 平衡度 Balance |
---|---|---|---|---|---|
低食味值 | 平均值 Mean | 5.81±0.31 C | 7.04±0.14 A | 6.09±0.30 C | 5.73±0.31 C |
Low taste value | 变幅 Range | 3.0~6.7 | 6.6~8.3 | 3.5~7.0 | 2.9~6.6 |
变异系数 CV/% | 18 | 7 | 17 | 18 | |
偏度 Skewness | -2.00 | 1.95 | -1.78 | -2.00 | |
峰度 Kurtosis | 4.15 | 4.29 | 3.09 | 4.00 | |
中食味值 | 平均值 Mean | 7.15±0.09 B | 6.43±0.04 B | 7.72±0.13 B | 7.22±0.09 B |
Mid-taste value | 变幅 Range | 6.5~7.6 | 6.1~6.7 | 6.9~8.5 | 6.6~7.8 |
变异系数 CV/% | 5 | 3 | 7 | 5 | |
偏度 Skewness | -0.35 | 0.01 | -0.09 | -0.12 | |
峰度 Kurtosis | -0.92 | -0.43 | -1.34 | -1.06 | |
高食味值 | 平均值 Mean | 8.58±0.40 A | 5.72±0.25 C | 8.94±0.49 A | 8.64±0.44 A |
High taste value | 变幅 Range | 8.0~9.2 | 5.2~6.0 | 8.3~9.7 | 8.0~9.3 |
变异系数 CV/% | 5 | 4 | 5 | 5 | |
偏度 Skewness | -0.65 | 0.63 | -1.19 | -0.80 | |
峰度Kurtosis | 0.48 | -1.15 | 0.60 | 0.40 |
Table 4 Differences in cooked rice texture between groups with various ECQ.
样品类型 Type | 参数 Parameter | 外观 Appearance | 硬度 Hardness | 黏度 Stickiness | 平衡度 Balance |
---|---|---|---|---|---|
低食味值 | 平均值 Mean | 5.81±0.31 C | 7.04±0.14 A | 6.09±0.30 C | 5.73±0.31 C |
Low taste value | 变幅 Range | 3.0~6.7 | 6.6~8.3 | 3.5~7.0 | 2.9~6.6 |
变异系数 CV/% | 18 | 7 | 17 | 18 | |
偏度 Skewness | -2.00 | 1.95 | -1.78 | -2.00 | |
峰度 Kurtosis | 4.15 | 4.29 | 3.09 | 4.00 | |
中食味值 | 平均值 Mean | 7.15±0.09 B | 6.43±0.04 B | 7.72±0.13 B | 7.22±0.09 B |
Mid-taste value | 变幅 Range | 6.5~7.6 | 6.1~6.7 | 6.9~8.5 | 6.6~7.8 |
变异系数 CV/% | 5 | 3 | 7 | 5 | |
偏度 Skewness | -0.35 | 0.01 | -0.09 | -0.12 | |
峰度 Kurtosis | -0.92 | -0.43 | -1.34 | -1.06 | |
高食味值 | 平均值 Mean | 8.58±0.40 A | 5.72±0.25 C | 8.94±0.49 A | 8.64±0.44 A |
High taste value | 变幅 Range | 8.0~9.2 | 5.2~6.0 | 8.3~9.7 | 8.0~9.3 |
变异系数 CV/% | 5 | 4 | 5 | 5 | |
偏度 Skewness | -0.65 | 0.63 | -1.19 | -0.80 | |
峰度Kurtosis | 0.48 | -1.15 | 0.60 | 0.40 |
性状参数 Property | 米饭食味值Taste value of cooked rice | |||
---|---|---|---|---|
总样本 Total sample | 高食味值组 High taste group | 中食味值组 Middle taste group | 低食味值组 Low taste group | |
直链淀粉含量 AC | 0.495** | -0.126 | 0.537* | 0.633* |
蛋白质含量 PC | -0.694** | -0.343 | -0.244 | -0.312 |
胶稠度GC | 0.421** | 0.352 | 0.218 | -0.528 |
成糊温度 PaT | -0.601** | -0.409 | -0.229 | -0.371 |
峰值黏度PKV | 0.140 | 0.479 | -0.023 | 0.284 |
热浆黏度 TV | 0.210 | 0.369 | -0.168 | 0.562* |
崩解值 BDV | -0.060 | 0.014 | 0.183 | -0.243 |
最终黏度 FV | 0.220 | 0.377 | -0.196 | 0.580* |
消减值 SBV | 0.080 | 0.067 | -0.180 | 0.284 |
回复值 CSV | 0.310 | 0.217 | -0.076 | 0.337 |
峰值时间 PeT | 0.100 | 0.251 | -0.238 | 0.696** |
透明度 Transparency | 0.378* | 0.273 | -0.028 | 0.082 |
垩白粒率 Chalky grain rate | -0.330* | -0.119 | -0.088 | -0.340 |
垩白度 Chalkiness | -0.438** | 0.129 | -0.120 | -0.379 |
Table 5 Correlation analysis between taste value and rice appearance, physicochemical properties and RVA parameters.
