Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (1): 78-88.DOI: 10.16819/j.1001-7216.2021.0509
• Research Papers • Previous Articles Next Articles
Tong YANG, Junnan WU, Ting BAO, Fengbo LI, Jinfei FENG, Xiyue ZHOU, Fuping FANG*()
Received:
2020-05-12
Revised:
2020-06-08
Online:
2021-01-10
Published:
2021-01-10
Contact:
Fuping FANG
杨通, 吴俊男, 鲍婷, 李凤博, 冯金飞, 周锡跃, 方福平*()
通讯作者:
方福平
基金资助:
Tong YANG, Junnan WU, Ting BAO, Fengbo LI, Jinfei FENG, Xiyue ZHOU, Fuping FANG. Effects of Tillage Methods on Distribution Characteristics of CH4 and N2O in Soil Profile ofDouble-cropping PaddyField[J]. Chinese Journal OF Rice Science, 2021, 35(1): 78-88.
杨通, 吴俊男, 鲍婷, 李凤博, 冯金飞, 周锡跃, 方福平. 耕作方式对双季稻田土壤剖面CH4和N2O分布特征的影响[J]. 中国水稻科学, 2021, 35(1): 78-88.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.0509
Fig.1. CH concentration in soil profile at different growth stages in the early rice growing season. A, B and C indicate seedling stage; D, E and F indicate fling stage; G, H and I indicate heading stage; J, K and L indicate flling stage. RT, Rotary tillage; NT, No tllge.0 represents surface water.
Fig. 2. CH4concentration in soil profile at different growth stages in the late rice growing season. A, B and C indicate seedling stage; D, E and F indicate filling stage; G, H and I indicate heading stage; J, K and L indicate filling stage. RT, Rotary tillage; NT, No tillage.0 represents surface water.
生长季Season | 影响因子Factor | 自由度df | 田面水 Surface water | 0-5cm土层 0-5 cm soil layer | 5-10cm土层 5-10 cm soil layer | 10-15cm土层10-15 cm soil layer | 15-20cm土层15-20 cm soil layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |||
早稻Early rice | T | 1 | 4 | >0.05 | 17.2 | <0.001 | 29.7 | <0.001 | 27.8 | <0.001 | 37.2 | <0.001 |
F | 2 | 9 | <0.001 | 9.9 | <0.001 | 8.8 | <0.001 | 9.3 | <0.001 | 6.7 | <0.01 | |
S | 3 | 16 | <0.001 | 36.7 | <0.001 | 20.1 | <0.001 | 2.3 | >0.05 | 4.9 | >0.05 | |
T×F | 2 | 1.6 | >0.05 | 1.9 | >0.05 | 5.5 | <0.01 | 4.8 | <0.05 | 4.7 | <0.05 | |
T×S | 3 | 2.9 | <0.05 | 7.7 | <0.001 | 9.4 | <0.001 | 1 | >0.05 | 1.2 | >0.05 | |
F×S | 6 | 10.2 | <0.001 | 5.4 | <0.001 | 3 | <0.05 | 2 | >0.05 | 3 | >0.05 | |
T×F×S | 6 | 3.2 | <0.05 | 1.4 | >0.05 | 1.8 | >0.05 | 1.6 | >0.05 | 1.5 | >0.05 | |
晚稻Late rice | T | 1 | 0.1 | >0.05 | 58.8 | <0.001 | 69.1 | <0.001 | 0.2 | >0.05 | 0.3 | >0.05 |
F | 2 | 10.1 | <0.001 | 20.9 | <0.001 | 7.5 | <0.01 | 6.8 | <0.01 | 3.2 | <0.05 | |
S | 3 | 3.4 | <0.05 | 2.5 | >0.05 | 1.7 | >0.05 | 2 | >0.05 | 2.1 | >0.05 | |
T×F | 2 | 6.9 | <0.01 | 7.6 | <0.01 | 2.7 | >0.05 | 0.2 | >0.05 | 2.1 | >0.05 | |
T×S | 3 | 0.9 | >0.05 | 0.2 | >0.05 | 0.4 | >0.05 | 1.4 | >0.05 | 0.6 | >0.05 | |
F×S | 6 | 3.5 | <0.01 | 0.6 | >0.05 | 1.5 | >0.05 | 4.5 | <0.01 | 0.7 | >0.05 | |
T×F×S | 6 | 1.1 | >0.05 | 1.1 | >0.05 | 0.9 | >0.05 | 1.9 | >0.05 | 0.9 | >0.05 |
Table 1 Multivariate analysis of variance for tillage (T), fertilization (F) and growth stage (S) on CH4 concentration in the surface water and soil profile in the early and late rice growing seasons.
