Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (2): 121-129.DOI: 10.16819/j.1001-7216.2021.0805
• Research Papers • Previous Articles Next Articles
Yangyang PAN, Yibo CHEN, Chongrong WANG, Hong LI, Daoqiang HUANG, Degui ZHOU, Zhidong WANG, Lei ZHAO, Rong GONG, Shaochuan ZHOU*()
Received:
2020-08-05
Revised:
2020-09-16
Online:
2021-03-10
Published:
2021-03-10
Contact:
Shaochuan ZHOU
潘阳阳, 陈宜波, 王重荣, 李宏, 黄道强, 周德贵, 王志东, 赵雷, 龚蓉, 周少川*()
通讯作者:
周少川
Yangyang PAN, Yibo CHEN, Chongrong WANG, Hong LI, Daoqiang HUANG, Degui ZHOU, Zhidong WANG, Lei ZHAO, Rong GONG, Shaochuan ZHOU. Metabolism of γ-aminobutyrate and 2-acetyl-1-pyrroline Analyses at Various Grain Developmental Stages in Rice (Oryza sativa L.)[J]. Chinese Journal OF Rice Science, 2021, 35(2): 121-129.
潘阳阳, 陈宜波, 王重荣, 李宏, 黄道强, 周德贵, 王志东, 赵雷, 龚蓉, 周少川. γ-氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2): 121-129.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.0805
Fig. 1. Interconnectivity of GABA and 2AP metabolism. ADC, Arginine decarboxylase; AgmAH, Agmatine amidinohydrolase; ARG, Arginase; BADH2, Betaine aldehyde dehydrogenase 2; DAO, Diamine oxidase; GABA-T, GABA transaminase; GAD, Glutamate decarboxylase; GDH, Glutamate dehydrogenase; OAT, Ornithine aminotransferase; ODC, Ornithine decarboxylase; P5CDH, Pyrroline-5-carboxylate dehydrogenase; P5CR, Pyrrolidine -5- carboxylate reductase; P5CS, Pyrrolidine -5- carboxylate synthetase; PAO, Polyamine oxidase; ProDH, Proline dehydrogenase; SpdS, Spermidine synthase; SpmS, Spermine synthase; SSADH, Succinic semialdehyde dehydrogenase.
Fig. 2. PCA of metabolites at four grain developmental stages of Huanghuazhan(HHZ) and Meixiangzhan 2(MXZ). The principal component 1 accounted for 42.9% of the total variation, and the component 2 accounted for 21.9% of the total variation by PCA (principal components analyses). 8D, 15D, 30D and 40D, indicated milky grains(8 days after flowering), dough grains(15 days after flowering), mature grains(30 days after flowering) and milled rice(40 days after flowering), respectively.
Fig. 4. Contents of metabolites involved in GABA metabolism in Huanghuazhan(HHZ) and Meixiangzhan 2(MXZ) grains. * Represents differential metabolite.
基因名称 Gene name | 基因缩写 Gene symbol | 基因登录号 Locus ID | HHZ8D | HHZ15D | HHZ30D | MXZ8D | MXZ15D | MXZ30D |
---|---|---|---|---|---|---|---|---|
谷氨酸脱羧酶 | GAD1 | LOC_Os08g36320 | 10.65±0.67 | 64.70 ±9.21 | 60.76±3.22 | 10.41±0.96 | 48.13±6.90 | 70.77±18.90 |
Glutamate decarboxylase | GAD2 | LOC_Os04g37500 | 1.92±0.20 | 7.98±1.07 | 6.11±0.67 | 1.30±0.38 | 5.86±1.68 | 7.06±2.38 |
GAD3 | LOC_Os03g13300 | 0.29±0.11 | 0.71±0.04 | 0.55±0.15 | 0.16±0.03 | 0.98±0.92 | 0.81±0.22 | |
GAD4 | LOC_Os03g51080 | 3.88±0.41 | 5.55±1.07 | 5.06±0.74 | 5.43±1.03 | 3.77±0.05 | 4.50±0.36 | |
GAD5 | LOC_Os04g37460 | 0.46±0.28 | 0.12±0.07 | 0.16±0.13 | 0.32±0.16 | 0.25±0.03 | 0.37±0.30 | |