性状参数 Property | 米饭食味值Taste value of cooked rice | |||
---|---|---|---|---|
总样本 Total sample | 高食味值组 High taste group | 中食味值组 Middle taste group | 低食味值组 Low taste group | |
直链淀粉含量 AC | 0.495** | -0.126 | 0.537* | 0.633* |
蛋白质含量 PC | -0.694** | -0.343 | -0.244 | -0.312 |
胶稠度GC | 0.421** | 0.352 | 0.218 | -0.528 |
成糊温度 PaT | -0.601** | -0.409 | -0.229 | -0.371 |
峰值黏度PKV | 0.140 | 0.479 | -0.023 | 0.284 |
热浆黏度 TV | 0.210 | 0.369 | -0.168 | 0.562* |
崩解值 BDV | -0.060 | 0.014 | 0.183 | -0.243 |
最终黏度 FV | 0.220 | 0.377 | -0.196 | 0.580* |
消减值 SBV | 0.080 | 0.067 | -0.180 | 0.284 |
回复值 CSV | 0.310 | 0.217 | -0.076 | 0.337 |
峰值时间 PeT | 0.100 | 0.251 | -0.238 | 0.696** |
透明度 Transparency | 0.378* | 0.273 | -0.028 | 0.082 |
垩白粒率 Chalky grain rate | -0.330* | -0.119 | -0.088 | -0.340 |
垩白度 Chalkiness | -0.438** | 0.129 | -0.120 | -0.379 |
[1] | Shi Y S, Wei H, Hong X L.Identification of QTLs for cooking and eating quality of rice grain[J]. Rice Science, 2006, 13(3): 161-169. |
[2] | Rao Y C, Li Y Y, Qian Q.Recent progress on molecular breeding of rice in China[J]. Plant Cell Reports, 2014, 33(4): 551-564. |
[3] | Cheng S H, Zhan X D, Cao L Y.Breeding strategies for increasing yield potential in super hybrid rice[J]. Frontiers of Agricultural Science and Engineering, 2015, 2(4): 277-282. |
[4] | Yu S B, Jauhar A, Zhang C P, Li Z, Zhang Q.Correction to: Genomic breeding of green super rice varieties and their deployment in Asia and Africa[J]. Theoretical and Applied Genetics, 2020, 133(4): 1337. |
[5] | 张亚东, 朱镇, 陈涛, 赵庆勇, 冯凯华, 姚姝, 周丽慧, 赵凌, 赵春芳, 梁文化, 路凯, 王才林. 优良食味粳稻南粳5718的选育及主要特征特性[J]. 中国稻米, 2020, 26(4): 100-102. |
Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Feng K H, Yao S, Zhou L H, Zhao L, Zhao C F, Liang W H, Lu K, Wang C L.Breeding and characteristics of a new japonica rice variety Nanjing 5718 with good eating quality[J]. China Rice, 2020, 26(4): 100-102. (in Chinese) | |
[6] | 李凌, 田麟, 王涛涛, 蒋其根, 罗治靖, 陈明姣, 张建中, 张大兵, 袁政. 优质稻米‘青香软粳’低直链淀粉含量形成分子机制的初步研究[J]. 植物生理学报, 2012, 48(2): 147-155. |
Li L, Tian L, Wang T T, Jiang J G, Luo Z J, Chen M J, Zhang J Z, Zhang D B, Yuan Z.Preliminary study for the molecular mechanism of low amylose content in high-quality rice (Oryza sativa L.) variety Qingxiangruanjing[J]. Plant Physiology Communications, 2012, 48(2): 147-155. (in Chinese with English abstract) | |
[7] | 陈智慧, 王芳权, 许扬, 王军, 李文奇, 范方军, 仲维功, 杨杰. 软米基因Wxmp在部分粳稻品种资源中的分布[J]. 植物遗传资源学报, 2019, 20(4): 975-981. |
Chen Z H, Wang F Q, Xu Y, Wang J, Li W Q, Fan F J, Zhong W G, Yang J.The distribution of low amylose content allele Wxmp in japonica rice[J]. Journal of Plant Genetic Resources, 2019, 20(4): 975-981. (in Chinese with English abstract) | |
[8] | Wang S Y, Yang Y H, Guo M, Zhong C Y, Yan C J, Sun S Y.Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system[J]. The Crop Journal, 2020, 8(3): 457-464. |