生长季Season | 影响因子Factor | 自由度df | 田面水 Surface water | 0-5cm土层 0-5 cm soil layer | 5-10cm土层 5-10 cm soil layer | 10-15cm土层10-15 cm soil layer | 15-20cm土层15-20 cm soil layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |||
早稻Early rice | T | 1 | 4 | >0.05 | 17.2 | <0.001 | 29.7 | <0.001 | 27.8 | <0.001 | 37.2 | <0.001 |
F | 2 | 9 | <0.001 | 9.9 | <0.001 | 8.8 | <0.001 | 9.3 | <0.001 | 6.7 | <0.01 | |
S | 3 | 16 | <0.001 | 36.7 | <0.001 | 20.1 | <0.001 | 2.3 | >0.05 | 4.9 | >0.05 | |
T×F | 2 | 1.6 | >0.05 | 1.9 | >0.05 | 5.5 | <0.01 | 4.8 | <0.05 | 4.7 | <0.05 | |
T×S | 3 | 2.9 | <0.05 | 7.7 | <0.001 | 9.4 | <0.001 | 1 | >0.05 | 1.2 | >0.05 | |
F×S | 6 | 10.2 | <0.001 | 5.4 | <0.001 | 3 | <0.05 | 2 | >0.05 | 3 | >0.05 | |
T×F×S | 6 | 3.2 | <0.05 | 1.4 | >0.05 | 1.8 | >0.05 | 1.6 | >0.05 | 1.5 | >0.05 | |
晚稻Late rice | T | 1 | 0.1 | >0.05 | 58.8 | <0.001 | 69.1 | <0.001 | 0.2 | >0.05 | 0.3 | >0.05 |
F | 2 | 10.1 | <0.001 | 20.9 | <0.001 | 7.5 | <0.01 | 6.8 | <0.01 | 3.2 | <0.05 | |
S | 3 | 3.4 | <0.05 | 2.5 | >0.05 | 1.7 | >0.05 | 2 | >0.05 | 2.1 | >0.05 | |
T×F | 2 | 6.9 | <0.01 | 7.6 | <0.01 | 2.7 | >0.05 | 0.2 | >0.05 | 2.1 | >0.05 | |
T×S | 3 | 0.9 | >0.05 | 0.2 | >0.05 | 0.4 | >0.05 | 1.4 | >0.05 | 0.6 | >0.05 | |
F×S | 6 | 3.5 | <0.01 | 0.6 | >0.05 | 1.5 | >0.05 | 4.5 | <0.01 | 0.7 | >0.05 | |
T×F×S | 6 | 1.1 | >0.05 | 1.1 | >0.05 | 0.9 | >0.05 | 1.9 | >0.05 | 0.9 | >0.05 |
Fig. 3. N2O concentration in soil profile at different growth stages in the early rice growing season. A, B and C indicate seedling stage; D, E and F indicate filling stage; G, H and I indicate heading stage; J, K and L indicate filling stage. RT, Rotary tillage; NT, No tillage.0 represents surface water.
Fig. 4. N2O concentration in soil profile at different growth stages in the late rice growing season. A, B and C indicate seedling stage; D, E and F indicate filling stage; G, H and I indicate heading stage; J, K and L indicate filling stage. RT, Rotary tillage; NT, No tillage.0 represents surface water.