γ-氨基丁酸转氨酶 | GABA-T1 | LOC_Os04g52450 | 44.71±2.12 | 79.40±4.99 | 79.46±1.66 | 31.79±3.80 | 65.98±6.65 | 69.10±20.38 |
γ-aminobutyrate | GABA-T2 | LOC_Os08g10510 | 28.11±0.90 | 9.01±1.69* | 7.83±1.83 | 25.10±2.85 | 21.29±2.84 | 12.73±1.14 |
transaminase | GABA-T3 | LOC_Os04g52440 | 0.83±0.20 | 1.42±0.77 | 0.41±0.10 | 1.47±0.34 | 1.11±0.48 | 0.59±0.07 |
GABA-T4 | LOC_Os02g02210 | N/A | N/A | N/A | N/A | N/A | N/A | |
谷氨酸脱氢酶 | GDH1 | LOC_Os03g58040 | 17.13±0.80 | 6.87±0.35 | 6.22±0.84 | 13.65±0.85 | 8.15±1.12 | 9.07±0.94 |
Glutamate dehydrogenase | GDH2 | LOC_Os04g45970 | 58.97±2.54 | 17.06±2.58 | 20.12±1.04 | 43.85±1.93 | 19.51±5.50 | 13.24±1.93 |
琥珀酸半醛脱氢酶 Succinic semialdehyde dehydrogenase | SSADH | LOC_Os02g07760 | 92.65±8.12 | 105.31±16.3 | 100.52±3.45 | 96.75±9.28 | 102.63±6.72 | 167.60±46.58 |
甜菜碱醛脱氢酶2 Betaine aldehyde dehydrogenase 2 | BADH2 | LOC_Os08g32870 | 77.12±3.91* | 64.64±3.54* | 62.18±4.62* | 10.32±0.84 | 9.21±2.19 | 8.41±1.17 |
二胺氧化酶 | DAO1 | LOC_Os06g23114 | 0.22±0.10 | 0.17±0.05 | 0.26±0.09 | 0.11±0.04 | 0.10±0.04 | 0.12±0.07 |
Diamine oxidase | DAO2 | LOC_Os04g20164 | 3.99±0.75 | 27.83±4.11 | 31.22±0.37 | 2.21±0.38 | 19.15±0.56 | 23.76±3.57 |
DAO3 | LOC_Os04g04950 | N/A | N/A | N/A | N/A | N/A | N/A | |
DAO4 | LOC_Os04g40040 | 71.02±9.02 | 159.52±13.5 | 200.30±5.59 | 57.67±6.26 | 116.76±13.03 | 124.73±13.74 | |
DAO5 | LOC_Os02g37990 | 0.00 | N/A | 0.00 | 0.21±0.12 | N/A | 0.20±0.26 | |
多胺氧化酶 | PAO1 | LOC_Os01g51320 | 1.35±0.26 | 0.22±0.01 | 0.20±0.16 | 1.03±0.38 | 0.24±0.08 | 0.66±0.43 |
Polyamine oxidase | PAO2 | LOC_Os03g09810 | 0.35±0.06 | 0.08±0.07 | 0.34±0.24 | 0.36±0.18 | 0.26±0.14 | 0.32±0.20 |
PAO3 | LOC_Os04g53190 | 11.90±1.27 | 28.45±1.63 | 26.83±1.56 | 11.26±0.69 | 22.94±0.81 | 19.37±4.34 | |
PAO4 | LOC_Os04g57550 | 60.57±3.81 | 96.12±6.23 | 106.53±6.95 | 55.90±2.42 | 55.71±3.12 | 89.17±6.59 | |
PAO5 | LOC_Os04g57560 | 29.95±0.50 | 24.23±1.45 | 26.50±1.55 | 28.07±0.50 | 22.78±1.35 | 25.90±1.94 | |
亚精胺合成酶 | SpdS1 | LOC_Os07g22600 | 65.33±7.15 | 57.42±4.88 | 41.89±3.78 | 77.27±11.83 | 44.77±3.59 | 45.24±1.23 |
Spermidine synthase | SpdS2 | LOC_Os06g33710 | 14.53±2.97 | 37.87±4.49 | 29.55±3.53 | 11.78±0.65 | 25.93±2.67 | 35.42±11.54 |
精胺合成酶 Spermine synthase | SpmS2 | LOC_Os02g15550 | 31.20±1.47 | 32.68±1.65 | 30.30±1.81 | 32.98±2.50 | 32.87±2.56 | 33.11±2.66 |
精氨酸酶 Arginase | ARG | LOC_Os04g01590 | 96.36±4.27 | 78.83±3.01 | 80.27±3.07 | 102.45±3.68 | 85.64±4.11 | 76.70±6.07 |
鸟氨酸脱羧酶 Ornithine decarboxylase | ODC | LOC_Os02g28110 | N/A | N/A | N/A | N/A | N/A | N/A |
脯氨酸脱氢酶 Proline dehydrogenase | ProDH | LOC_Os10g40360 | 23.89±5.83 | 66.88±7.54 | 78.81±7.47* | 15.76±4.19 | 49.54±8.94 | 25.74±4.81 |
1-吡咯啉-5-羧酸合成酶 1-pyrrolidine-5-carboxylate synthetase | P5CS1 | LOC_Os05g38150 | 43.21±2.08 | 31.28±1.56 | 25.46±2.29 | 41.61±2.96 | 42.14±2.06 | 39.42±3.01 |
