Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (1): 37-45.DOI: 10.16819/j.1001-7216.2020.9034
• Research Papers • Previous Articles Next Articles
Lei PAN1,2, Lihua WANG2, Feng ZHU3, Yangchun HAN2, Pei WANG2, Jichao FANG1,2,4,*()
Received:
2019-03-27
Revised:
2019-06-14
Online:
2020-01-10
Published:
2020-01-10
Contact:
Jichao FANG
About author:
About author:#These authors contributed equally to this work
潘磊1,2, 王利华2, 朱凤3, 韩阳春2, 王培2, 方继朝1,2,4,*()
通讯作者:
方继朝
作者简介:
作者简介:#共同第一作者
基金资助:
CLC Number:
Lei PAN, Lihua WANG, Feng ZHU, Yangchun HAN, Pei WANG, Jichao FANG. Expression Profiles and Functions of Small Heat Shock Proteins in Nilaparvata lugens[J]. Chinese Journal OF Rice Science, 2020, 34(1): 37-45.
潘磊, 王利华, 朱凤, 韩阳春, 王培, 方继朝. 褐飞虱小分子量热激蛋白基因表达特性和功能[J]. 中国水稻科学, 2020, 34(1): 37-45.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9034
用途 Usage | 基因 Gene | 上游引物序列 Forward primer (5′-3′) | 下游引物序列 Reverse primer(5′-3′) |
---|---|---|---|
实时荧光定量PCR qPCR | NlHsp20.9 | AGCACGGCTTCATCTCTC | CCTCTCGCCTTTGGTTTC |
NlHsp21.6 | GTCCTCCAGTATTCCGTTT | TTGTCCTGTTGTTCTTCGT | |
NlHsp21.9 | TGTTAGCCGCTCCACTCCATT | CCGTGATTGTCCTTGCGTTCT | |
NlHsp22.4 | TTTGGCGATTTCAGCGTTAT | CCACTGCCTCCTACATTCTT | |
NlHsp23.1 | GTTTACTCGTCGCTACACC | CTCCATCTTCTCCTGCTT | |
NlHsp28.7 | GAAATACAGATAAGCGGCACC | GAATACCGTCCTTGAAGTTGG | |
Ref | TGTCTCTCACACAGTCCCCATCT | GTCAAGTCACGACCAGCCAAG | |
原核表达 Procaryotic expression | NlHsp20.9 | ATGTCGCTAGTTCCGCTGCTGT | TTACTGTCCTTCTTTTTCAGCTGGC |
NlHsp21.6 | ATGTCGTTGTTTCCGTAC | TTAGGCCTTTATCTTCTCC | |
NlHsp21.9 | ATGTCTCTGCTACCATATCTTTTTG | TCATGTTTCCATTTTATCCTGG | |
NlHsp22.4 | ATGGCTGAGAGCGGCGTGAGAC | TTATGTGTGATTGGAATCAGTTTTT | |
NlHsp23.1 | ATGTCTCTGCTACCGATTA | TTAGGTCTCCATCTTCTCC | |
NlHsp28.7 | ATGAACTCTTGCCGAAAATTG | TCAATTGATAACAATGCGGC |
Table 1 Primer sequences for quantitative real-time PCR and recombinant expression in E. coli.