生长季Season | 影响因子Factor | 自由度df | 田面水 Surface water | 0-5cm土层 0-5cm soil layer | 5-10cm土层 5-10cm soil layer | 10-15cm土层10-15cm soil layer | 15-20cm土层15-20cm soil layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |||
早稻Early rice | T | 1 | 2.8 | >0.05 | 0.5 | >0.05 | 1.9 | >0.05 | 9.1 | <0.01 | 12.6 | <0.001 |
F | 2 | 1.2 | >0.05 | 1 | >0.05 | 8 | <0.001 | 5.1 | <0.01 | 1.2 | >0.05 | |
S | 3 | 26.5 | <0.001 | 8.5 | <0.001 | 10 | <0.001 | 2 | >0.05 | 5.6 | <0.05 | |
T×F | 2 | 0.6 | >0.05 | 2.2 | >0.05 | 1.4 | >0.05 | 2.3 | >0.05 | 1.8 | >0.05 | |
T×S | 3 | 4.3 | <0.01 | 4.9 | <0.01 | 3.2 | <0.05 | 1.6 | >0.05 | 3.4 | <0.05 | |
F×S | 6 | 1.8 | >0.05 | 3.1 | <0.05 | 2.9 | <0.05 | 1.6 | >0.05 | 1.4 | >0.05 | |
T×F×S | 6 | 1.8 | >0.05 | 5.4 | <0.001 | 3.6 | <0.01 | 0.6 | >0.05 | 2.6 | <0.05 | |
晚稻 Late rice | T | 1 | 0.5 | >0.05 | 0.3 | >0.05 | 0 | >0.05 | 0.7 | >0.05 | 0.3 | >0.05 |
F | 2 | 1.5 | >0.05 | 4.7 | <0.05 | 3.1 | <0.05 | 0.3 | >0.05 | 1.2 | >0.05 | |
S | 3 | 10.2 | <0.001 | 1.5 | >0.05 | 2.5 | >0.05 | 8.9 | <0.001 | 4.7 | <0.01 | |
T×F | 2 | 2.4 | >0.05 | 12.7 | <0.001 | 2.5 | >0.05 | 0.2 | >0.05 | 0.7 | >0.05 | |
T×S | 3 | 3.3 | <0.05 | 2.2 | >0.05 | 3.6 | <0.05 | 10 | <0.001 | 2.7 | >0.05 | |
F×S | 6 | 1 | >0.05 | 1.3 | >0.05 | 2.9 | <0.05 | 0.6 | >0.05 | 2 | >0.05 | |
T×F×S | 6 | 1.8 | >0.05 | 1.7 | >0.05 | 1.4 | >0.05 | 1.4 | >0.05 | 1 | >0.05 |
Table 2 Multivariate analysis for tillage practice (T), fertilization method (F) and growth stage (S) on N2O concentration in the surface water and soil profile in the early and late rice growing seasons.
生长季Season | 影响因子Factor | 自由度df | 田面水 Surface water | 0-5cm土层 0-5cm soil layer | 5-10cm土层 5-10cm soil layer | 10-15cm土层10-15cm soil layer | 15-20cm土层15-20cm soil layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |||
早稻Early rice | T | 1 | 2.8 | >0.05 | 0.5 | >0.05 | 1.9 | >0.05 | 9.1 | <0.01 | 12.6 | <0.001 |
F | 2 | 1.2 | >0.05 | 1 | >0.05 | 8 | <0.001 | 5.1 | <0.01 | 1.2 | >0.05 | |
S | 3 | 26.5 | <0.001 | 8.5 | <0.001 | 10 | <0.001 | 2 | >0.05 | 5.6 | <0.05 | |
T×F | 2 | 0.6 | >0.05 | 2.2 | >0.05 | 1.4 | >0.05 | 2.3 | >0.05 | 1.8 | >0.05 | |
T×S | 3 | 4.3 | <0.01 | 4.9 | <0.01 | 3.2 | <0.05 | 1.6 | >0.05 | 3.4 | <0.05 | |
F×S | 6 | 1.8 | >0.05 | 3.1 | <0.05 | 2.9 | <0.05 | 1.6 | >0.05 | 1.4 | >0.05 | |
T×F×S | 6 | 1.8 | >0.05 | 5.4 | <0.001 | 3.6 | <0.01 | 0.6 | >0.05 | 2.6 | <0.05 | |
晚稻 Late rice | T | 1 | 0.5 | >0.05 | 0.3 | >0.05 | 0 | >0.05 | 0.7 | >0.05 | 0.3 | >0.05 |
F | 2 | 1.5 | >0.05 | 4.7 | <0.05 | 3.1 | <0.05 | 0.3 | >0.05 | 1.2 | >0.05 | |
S | 3 | 10.2 | <0.001 | 1.5 | >0.05 | 2.5 | >0.05 | 8.9 | <0.001 | 4.7 | <0.01 | |
T×F | 2 | 2.4 | >0.05 | 12.7 | <0.001 | 2.5 | >0.05 | 0.2 | >0.05 | 0.7 | >0.05 | |
T×S | 3 | 3.3 | <0.05 | 2.2 | >0.05 | 3.6 | <0.05 | 10 | <0.001 | 2.7 | >0.05 | |
F×S | 6 | 1 | >0.05 | 1.3 | >0.05 | 2.9 | <0.05 | 0.6 | >0.05 | 2 | >0.05 | |
T×F×S | 6 | 1.8 | >0.05 | 1.7 | >0.05 | 1.4 | >0.05 | 1.4 | >0.05 | 1 | >0.05 |
土壤层次 Soil profile | 早稻Early rice season | 晚稻Late rice season | |||
---|---|---|---|---|---|
CH4 | N2O | CH4 | N2O | ||