1-吡咯啉-5-羧酸还原酶 1-pyrrolidine-5-carboxylic reductase | P5CR | LOC_Os01g71990 | 9.00±0.43 | 3.72±0.61 | 3.59±0.74 | 10.00±1.01 | 3.16±0.36 | 6.13±1.36 |
1-吡咯啉-5-羧酸脱氢酶 1-pyrrolidine-5-carboxylic dehydrogenase | P5CDH | Os05g0536400 | N/A | N/A | N/A | N/A | N/A | N/A |
鸟氨酸转氨酶 Ornithine aminotransferase | OAT | LOC_Os03g44150 | 52.54±0.78 | 32.10±7.61 | 25.48±4.34 | 57.42±4.49 | 33.33±1.53 | 38.72±6.02 |
精氨酸脱羧酶 Arginine decarboxylase | ADC1 | LOC_Os06g04070 | 13.55±1.72 | 15.43±1.21 | 18.36±1.78 | 15.41±3.11 | 14.40±0.84 | 19.42±6.76 |
鲱精胺酶 Agmatine amidinohydrolase | AgmAH | LOC_Os09g37200 | 1.78±0.11 | 5.52±1.75 | 5.33±0.98 | 3.17±0.32 | 8.65±0.21 | 3.78±0.15 |
Table 1 Gene expression levels involved in GABA metabolism in HHZ and MXZ rice grains.
基因名称 Gene name | 基因缩写 Gene symbol | 基因登录号 Locus ID | HHZ8D | HHZ15D | HHZ30D | MXZ8D | MXZ15D | MXZ30D |
---|---|---|---|---|---|---|---|---|
谷氨酸脱羧酶 | GAD1 | LOC_Os08g36320 | 10.65±0.67 | 64.70 ±9.21 | 60.76±3.22 | 10.41±0.96 | 48.13±6.90 | 70.77±18.90 |
Glutamate decarboxylase | GAD2 | LOC_Os04g37500 | 1.92±0.20 | 7.98±1.07 | 6.11±0.67 | 1.30±0.38 | 5.86±1.68 | 7.06±2.38 |
GAD3 | LOC_Os03g13300 | 0.29±0.11 | 0.71±0.04 | 0.55±0.15 | 0.16±0.03 | 0.98±0.92 | 0.81±0.22 | |
GAD4 | LOC_Os03g51080 | 3.88±0.41 | 5.55±1.07 | 5.06±0.74 | 5.43±1.03 | 3.77±0.05 | 4.50±0.36 | |
GAD5 | LOC_Os04g37460 | 0.46±0.28 | 0.12±0.07 | 0.16±0.13 | 0.32±0.16 | 0.25±0.03 | 0.37±0.30 | |
γ-氨基丁酸转氨酶 | GABA-T1 | LOC_Os04g52450 | 44.71±2.12 | 79.40±4.99 | 79.46±1.66 | 31.79±3.80 | 65.98±6.65 | 69.10±20.38 |
γ-aminobutyrate | GABA-T2 | LOC_Os08g10510 | 28.11±0.90 | 9.01±1.69* | 7.83±1.83 | 25.10±2.85 | 21.29±2.84 | 12.73±1.14 |
transaminase | GABA-T3 | LOC_Os04g52440 | 0.83±0.20 | 1.42±0.77 | 0.41±0.10 | 1.47±0.34 | 1.11±0.48 | 0.59±0.07 |
GABA-T4 | LOC_Os02g02210 | N/A | N/A | N/A | N/A | N/A | N/A | |
谷氨酸脱氢酶 | GDH1 | LOC_Os03g58040 | 17.13±0.80 | 6.87±0.35 | 6.22±0.84 | 13.65±0.85 | 8.15±1.12 | 9.07±0.94 |
Glutamate dehydrogenase | GDH2 | LOC_Os04g45970 | 58.97±2.54 | 17.06±2.58 | 20.12±1.04 | 43.85±1.93 | 19.51±5.50 | 13.24±1.93 |
琥珀酸半醛脱氢酶 Succinic semialdehyde dehydrogenase | SSADH | LOC_Os02g07760 | 92.65±8.12 | 105.31±16.3 | 100.52±3.45 | 96.75±9.28 | 102.63±6.72 | 167.60±46.58 |
甜菜碱醛脱氢酶2 Betaine aldehyde dehydrogenase 2 | BADH2 | LOC_Os08g32870 | 77.12±3.91* | 64.64±3.54* | 62.18±4.62* | 10.32±0.84 | 9.21±2.19 | 8.41±1.17 |
二胺氧化酶 | DAO1 | LOC_Os06g23114 | 0.22±0.10 | 0.17±0.05 | 0.26±0.09 | 0.11±0.04 | 0.10±0.04 | 0.12±0.07 |
Diamine oxidase | DAO2 | LOC_Os04g20164 | 3.99±0.75 | 27.83±4.11 | 31.22±0.37 | 2.21±0.38 | 19.15±0.56 | 23.76±3.57 |
DAO3 | LOC_Os04g04950 | N/A | N/A | N/A | N/A | N/A | N/A | |
DAO4 | LOC_Os04g40040 | 71.02±9.02 | 159.52±13.5 | 200.30±5.59 | 57.67±6.26 | 116.76±13.03 | 124.73±13.74 | |
DAO5 | LOC_Os02g37990 | 0.00 | N/A | 0.00 | 0.21±0.12 | N/A | 0.20±0.26 | |