[9] | Yang Y, Guo M, Sun S, Zou Y, Yin S, Liu Y, Tang S, Gu M, Yang Z, Yan C.Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 138-141. |
[10] | Yang Y H, Shen Z Y, Xu C D, Guo M, Li Y G, Zhang Y X, Zhong C Y, Sun S Y, Yan C J.Genetic improvement of panicle-erectness japonica rice toward both yield and eating and cooking quality[J]. Molecular Breeding, 2020, 40(5): 51. |
[11] | Hamaker B R, Griffin V K.Effect of disulfide bond-containing protein on rice starch gelatinization and pasting[J]. Cereal Chemistry, 1993, 70(4): 377-380. |
[12] | 王鹤璎. 寒地水稻水直播品种筛选及与常规种植方式下的产质量比较[D]. 大庆: 黑龙江八一农垦大学, 2020. |
Wang H Y.Selection of direct seeding rice varieties in cold area and comparison of yield and quality with conventional planting methods[D]. Daqing: Heilongjiang Bayi Land Reclamation University, 2020. (in Chinese with English abstract) | |
[13] | 朱满山, 汤述翥, 顾铭洪. RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展[J]. 中国农学通报, 2005, 8(8): 59-64. |
Zhu M S, Tang S Z, Gu M H.Research progress of RVA spectrum in rice cooking and eating quality evaluation and genetic breeding[J]. Chinese Agricultural Science Bulletin, 2005, 8(8): 59-64. (in Chinese with English abstract) | |
[14] | 邹茜, 邵源梅, 黄平, 李华慧, 辜琼瑶, 郭咏梅, 李少明. 不同生态型低AC稻米蒸煮和食味品质特性研究[J]. 西南农业学报, 2019, 32(11): 2514-2520. |
Zou Q, Shao Y M, Huang P, Li H H, Gu Q Y, Guo Y M, Li S M.Eating and cooking qualities in low amylose content rice with different ecotypes[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2514-2520. (in Chinese with English abstract) | |
[15] | 陆建忠, 张亚静, 沈超群. 米饭食味计与人工评鉴稻米食味品质比较试验[J]. 安徽农学通报, 2020, 26(16): 57-59. |
Lu J Z, Zhang Y J, Shen C Q.Comparative test of RVA and artificial evaluation of rice eating quality[J]. Anhui Agricultural Science Bulletin, 2020, 26(16): 57-59. (in Chinese) | |
[16] | 苏光辉, 张洪伟, 张丽娜, 张泽洲. 米饭食味检测仪器评价优质稻米食味品质[J]. 北方水稻, 2019, 49(4): 34-35. |
Su G H, Zhang H W, Zhang L N, Zhang Z Z.Evaluation of eating quality of high quality rice by rice taste detector[J]. North Rice, 2019, 49(4): 34-35. (in Chinese) | |
[17] | 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究[J]. 中国农业科学, 2005, 38(4): 657-663. |
Sui J M, Li X, Yan S, Yan C J, Zhang R, Shang S Z, Lu J F, Chen Z X, Gu M H.Studies on the rice RVA profile characteristics and its correlation with the quality[J]. Scientia Agricultura Sinica, 2005, 38(4): 657-663. (in Chinese with English abstract) | |
[18] | 岳红亮, 赵庆勇, 赵春芳, 田铮, 陈涛, 梁文化, 张亚东, 王忠红, 王才林. 江苏省半糯粳稻食味品质特征及其与感官评价的关系[J]. 中国粮油学报, 2020, 35(6): 7-14, 22. |
Yue H L, Zhao Q Y, Zhao C F, Tian Z, Chen T, Liang W H, Zhang Y D, Wang Z H, Wang C L.Characteristics of edible quality and their relationship with sensory evaluation of semi-waxy japonica rice varieties from Jiangsu Province[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(6): 7-14, 22. (in Chinese with English abstract) | |
