Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (3): 237-244.DOI: 10.16819/j.1001-7216.2020.9074
• Research Papers • Previous Articles Next Articles
Lu LIU1, Chuanshan XU2, Yafei SUN3, Zhi HU1, Hao AI1, Xiuli LIU1, Xiaowen WANG1,4, Shubin SUN1,*()
Received:
2019-06-28
Revised:
2019-10-22
Online:
2020-05-15
Published:
2020-05-10
Contact:
Shubin SUN
刘璐1, 许传山2, 孙雅菲3, 胡志1, 艾昊1, 刘秀丽1, 王小文1,4, 孙淑斌1,*()
通讯作者:
孙淑斌
基金资助:
CLC Number:
Lu LIU, Chuanshan XU, Yafei SUN, Zhi HU, Hao AI, Xiuli LIU, Xiaowen WANG, Shubin SUN. Effects of Phosphate Starvation Responses Gene OsSQD2.1 on Growth in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(3): 237-244.
刘璐, 许传山, 孙雅菲, 胡志, 艾昊, 刘秀丽, 王小文, 孙淑斌. 缺磷响应基因OsSQD2.1对水稻生长发育的影响[J]. 中国水稻科学, 2020, 34(3): 237-244.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9074
基因名称 Gene name | 引物序列(5′-3′) Primer sequence | 退火温度 Annealing temperature /℃ |
---|---|---|
OsSQD2.1 | F: CGAAGACAATACGCAATGA | 55 |
R: CGGTGAACGATTCCTGAA | ||
OsActin | F: GGGCCCACGCTTTGTTG | 57 |
R: AGCACGGCTTGAATAGCG |
Table 1 Primers used to amplify the Actin and OsSQD2.1 cDNA for quantitative Q-PCR.
基因名称 Gene name | 引物序列(5′-3′) Primer sequence | 退火温度 Annealing temperature /℃ |
---|---|---|
OsSQD2.1 | F: CGAAGACAATACGCAATGA | 55 |
R: CGGTGAACGATTCCTGAA | ||
OsActin | F: GGGCCCACGCTTTGTTG | 57 |
R: AGCACGGCTTGAATAGCG |
Fig. 1. Comparison of genes and domain structures of SQD2 in rice and Arabidopsis. A, Location and length of the introns and exons of AtSQD2, OsSQD2.1, OsSQD2.2 and OsSQD2.3. The white and black boxes and black lines represent UTRs, exons and introns, respectively. B, GT-like-binding domain in AtSQD2 and OsSQD2 family are represented with black boxes and the numbers at the top of the box indicate the location of these domains.
Fig. 3. Relative expression of OsSQD2.1 in response to phosphorus deficiency(-P) and sulfur deficiency(-S). Different letters indicate significant difference at 0.05 level. The same as below.
Fig. 4. Identification of homozygous T-DNA insertion mutants of OsSQD2.1. A, Information of T-DNA insertion in OsSQD2.1 genes; B and C, Homozygous mutants identification by two-rounds PCR (B) and gene silence effects (C) of ossqd2.1 by RT-PCR.
Fig. 6. Total P concentration in leaves of pot-cultured wild type, ossqd2.1 and OsSQD2.1-RNAi materials(Ri1 and Ri1) under Pi-sufficient and Pi-deficiency conditions(Mean±SE, n=5).
Fig. 8. Net photosynthetic rate of WT, ossqd2.1 and OsSQD2.1-RNAi lines(Ri1 and Ri1) at the seedling stage(A) and the maturity stage(B) (Mean±SE, n=5).