多胺氧化酶 | PAO1 | LOC_Os01g51320 | 1.35±0.26 | 0.22±0.01 | 0.20±0.16 | 1.03±0.38 | 0.24±0.08 | 0.66±0.43 |
Polyamine oxidase | PAO2 | LOC_Os03g09810 | 0.35±0.06 | 0.08±0.07 | 0.34±0.24 | 0.36±0.18 | 0.26±0.14 | 0.32±0.20 |
PAO3 | LOC_Os04g53190 | 11.90±1.27 | 28.45±1.63 | 26.83±1.56 | 11.26±0.69 | 22.94±0.81 | 19.37±4.34 | |
PAO4 | LOC_Os04g57550 | 60.57±3.81 | 96.12±6.23 | 106.53±6.95 | 55.90±2.42 | 55.71±3.12 | 89.17±6.59 | |
PAO5 | LOC_Os04g57560 | 29.95±0.50 | 24.23±1.45 | 26.50±1.55 | 28.07±0.50 | 22.78±1.35 | 25.90±1.94 | |
亚精胺合成酶 | SpdS1 | LOC_Os07g22600 | 65.33±7.15 | 57.42±4.88 | 41.89±3.78 | 77.27±11.83 | 44.77±3.59 | 45.24±1.23 |
Spermidine synthase | SpdS2 | LOC_Os06g33710 | 14.53±2.97 | 37.87±4.49 | 29.55±3.53 | 11.78±0.65 | 25.93±2.67 | 35.42±11.54 |
精胺合成酶 Spermine synthase | SpmS2 | LOC_Os02g15550 | 31.20±1.47 | 32.68±1.65 | 30.30±1.81 | 32.98±2.50 | 32.87±2.56 | 33.11±2.66 |
精氨酸酶 Arginase | ARG | LOC_Os04g01590 | 96.36±4.27 | 78.83±3.01 | 80.27±3.07 | 102.45±3.68 | 85.64±4.11 | 76.70±6.07 |
鸟氨酸脱羧酶 Ornithine decarboxylase | ODC | LOC_Os02g28110 | N/A | N/A | N/A | N/A | N/A | N/A |
脯氨酸脱氢酶 Proline dehydrogenase | ProDH | LOC_Os10g40360 | 23.89±5.83 | 66.88±7.54 | 78.81±7.47* | 15.76±4.19 | 49.54±8.94 | 25.74±4.81 |
1-吡咯啉-5-羧酸合成酶 1-pyrrolidine-5-carboxylate synthetase | P5CS1 | LOC_Os05g38150 | 43.21±2.08 | 31.28±1.56 | 25.46±2.29 | 41.61±2.96 | 42.14±2.06 | 39.42±3.01 |
1-吡咯啉-5-羧酸还原酶 1-pyrrolidine-5-carboxylic reductase | P5CR | LOC_Os01g71990 | 9.00±0.43 | 3.72±0.61 | 3.59±0.74 | 10.00±1.01 | 3.16±0.36 | 6.13±1.36 |
1-吡咯啉-5-羧酸脱氢酶 1-pyrrolidine-5-carboxylic dehydrogenase | P5CDH | Os05g0536400 | N/A | N/A | N/A | N/A | N/A | N/A |
鸟氨酸转氨酶 Ornithine aminotransferase | OAT | LOC_Os03g44150 | 52.54±0.78 | 32.10±7.61 | 25.48±4.34 | 57.42±4.49 | 33.33±1.53 | 38.72±6.02 |
精氨酸脱羧酶 Arginine decarboxylase | ADC1 | LOC_Os06g04070 | 13.55±1.72 | 15.43±1.21 | 18.36±1.78 | 15.41±3.11 | 14.40±0.84 | 19.42±6.76 |
鲱精胺酶 Agmatine amidinohydrolase | AgmAH | LOC_Os09g37200 | 1.78±0.11 | 5.52±1.75 | 5.33±0.98 | 3.17±0.32 | 8.65±0.21 | 3.78±0.15 |
[1] | Narayan V S, Nair P M.Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants[J]. Phytochemistry, 1990, 29: 367-375. |
[2] | Fait A, Fromm H, Walther D.Highway or byway: The metabolic role of GABA shunt in plants[J]. Trends in Plant Science, 2007, 13: 1380-1385. |
[3] | Shelp B J, Bown A W, Zarei A.4-aminobutyrate (GABA): A metabolite and signal with practical significance[J]. Botany, 2017, 95: 1015-1032. |
[4] | Zhang S J, Jckson M B.GABA-activated chloride channels in secretory nerve endings[J]. Science, 1993, 259: 531-534. |
[5] | Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M.Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives[J]. European Journal of Clinical Nutrition, 2003, 57: 490-495. |