[19] | 朱昌兰, 沈文飚, 翟虎渠, 万建民. 水稻低直链淀粉含量基因育种利用的研究进展[J]. 中国农业科学, 2004, 37(2): 157-162. |
Zhu C L, Shen W B, Zhai H Q, Wan J M.Advances in researches of the application of low-amylose content rice gene for breeding[J]. Scientia Agricultura Sinica, 2004, 37(2): 157-162. (in Chinese with English abstract) | |
[20] | 陈涛, 骆名瑞, 张亚东, 朱镇, 赵凌, 赵庆勇, 周丽慧, 姚姝, 于新. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mq[J]. 中国水稻科学, 2013, 27(5): 529-534. |
Chen T, Luo M R, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Zhou L H, Yao S, Yu X.Detection of wx-mq gene for low-amylose content by tetra-primer amplification refractory mutation system PCR in rice[J]. Chinese Journal of Rice Science, 2013, 27(5): 529-534. (in Chinese with English abstract) | |
[21] | 中华人民共和国农业部. 稻米直链淀粉的测定分光光度法NY/T2639-2014[S]. 北京: 中国标准出版社, 2014. |
Ministry of Agriculture of the People’s Republic of China. Determination of amylose content in rice: Spectrophotometry method NY/T2639-2014[S]. Beijing: China Standard Press, 2014. (in Chinese) | |
[22] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品中蛋白质的测定方法GB 5009.5-2016[S]. 北京: 中国标准出版社, 2016. |
National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. Method for determination of protein in food GB 5009.5-2016[S]. Beijing: China Standard Press, 2016. (in Chinese) | |
[23] | 中华人民共和国农业部. 米质测定方法NY/T83-2017[S]. 北京: 中国标准出版社, 2017. |
Ministry of Agriculture of the People’s Republic of China. Determination of rice quality NY/T83-2017[S]. Beijing: China Standard Press, 2017. (in Chinese) | |
[24] | Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J.Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21 760-21 765. |
[25] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展[J]. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q.Progress in the allelic variation of Wx gene and its application in rice breeding[J]. Chinese Journal of Rice Science, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[26] | Mohapatra D, Bal S.Cooking quality and instrumental textural attributes of cooked rice for different milling fractions[J]. Journal of Food Engineering, 2006, 73(3): 253-259. |
[27] | Li H, Gilbert R G.Starch molecular structure: The basis for an improved understanding of cooked rice texture[J]. Carbohydrate Polymers, 2018, 195: 9-17. |
[28] | 陈莹莹. 江苏早熟晚粳品种稻米品质对氮肥的响应及其类型[D]. 扬州: 扬州大学, 2012. |
Chen Y Y.Response and types of rice quality of early maturing and late japonica varieties in Jiangsu Province to nitrogen fertilizer [D]. Yangzhou: Yangzhou University, 2012. (in Chinese with English abstract) | |
[29] | 王鹏跃, 沈庆霞, 路兴花, 庞林江, 陈忠秀. 米蛋白及其组分与米饭物性及感官的关联特征研究[J]. 食品与机械, 2016, 32(3): 24-27. |