田面水 Surface water | 0.281* | -0.024 | 0.277* | 0.413** | |
0-5cm | 0.647** | 0.329** | 0.357** | 0.201 | |
5-10cm | 0.698** | 0.202 | 0.436** | 0.255* | |
10-15cm | 0.424** | 0.176 | 0.479** | 0.324** | |
15-20cm | 0.443** | 0.017 | -0.089 | 0.460** |
Table 3 Correlation between the net flux rates of CH4 and N2O and the concentrations of CH4 and N2O in the surface water and soil profile of early and late rice.
土壤层次 Soil profile | 早稻Early rice season | 晚稻Late rice season | |||
---|---|---|---|---|---|
CH4 | N2O | CH4 | N2O | ||
田面水 Surface water | 0.281* | -0.024 | 0.277* | 0.413** | |
0-5cm | 0.647** | 0.329** | 0.357** | 0.201 | |
5-10cm | 0.698** | 0.202 | 0.436** | 0.255* | |
10-15cm | 0.424** | 0.176 | 0.479** | 0.324** | |
15-20cm | 0.443** | 0.017 | -0.089 | 0.460** |
[1] | 李祎君, 王春乙, 赵蓓, 刘文军. 气候变化对中国农业气象灾害与病虫害的影响[J]. 农业工程学报, 2010, 26(S1): 263-271. |
Li Y J, Wang C Y, Zhao B, Liu W J.Effects of climate change on agricultural meteorological disaster and crop insects diseases[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 263-271. (in Chinese with English abstract) | |
[2] | 秦大河, 罗勇, 陈振林, 任贾文, 沈永平. 气候变化科学的最新进展:IPCC第四次评估综合报告解析[J]. 气候变化研究进展, 2007, 6: 311-314. |
Qin D H, Luo Y, Chen Z L, Ren J W, Shen Y P.Latest advances in climate change sciences: Interpretation of the synthesis report of the IPCC fourth assessment report[J]. Climate Change Research, 2007, 6: 311-314.(in Chinese with English abstract) | |
[3] | 中华人民共和国国家统计局.主要农作物产品产量[DB].. National Bureau of Statistics. Main agricultural product output[DB]. . |
[4] | FAO. Food and agriculture data[DB/OL]. . |
[5] | 刘巧辉. 基于IPCC排放因子方法学的中国稻田和菜地氧化亚氮直接排放量估算[D]. 南京: 南京农业大学, 2017. |
Liu Q H.Statistic estimation of direct N2O emissions from paddy rice and vegetable fields in mainland China based on IPCC methodology[D]. Nanjing:Nanjing Agricultural University, 2017.(in Chinese with English abstract) | |
[6] | Conrad R.Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J]. FEMS (Federation of European Microbiological Societies) Microbiology-Ecology, 1999, 28(3): 193-202. |
[7] | Anderson I C, Poth M A.Controls on fluxes of trace gases from Brazilian cerrado soils[J].Journal of Environmental Quality, 1998, 27(5): 1117-1124. |
[8] | 薛建福, 濮超, 张冉, 赵鑫, 刘胜利, 陈阜, 张海林. 农作措施对中国稻田氧化亚氮排放影响的研究进展[J]. 农业工程学报, 2015, 31(11): 1-9. |
Xue J F, Pu C, Zhang R, Zhao X, Liu S L, Chen F, Zhang H L.Review on management-induced nitrous oxide emissions from paddy ecosystems[J].Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11):1-9.(in Chinese with English abstract) | |
[9] | 江长胜, 王跃思, 郑循华, 王明星. 稻田甲烷排放影响因素及其研究进展[J]. 土壤通报, 2004, 5: 663-669. |
Jiang C S, Wang Y S, Zheng X H, Wang M X.Advances in the research on methane emission from paddy fields and its affecting factors[J]. Chinese Journal of Soil Science, 2004, 5:663-669.(in Chinese with English abstract) | |
[10] | Yoh M, Toda H, Kanda K, Tsuruta H.Diffusion analysis of N2O cycling in a fertilized soil[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1): 29-33. |
[11] | Xu X, Wu Z, Dong Y B, Zhou Z Q, Xiong Z Q.Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system[J/OL].Scientific Reports, 2016, 6(1): 38688. |