[6] | Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa h, Yamori Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar- Kyoto rats[J]. British Journal of Nutrition, 2004, 92: 411-417. |
[7] | 张光恒, 曾大力, 郭龙彪, 刘慧娟, 胡江, 高振宇, 华志华, 钱前. 葡萄糖焦磷酸酶基因与巨胚基因聚合创建营养功能稻[J]. 中国水稻科学, 2007, 21(6): 567-572. |
Zhang G H, Zeng D L, Guo L B, Liu H J, Hu J, Gao Z Y, Hua Z H, Qian Q.Nutrition-functional rice created by polymerizing ADP-glucorse pyrophosphorylase and giant embryo genes[J]. Chinese Journal of Rice Science, 2007, 21(6): 567-572. (in Chinese with English abstract) | |
[8] | 马文领, 景军, 耿文叶. 胚芽大米的营养特性及营养支持作用[J]. 中国食物与营养, 2018, 24(1): 55-58. |
Ma W L, Jing J, Geng W Y.Nutritional characteristics and nutritional support of germ rice[J]. Food and Nutrition in China, 2018, 24(1): 55-58. (in Chinese with English abstract) | |
[9] | Buttery R G, Ling L C, Juliano B O.2-acetyl-1-pyrroline: An important aroma component of cooked rice[J]. Chemistry Industry (London), 1982, 12: 958-959. |
[10] | Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L.Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. The Plant Cell, 2008, 20: 1850-1861. |
[11] | 罗曦, 曾亚文, 杨树明, 杜娟, 普晓英, 吴殿星. 不同发芽时间下发芽稻谷和糙米不同部位γ-氨基丁酸含量差异[J]. 食品科学, 2009, 30(13): 124-128. |
Luo X, Zeng Y W, Yang S M, Du J, Pu X Y, Wu D X.Changes in gamma-aminobutyric acid content in different parts of rice and brown rice during germination[J]. Journal of Food Science, 2009, 30(13): 124-128. (in Chinese with English abstract) | |
[12] | 姚森, 杨特武, 赵莉君, 熊善柏. 发芽糙米中γ-氨基丁酸含量的品种基因型差异分析[J]. 中国农业科学, 2008, 41(12): 3974-3982. |
Yao S, Yang T W, Zhao L J, Xiong S B.The variation of γ-aminobutyric acid content in germinated brown rice among different cultivars[J]. Scientia Agricultura Sinica, 2008, 41(12): 3974-3982. (in Chinese with English abstract) | |
[13] | Wei X, Handoko D D, Pather L, Methven L, Elmore J S.Evaluation of 2-acetyl-1-pyrroline in foods, with an emphasis on rice flavour[J]. Food Chemistry, 2017, 232: 531-544. |
[14] | Kakkar R K, Sawhney V K.Polyamine research in plants: A changing perspective[J]. Physiologia Plantarum, 2002, 116: 281-292. |
[15] | Shelp B J, Bozzo G G, Trobacher C P, Zarei A, Deyman K L, Brikis C J.Hypothesis/review: contribution of putrescine to γ-aminobutyrate (GABA) production in response to abiotic stress[J]. Plant Science, 2012, 193: 130-135. |
[16] | Shelp B J, Bozzo G G, Trobacher C P, Chiu G, Bajwa V S.Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants: I. Pathway structure[J]. Botany, 2012, 90(9): 651-668. |
[17] | Hinge V R, Patil H B, Nadaf A B.Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and non-Basmati scented rice cultivars[J]. Rice, 2016, 9: 38. |
[18] | 苏国兴,刘友良. 高等植物体内的多胺分解代谢及其主要产物的生理作用[J]. 植物学通报, 2005, 22(4): 408-418. |
Su G X, Liu Y L.Function of polyamine catabolism and its main catabolic products in higher plants[J]. Chinese Bulletin of Botany, 2005, 22(4): 408-418. (in Chinese with English abstract) | |