Wang T Y, Shen Q X, Lu X H, Pang L J, Chen Z X.Relevance features of rice protein and its components to physical and sensory properties of cooked rice[J]. Food & Machinery, 2016, 32(3): 24-27. (in Chinese with English abstract) | |
[30] | 石吕, 张新月, 孙惠艳, 曹先梅, 刘建, 张祖建. 不同类型水稻品种稻米蛋白质含量与蒸煮食味品质的关系及后期氮肥的效应[J]. 中国水稻科学, 2019, 33(6): 541-552. |
Dan L, Zhang X Y, Sun H Y, Cao X M, Liu J, Zhang Z J.Relationship of grain protein content with cooking and eating quality as affected by Nitrogen fertilizer at late growth stage for different types of rice varieties[J]. Chinese Journal of Rice Science, 2019, 33(6): 541-552. (in Chinese with English abstract) | |
[31] | 石彦国, 贺殷媛, 陈凤莲, 管哲贤, 孙贵尧, 郑梦彤, 张红玉. 大米蛋白与蒸煮品质相关性研究进展[J]. 食品科学技术学报, 2020, 38(4): 1-9. |
Dan Y G, He Y Y, Chen F L, Guan Z X, Sun G Y, Zheng M T, Zhang H Y.Research progress on relationship between rice protein and cooking quality[J]. Journal of Food Science and Technology, 2020, 38(4): 1-9. (in Chinese with English abstract) | |
[32] | 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝. 南粳系列水稻品种的食味品质与稻米理化特性[J]. 中国农业科学, 2019, 52(5): 909-920. |
Zhao C F, Yue H L, Huang S J, Zhou L H, Zhao L, Zhang Y D, Chen C, Zhu Z, Zhao Q Y, Yao S.Eating quality and physicochemical properties in Nanjing rice varieties[J]. Scientia Agricultura Sinica, 2019, 52(5): 909-920. (in Chinese with English abstract) | |
[33] | Kong X, Zhu P, Sui Z, Bao J.Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinization temperature combinations[J]. Food Chemistry, 2015, 172(1): 433-440. |
[34] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Pillay B, 王才林. Wxmp基因背景下可溶性淀粉合成酶基因SSⅡa和去分支酶基因PUL对水稻蒸煮食味品质的影响[J]. 中国水稻科学, 2020, 34(3): 217-227. |
Yao S, Zhang Y D, Liu Y Q, Zhao C F, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Pillay B, Wang C L.Allelic effects on eating and cooking quality of SSⅡa and PUL genes under Wxmp background in rice[J]. Chinese Journal of Rice Science, 2020, 34(3): 217-227. (in Chinese with English abstract) | |
[35] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Pillay B, 王才林. 水稻Wxmp背景下SSⅡa和SSⅢa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702. |
Yao S, Zhang Y D, Liu Y Q, Zhao C F, Zhou L H, Chen T, Zhao Q Y, Zhu Z, Pillay B, Wang C L.Effects of SSⅡa and SSⅢa alleles and their interaction on eating and cooking quality under Wxmp background of rice[J]. Acta Agronomica Sinica, 2020, 46(11): 1690-1702. (in Chinese with English abstract) | |
[36] | 赵春芳, 岳红亮, 田铮, 顾明超, 赵凌, 赵庆勇, 朱镇, 陈涛, 周丽慧, 姚姝, 梁文化, 路凯, 张亚东, 王才林. 江苏和东北粳稻稻米理化特性及Wx和OsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888. |
Zhao C F, Yue H L, Tian Z, Gu M C, Zhao L, Zhao Q Y, Zhu Z, Chen T, Zhou L H, Yao S, Liang W H, Lu K, Zhang Y D, Wang C L.Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu Province and Northeast of China[J]. Acta Agronomica Sinica, 2020, 46(6): 878-888. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||