[12] | Yang B, Chen Z Z, Zhang M, Zhang H, Zhang X H, Pan G X, Zou J W, Xiong Z Q.Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system[J].Journal of Environmental Sciences-China, 2015, 32(6): 62-71. |
[13] | Zhou Z Q, Xu X, Bi Z C, Li L, Xiong Z Q.Soil concentration profiles and diffusion and emission of nitrous oxide influenced by the application of biochar in a rice-wheat annual rotation system[J]. Environmental Science and Pollution Research, 2016, 23(8): 7949-7961. |
[14] | 刘平丽. 稻田土壤剖面CH4、N2O、CO2分布特征及周转规律研究[D]. 南京: 南京农业大学, 2011. |
Liu P L.Distribution characteristics and turnover of soil profile methane, nitrous oxide and carbon dioxide in paddy fields[D].Nanjing: Nanjing Agricultural University, 2011.(in Chinese with English abstract) | |
[15] | Li D M, Liu M Q, Cheng Y H, Wang D, Qin J T, Jiao J G, Li H J, Hu F.Methane emissions from double-rice cropping system under conventional and no tillage in southeast china[J]. Soil & Tillage Research, 2011, 113(2): 77-81. |
[16] | Zhang H L, Bai X L, Xue J F, Chen Z D, Tang H M, Chen F.Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in southern China[J/OL].PloS ONE, 2013, 8(6):e65277. |
[17] | 白小琳, 张海林, 陈阜, 孙国峰, 胡清, 李永. 耕作措施对双季稻田CH4与N2O排放的影响[J]. 农业工程学报, 2010, 26(1): 282-289. |
Bai X L, Zhang H L, Chen F, Sun G P, Hu Q, Li Y.Tillage effects on CH4 and N2O emission from double cropping paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 282-289.(in Chinese with English abstract) | |
[18] | 秦晓波, 李玉娥, 万运帆, 廖育林, 范美蓉, 高清竹, 刘硕, 马欣. 耕作方式和稻草还田对双季稻田CH4和N2O排放的影响[J]. 农业工程学报, 2014, 30(11): 216-224. |
Qin X B, Li Y E, Wan Y F, Liao Y L, Fan M R, Gao Q Z, Liu S, Ma X.Effect of tillage and rice residue return on CH4 and N2O emission from double rice field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 216-224.(in Chinese with English abstract) | |
[19] | 伍芬琳, 张海林, 李琳, 陈阜, 黄凤球, 肖小平. 保护性耕作下双季稻农田甲烷排放特征及温室效应[J]. 中国农业科学, 2008, 41(9): 2703-2709. |
Wu F L, Zhang H L, Li L, Chen F, Huang F Q, Xiao X P.Characteristics of CH4 emission and greenhouse effects in double paddy soil with conservation tillage[J]. Scientia Agricultura Sinica, 2008, 41(9):2703-2709.(in Chinese with English abstract) | |
[20] | Bayer C, Costa F D S,Pedroso G M,Zschornack T,Camargo E S,Lima M A,Frigheto R T S,Gomes J,Marcolin E,Mussoi M V R. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a humid subtropical climate[J]. Field Crop Research, 2014, 162: 60-69. |
[21] | Krμger M, Frenzel P, Conrad R.Microbial processes influencing methane emission from rice fields[J]. Global Change Biology, 2001, 7(1): 49-63. |
[22] | 周自强, 李露, 张恒, 熊正琴. 氮肥配施小麦秸秆生物炭对稻麦轮作土壤剖面CH4和N2O浓度的影响[J]. 南京农业大学学报, 2015, 38(3): 431-438. |
Zhou Z Q, Li L, Zhang H, Xiong Z Q.Effects of wheat straw biochar and nitrogen amendment on methane and nitrous oxide distribution characteristics within soil profile in rice-wheat annual rotations[J]. Journal of Nanjing Agricultural University, 2015, 38(3): 431-438.(in Chinese with English abstract) | |
[23] | Schutz H, Seiler W, Conrad R, 杜道灯. 土壤温度对水稻田甲烷排放的影响[J]. 农业环境与发展, 1992(4): 19-22. |