[19] | Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q, Waters D L E. The gene for fragrance in rice[J]. Plant Biotechnology Journal, 2005, 3: 363-370. |
[20] | Bradbury L M T, Gillies S A, Brushett D J, Waters D L E, Henry R J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice[J]. Plant Molecular Biology, 2008, 68: 439-449. |
[21] | Huang T C, Huang Y W, Hung H J, Ho C T, Wu M L.Delta (1)-Pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp. natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13): 5097-5102. |
[22] | Huang T C, Teng C S, Chang J L, Chuang H S, Ho C T, Wu M L.Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with delta (1)-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus[J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7399-7404. |
[23] | 王忠. 水稻的开花与结实: 水稻生殖器官发育图谱[M]. 北京: 科学出版社, 2015: 124-143. |
Wang Z. Rice Flowering and Fruiting: Atlas of Rice Reproductive Organ Development[M]. Beijing: Science Press, 2015: 124-143. (in Chinese) | |
[24] | Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie A R.Parallel analysis of transcript and metabolic profiles: A new approach in systems biology[J]. EMBO Reports, 2003, 4(10): 989-993. |
[25] | Sana T R, Fischer S, Wohlgemuth G, Katrekar A, Jung K, Ronald P C, Fiehn O.Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae[J]. Metabolomics, 2010, 6: 451-465. |
[26] | Hoefgen R, Nikiforova V J.Metabolomics integrated with transcriptomics: Assessing systems response to sulfur-deficiency stress[J]. Physiologia Plantarum, 2008, 132(2): 190-198. |
[27] | 沈枫, 蒋洪波, 刘博, 张秀茹, 刘军, 解文孝, 姚继攀, 马亮. 优质食味粳稻辽粳433 和越光糙米代谢产物差异分析[J]. 中国水稻科学, 2020, 34(4): 359-367. |
Shen F, Jiang H B, Liu B, Zhang X R, Liu J, Xie W X, Yao J P, Ma L.Difference of metabolites in brown rice between Liaojing 433 and Koshihikari with good eating quality[J]. Chinese Journal of Rice Science, 2020, 34(4): 359-367. (in Chinese with English abstract) | |
[28] | Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid[J]. Trends in Plant Science, 1999, 4(11): 446-452. |
[29] | Akama K, Akihiro T, Kitagawa M, Takaiwa F.Rice(Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus[J]. Biochimica et Biophysica Acta, 2001, 1522: 143-150. |
[30] | Bouché N, Fromm H.GABA in plants: Just a metabolite?[J] Trends in Plant Science, 2004, 9(3): 110-115. |
[31] | Pal B H, Ravishankar G A.Role of polyamines in the ontogeny of plants and their biotechnological applications[J]. Plant Cell, Tissue and Organ Culture, 2002, 69: 1-34. |
[32] | Shelp B J, Bozzo G G, Zarei A, Simpson J P, Trobacher C P, Allan W L.Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants: Ⅱ. Integrated analysis[J]. Botany, 2012, 90(9): 781-793. |
[33] | Buttery R G, Ling L C, Juliano B O, Turnbaugh J G.Cooked rice aroma and 2-acetyl-1-pyrroline[J]. Journal of Agricultural and Food Chemistry, 1983, 31(4): 823-826. |