[1] | Vance C P, Uhdestone C, Allan D L.Phosphorus acquistion and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3): 423-447. |
[2] | Raghothama K G, Karthikeyan A S.Phosphate acquisition[J]. Plant & Soil, 1999, 274(1-2): 665-693. |
[3] | Rausch C, Bucher M.Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216(1): 23. |
[4] | 张占田, 孙雅菲, 艾昊, 罗闻真, 冯冰, 孙文献, 徐国华, 孙淑斌. 水稻转录因子基因OsSHR2的时空表达特征及其在营养生长中的调控[J]. 中国水稻科学, 2018, 32(5): 427-436. |
Zhang Z T, Sun Y F, Ai H, Luo W Z, Feng B, Sun W X, Xiu G H, Sun S B.Expression patterns and regulation of transcription factor gene OsSHR2 in vegetative growth in rice[J]. Chinese Journal of Rice Science, 2018, 32(5): 427-436. (in Chinese with English abstract) | |
[5] | 冯冰, 孙雅菲, 艾昊, 刘秀丽, 杨晶, 刘璐, 高飞燕, 徐国华, 孙淑斌. 水稻蔗糖转运蛋白基因OsSUT1在磷素利用过程中的功能研究[J]. 中国水稻科学, 2018, 32(6): 549-556. |
Feng B, Sun Y F, Ai H, Liu X L, Yang J, Liu L, Gao F Y, Xu G H, Sun S B.Overexpression of sucrose transporter OsSUT1 affects rice morphology and physiology. Chinese Journal of Rice Science, 2018, 32(6): 549-556. (in Chinese with English abstract) | |
[6] | Richardson A E, Barea J M, McNeill A M. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant & Soil, 2009, 321(2): 305-339. |
[7] | Ai P H, Sun S B, Zhao J N, Fan X R, Xin W J, Guo Q, Yu L, Shen Q R, Wu P, Miller A J, Xu G H.Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. Plant Journal, 2009, 57(5): 798-809. |
[8] | Vance C P, Uhde-Stone C, Allan D L.Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157: 423-447. |
[9] | Dissanayaka D M S B, William C P, Hans L, Siebers M, Marambe B, Wasaki J. Molecular mechanisms underpinning phosphorus-use efficiency in rice[J]. Plant Cell and Environment, 2018, 10: 1111-1158. |
[10] | Jeong K, Baten A, Waters D L E, Pantoja O, Julia C C, Wissuwa M, Heuer S, Kretzschmar T, Rose T J. Phosphorus remobilization from rice flag leaves during grain filling: An RNA-seq study[J]. Plant Biotechnology Journal, 2017, 15: 15-26. |
[11] | Tawaraya K, Honda S, Cheng W, Chuba M, Okazaki Y, Saito K, Oikawa A, Maruyama H, Wasaki J, Waqatsuma T.Ancient rice cultivar extensively replaces phospholipids with non-phosphorus glycolipid under phosphorus deficiency[J/OL].Plant Physiology, 2018, doi:10.1111/ppl.12699. |
[12] | Nakamura Y.Phosphate starvation and membrane lipid remodeling in seed plants[J]. Progress in Lipid Research, 2013, 52: 43-50. |
[13] | Okazaki Y, Otsuki H, Narisawa T.A new class of plant lipid is essential for protection against phosphorus depletion[J]. Nature Communication, 2013, 4: 1510. |
[14] | Mehra P, Giri J.Rice and chickpea GDPDs are preferentially influenced by low phosphate and CaGDPD1 encodes an active glycerophosphodiester phosphodiesterase enzyme[J]. Plant Cell Reports, 2016, 35: 1699-1717. |
[15] | Sanda S, Leustek T, Theisen M J, Garavito R M, Benning C.Recombinant Arabidopsi SQD1 converts UDP-glucose and sulfite to the sulfolipid head group uprecursor UDP-sulfoquinovose in vitro[J]. Journal of Biological Chemistry, 2001, 276: 3941-3946. |
[16] | Yu B, Xu C, Benning C.Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 5732-5737. |
[17] | Zhan X Q, Shen Q W, Wang X M, Hong Y Y.The sulfoquinovosyltransferase-like enzyme SQD2.2 is involved in flavonoid glycosylation, regulating sugar metabolism and seed setting in rice[J]. Scientific Report, 2017, 7(1): 4685-4692. |
[18] | 孙雅菲. 缺磷响应基因OsSQD1水稻生长发育和磷素吸收和利用中的功能研究[D]. 南京: 南京农业大学, 2018. |
Sun Y F.Functional analysis of phosphate starvation response gene OsSQD1 on growth, phosphate uptake and utilization in rice[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[19] | Doerner P.Phosphate starvation signaling: A threesome controls systemic Pi homeostasis[J]. Current Opinion in Plant Biology, 2008, 11: 536-540. |
[20] | Lynch J P.Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2007, 156: 1041-1049. |
[21] | Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P.OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146: 1673-1686. |
[22] | Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller A.Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. Plant Journal, 2008, 57: 798-809. |
[23] | Dai X, Wang Y, Yang A, Zhang W H.OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice.Plant Physiology, 2012, 159(1): 169-183. |
[24] | Frentzen M.Phosphatidylglycerol and sulfoquinovo- syldiacylglycerol: Anionic membrane lipids and phosphate regulation[J]. Current Opinion in Plant Biology, 2004, 7: 270-276. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||