用途 Usage | 基因 Gene | 上游引物序列 Forward primer (5′-3′) | 下游引物序列 Reverse primer(5′-3′) |
---|---|---|---|
实时荧光定量PCR qPCR | NlHsp20.9 | AGCACGGCTTCATCTCTC | CCTCTCGCCTTTGGTTTC |
NlHsp21.6 | GTCCTCCAGTATTCCGTTT | TTGTCCTGTTGTTCTTCGT | |
NlHsp21.9 | TGTTAGCCGCTCCACTCCATT | CCGTGATTGTCCTTGCGTTCT | |
NlHsp22.4 | TTTGGCGATTTCAGCGTTAT | CCACTGCCTCCTACATTCTT | |
NlHsp23.1 | GTTTACTCGTCGCTACACC | CTCCATCTTCTCCTGCTT | |
NlHsp28.7 | GAAATACAGATAAGCGGCACC | GAATACCGTCCTTGAAGTTGG | |
Ref | TGTCTCTCACACAGTCCCCATCT | GTCAAGTCACGACCAGCCAAG | |
原核表达 Procaryotic expression | NlHsp20.9 | ATGTCGCTAGTTCCGCTGCTGT | TTACTGTCCTTCTTTTTCAGCTGGC |
NlHsp21.6 | ATGTCGTTGTTTCCGTAC | TTAGGCCTTTATCTTCTCC | |
NlHsp21.9 | ATGTCTCTGCTACCATATCTTTTTG | TCATGTTTCCATTTTATCCTGG | |
NlHsp22.4 | ATGGCTGAGAGCGGCGTGAGAC | TTATGTGTGATTGGAATCAGTTTTT | |
NlHsp23.1 | ATGTCTCTGCTACCGATTA | TTAGGTCTCCATCTTCTCC | |
NlHsp28.7 | ATGAACTCTTGCCGAAAATTG | TCAATTGATAACAATGCGGC |
基因 Gene | 开放阅读框 长度 ORF length/bp | 预测蛋白质大小 Protein length/aa | 功能注释 Annotation | 理论等电点 Theoretical isoelectric point | 理论分子量 Theoretical molecular weight/kDa | Pfam编号 Pfam number | |||
---|---|---|---|---|---|---|---|---|---|
NlHsp20.9 | 561 | 186 | 致死蛋白Protein lethal(2) essential for life | 5.96 | 20.9 | PF00011 | |||
NlHsp21.6 | 531 | 176 | α-晶体蛋白α-crystallin A chain-like | 5.77 | 21.6 | PF00011 | |||
NlHsp21.9 | 570 | 189 | α-晶体蛋白α-crystallin A chain-like | 6.32 | 21.9 | PF00011 | |||
NlHsp22.4 | 570 | 189 | α-晶体蛋白α-crystallin A chain-like | 5.01 | 22.4 | PF00011 | |||
NlHsp23.1 | 588 | 195 | 小分子热激蛋白22.0 Small heat shock protein 22.0 | 5.74 | 23.1 | PF00011 | |||
NlHsp28.7 | 735 | 244 | 30 kDa小分子热激蛋白30 kDa small heat shock protein | 7.74 | 28.7 | PF00011 |
Table 2 Deduced protein sequences characteristics of NlHsps from N. lugens.
基因 Gene | 开放阅读框 长度 ORF length/bp | 预测蛋白质大小 Protein length/aa | 功能注释 Annotation | 理论等电点 Theoretical isoelectric point | 理论分子量 Theoretical molecular weight/kDa | Pfam编号 Pfam number | |||
---|---|---|---|---|---|---|---|---|---|
NlHsp20.9 | 561 | 186 | 致死蛋白Protein lethal(2) essential for life | 5.96 | 20.9 | PF00011 | |||
NlHsp21.6 | 531 | 176 | α-晶体蛋白α-crystallin A chain-like | 5.77 | 21.6 | PF00011 | |||
NlHsp21.9 | 570 | 189 | α-晶体蛋白α-crystallin A chain-like | 6.32 | 21.9 | PF00011 | |||
NlHsp22.4 | 570 | 189 | α-晶体蛋白α-crystallin A chain-like | 5.01 | 22.4 | PF00011 | |||
NlHsp23.1 | 588 | 195 | 小分子热激蛋白22.0 Small heat shock protein 22.0 | 5.74 | 23.1 | PF00011 | |||
NlHsp28.7 | 735 | 244 | 30 kDa小分子热激蛋白30 kDa small heat shock protein | 7.74 | 28.7 | PF00011 |
蛋白质 Protein | NlHSP20.9 | NlHSP21.6 | NlHSP21.9 | NlHSP22.4 | NlHSP23.1 | NlHSP28.7 |
---|---|---|---|---|---|---|
NlHSP20.9 | 100.0 | |||||
NlHSP21.6 | 33.5 | 100.0 | ||||
NlHSP21.9 | 42.4 | 49.4 | 100.0 | |||
NlHSP22.4 | 24.1 | 17.2 | 19.3 | 100.0 | ||
NlHSP23.1 | 39.1 | 50.0 | 68.2 | 20.5 | 100.0 | |
NlHSP28.7 | 6.9 | 9.8 | 9.8 | 8.2 | 10.6 | 100.0 |
Table 3 Identities of six NlHSPs from N. lugens.