[34] | Yoshihashi T, Huong N T T, Surojanametakul V, Tungtrakul P, Varanyanond W, Effect of storage conditions on 2-acetyl-1-pyrroline content in aromatic rice variety, Khao Dawk Mali 105[J]. Journal of Food Science, 2005, 70(1): S34-S37. |
[35] | Christophersen C, Struve C.Structural equilibrium and ring-chain tautomerism of aqueous solutions of 4-aminobutyraldehyde[J]. Heterocycles, 2003, 60: 1907-1914. |
[36] | Keyghobad K, Kad T D, Zanan R L, Nadaf A B.2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through 1-pyrroline- 5-carboxylate synthetase (P5CS) gene transformation[J]. Applied Biochemistry Biotechnology, 2015, 177: 1466-1479. |
[37] | 周露, 沈贝贝, 白苏阳, 刘喜, 江玲, 翟虎渠, 万建民. 以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量[J]. 作物学报, 2015, 41(9): 1305-1312. |
Zhou L, Shen B B, Bai S Y, Liu X, Jiang L, Zhai H Q, Wan J M.RNA interference of OsGABA-T1 gene expression induced GABA accumulation in rice grain[J]. Acta Agronomica Sinica, 2015, 41(9): 1305-1312. (in Chinese with English abstract) | |
[38] | Akama K, Takaiwa F.C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells[J]. Journal of Experimental Botany, 2007, 58: 2699-2707. |
[39] | Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S.An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains[J]. Rice, 2020, 13: 20. |
[40] | Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X.Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13: 791-800. |
[41] | 邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用CRISPR/CAS9 技术编辑水稻香味基因Badh2[J]. 中国水稻科学, 2017, 31(2): 216-222. |
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S.CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice[J]. Chinese Journal of Rice Science, 2017, 31(2): 216-222. (in Chinese with English abstract) | |
[42] | 祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9 技术编辑水稻香味基因Badh2[J]. 中国农业科学, 2020, 53(8): 1501-1509. |
Qi Y B, Zhang L X, Wang L Y, Song J, Wang J J.CRISPR/CAS9 targeted editing for the fragrant gene Badh2 in rice[J]. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509. (in Chinese with English abstract) |
[1] | WEI Xiaodong, ZHANG Yadong, ZHAO Ling, LU Kai, SONG Xuemei, WANG Cailin. Research Progress in Biosynthesis and Influencing Factors of 2-acetyl-1-pyrroline in Fragrant Rice [J]. Chinese Journal OF Rice Science, 2022, 36(2): 131-138. |
[2] | Shanbin XU, Hongliang ZHENG, Lifeng LIU, Qingyun BU, Xiufeng Li, Detang ZOU. Improvement of Grain Shape and Fragrance by Using CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2020, 34(5): 406-412. |
[3] | Feng SHEN, Hongbo JIANG, Bo LIU, Xiuru ZHANG, Jun LIU, Wenxiao XIE, Jipan YAO, Liang MA. Difference of Metabolites in Brown Rice Between Liaojing 433 and Koshihikari with Good Eating Quality [J]. Chinese Journal OF Rice Science, 2020, 34(4): 359-367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||