Schutz H, Seiler W, Conrad R, Du D D.Effects of soil temperature on methane emissions from rice paddies[J].Journal of Agricultural Resources and Environment, 1992(4):19-22.(in Chinese with English abstract) | |
[24] | 丁维新, 蔡祖聪. 植物在CH4产生、氧化和排放中的作用[J]. 应用生态学报, 2003, 8: 1379-1384. |
Ding W X, Cai Z C.Effect of plants on methane production, oxidation and emission[J]. ActaEcologicaSinica, 2003, 8:1379-1384.(in Chinese with English abstract) | |
[25] | Elberling B, Askaer L, Jørgensen C J, Joensen H P, Kühl M, Glud R N, Lauritsen F R.Linking soil O2, CO2, and CH4 concentrations in a wetland soil: Implications for CO2 and CH4 fluxes[J]. Environmental Science& Technology, 2011, 45(8): 3393-3399. |
[26] | Holzapfel A, Conrad R, Seiler W.Effects of vegetation on the emission of methane from submerged paddy soil[J]. Plant Soil, 1986, 92(2):223-233. |
[27] | Schutz H, Seiler W, Conrad R.Influence of soil temperature on methane emission from rice paddy fields[J]. Biogeochemistry, 1990, 11(2): 77-95. |
[28] | Inubushi K, Umebayashi M, Wada H. Methane emission from paddy fields//Transaction of 14th International Congress of Soil Science[C]. Kyoto, Japan, 1990: 249-254. |
[29] | Zhou M H, Wang X G, Wang Y Q, Zhu B.A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect[J]. Agricultural and Forest Meteorology, 2018, 250: 299-307. |
[30] | Yagi K, Minami K.Effect of organic matter application on methane emission from some Japanese paddy fields[J].Soil Science and Plant Nutrition, 1990, 36(4): 599-610. |
[31] | Watanabe A, Yoshida M, Kimura M.Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw[J]. Journal of Geophysical Research, 1998, 103: 8237-8242. |
[32] | Zhang L, Zheng J, Chen L, Shen M, Zhang X, Zhang M, Bian X, Zhang J, Zhang W.Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system[J]. European Journal of Agronomy, 2015, 63: 47-54. |
[33] | Li C, Zhang Z, Guo L, Cai M, Cao C.Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods[J]. Atmospheric Environment, 2013, 80: 438-444. |
[34] | 刘平丽, 张啸林, 熊正琴, 黄太庆, 丁敏, 王金阳. 不同水旱轮作体系稻田土壤剖面N2O的分布特征[J]. 应用生态学报, 2011, 22(9): 2363-2369. |
Liu P L, Zhang X L, Xiong Z Q, Huang T Q, Ding M, Wang J Y.Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems[J]. Chinese Journal of Applied Ecology, 2011, 22(9):2363-2369.(in Chinese with English abstract) | |
[35] | 姜珊珊, 庞炳坤, 张敬沙, 蒋静艳. 减氮及不同肥料配施对稻田CH4和N2O排放的影响[J]. 中国环境科学, 2017, 37(5): 1741-1750. |
Jiang S S, Pang B K, Zhang J S, Jiang J J.Effects of reduced nitrogen and combined application of different fertilizers on CH4 and N2O emissions in paddy fields[J]. China Environmental Science, 2017, 37(5):1741-1750.(in Chinese with English abstract) | |
[36] | Wu D M, Dong W X, Oenema O, Wang Y Y, Trebs I, Hu C S.N2O consumption by low-nitrogen soil and its regulation by water and oxygen[J]. Soil Biology & Biochemistry, 2013, 60(1): 165-172. |
[37] | Schlesinger W H.An estimate of the global sink for nitrous oxide in soils[J]. Global Change Biology, 2013, 19(10): 2929-2931. |
[38] | 王玲, 李昆, 宋雅琦, 公勤, 李兆华. 浅表层水稻土N2O消耗能力及其与N2O还原微生物的耦合关系研究[J]. 生态学报, 2019, 20: 1-9. |
Wang L, Li K, Song Y Q, Gong Q, Li Z H.The N2O consumption ability in the surface paddy soil layer and its coupling relationship to N2O reducing microorganisms[J]. ActaEcologicaSinica, 2019, 20:1-9.(in Chinese with English abstract) | |
[39] | Six J, Feller C, Denef K, Ogle S M, Sa J, Albrecht A.Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage[J]. Agronomie, 2002, 22: 755-775. |
[40] | Liu X, Mosier A R, Halvorson A D, Zhang F S.The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil[J]. Plant Soil, 2006, 280(1): 177-188. |
[41] | Rochette P.No-till only increases N2O emissions in poorly-aerated soils[J]. Soil & Tillage Research, 2008, 101(1): 97-100. |
[1] | ZENG Wenjing, QIU Lanying, CHEN Junjie, QIAN Haoyu, ZHANG Nan, DING Yanfeng, JIANG Yu. Effect of Elevated CO2 Concentration on Rice Growth and CH4 Emission from Paddy Fields Under Straw Incorporation [J]. Chinese Journal OF Rice Science, 2022, 36(5): 543-550. |
[2] | Chun YE, Yanda LI, Zhongsheng CAO, Junbao HUANG, Binfeng SUN, Shifu SHU, Luofa WU. Effects of Different Seedling Raising Trays on Plant Type and Grain Yield of Machine-Transplanted Double Cropping Rice [J]. Chinese Journal OF Rice Science, 2020, 34(5): 435-442. |
[3] | Xuemei ZHONG, Tieping HUANG, Jianwei PENG, Wenlu LU, Xingrong KANG, Mengfei SUN, Siming SONG, Qiyuan TANG, Yuxin CHEN, Dongzhi ZHAN, Xuan ZHOU. Effects of Machine-transplanting Synchronized with One-time Precision Fertilization on Nutrient Uptake and Use Efficiency of Double Cropping Rice [J]. Chinese Journal OF Rice Science, 2019, 33(5): 436-446. |
[4] | CHEN Zhongdu, XU Chunchun, JI Long, FANG Fuping*. Carbon Footprint Analysis of Double Cropping Rice Production in the Middle Yangtze River Valley Based on Household Surveys [J]. Chinese Journal of Rice Science, 2018, 32(6): 601-609. |
[5] | Zhongdu CHEN, Chunchun XU, Long JI, Fuping FANG. Carbon Footprint Analysis of Double Cropping Rice Production in the Middle Yangtze River Valley Based on Household Surveys [J]. Chinese Journal OF Rice Science, 2018, 32(6): 601-609. |
[6] | Jia-na CHEN, Xiao-bing XIE, Dan-dan WU, Fang-bo CAO, Shuang-lv SHAN, Wei GAO, Zhi-bin LI, Ying-bin ZOU. Effects of Nitrogen Application and Mechanical Transplanting Density on Yield Formation and Nitrogen Use Efficiency of Conventional Rice Zhongjiazao 17 [J]. Chinese Journal OF Rice Science, 2015, 29(6): 628-636. |
[7] | MA Yihu, GU Daojian, LIU Lijun, WANG Zhiqin, ZHANG Hao, YANG Jianchang*. Effects of the Organic Fertilizers Made from Maize Straw on Grain Yield of Rice and Emission of Greenhouse Gases from Paddy Fields [J]. Chinese Journal of Rice Science, 2013, 27(5): 520-528. |
[8] | WANG Lili1, YAN Xiaojun1, JIANG Yu1, TIAN Yunlu3, DENG Aixing2 , ZHANG Weijian1,2,*. Differences in Characteristics of CH4 Emission Between Superrice Variety Ningjing 1 and Traditional japonica Variety [J]. Chinese Journal of Rice Science, 2013, 27(4): 413-418. |
[9] | Chen You-ding,Wan Bang-hui,Zhang Xu. Ideal Plant Type at Heading Stage for South China Double Cropping Rice with Super High Yield [J]. Chinese Journal of Rice Science, 2005, 19(1): 52-58 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||