蛋白质 Protein | NlHSP20.9 | NlHSP21.6 | NlHSP21.9 | NlHSP22.4 | NlHSP23.1 | NlHSP28.7 |
---|---|---|---|---|---|---|
NlHSP20.9 | 100.0 | |||||
NlHSP21.6 | 33.5 | 100.0 | ||||
NlHSP21.9 | 42.4 | 49.4 | 100.0 | |||
NlHSP22.4 | 24.1 | 17.2 | 19.3 | 100.0 | ||
NlHSP23.1 | 39.1 | 50.0 | 68.2 | 20.5 | 100.0 | |
NlHSP28.7 | 6.9 | 9.8 | 9.8 | 8.2 | 10.6 | 100.0 |
Fig. 1. Molecular Phylogenetic tree of ORF DNA sequences of sHsps from Nilaparvata lugens, Drosophila melanogaster and Homo sapiens by Neighbor-Joining method. The genes with HSPB starts from Homo sapiens, the genes prefixed with Dm from Drosophila melanogaster, and prefixed with Nl from N. lugens.
Fig. 2. Relative expression level of NlHsps in different stage of N. lugens. The same lowercase letters above the bars indicate no significant difference among the materials at the 0.05 level.
Fig. 3. The diagram showed the relative expression level of sHsps of N. lugens after heat treatment. A, Relative expression level of sHsps of female; B, Relative expression level of sHsps of the 3rd larvae. The same lowercase letters above the bars indicate no significant difference among the treatments at the 0.05 level.
Fig. 4. Relative expression levels of sHsps of N. lugens after cold treatment. A, Relative expression level of sHsps of female after cold shock; B, Relative expression level of sHsps of the 3rd larvae after cold shock. The same lowercase letters above the bars indicate no significant difference among the treatments at the 0.05 level.
Fig. 5. Survival of recombinant BL21(DE3) transformed sHsps after heat treatment. The same lowercase letters above the bars indicate no significant difference among the materials at the 0.05 level.
[1] | Kong L H, Cheng J, Escalada M M.Rice Planthoppers[M]. Hangzhou: Zhejiang University Press, 2015: 1-34. |
[2] | 石保坤, 胡朝兴, 黄建利, 候茂林. 温度对褐飞虱发育、存活和产卵影响的关系模型[J]. 生态学报, 2014, 34(20): 5868-5874. |
Shi B K, Hu C X, Huang J L, Hou M L.The relationship model of temperature on the development, survival and spawning of brown planthopper[J]. Acta Ecologica Sinica, 2014, 34(20): 5868-5874. (in Chinese with English abstract) | |
[3] | Jiranan P, Jeremy P, Jeff B.Heat stress impedes development and lowers fecundity of the brown planthopper Nilaparvata lugens (Stål)[J]. PLoS ONE, 2012, 7(10): e47413. |
[4] | 李干金, 徐显浩, 张海亮, 朱敏, 崔旭红. 短时高温暴露对褐飞虱存活和生殖特性的影响[J]. 中国农业科学, 2015, 48(9): 1747-1755. |
Li G J, Xu X H, Zhang H L, Zhu M, Cui X H.Effects of short-term high temperature exposure on the survival and reproductive characteristics of brown planthopper[J]. Scientia Agricultura Sinica, 2015, 48(9): 1747-1755. (in Chinese with English abstract) | |
[5] | 张焓娇, 杨煌朕, 李保玲. 低温胁迫对褐飞虱种群发生的影响[J]. 安徽农业科学, 2018, 46(31): 146-148, 153. |
Zhang X J, Yang H B, Li B L.Effects of low temperature stress on the population of brown planthopper, Nilaparvata lugens[J]. Journal of Anhui Agricultural Sciences, 2018, 46(31): 146-148, 153. (in Chinese with English abstract) | |
[6] | Long Y, Hu C, Shi B, Yang X, Hou M.Effects of temperature on mate location in the planthopper, Nilaparvata lugens (Homoptera: Delphacidae)[J]. Environmental Entomology, 2012, 41(5): 1231-1238. |
[7] | 夏佳音, 张耀洲. 小热休克蛋白的结构和功能[J]. 中国生物化学与分子生物学报, 2013, 23(11): 911-915. |
Xia J Y, Zhang Y Z.Structure and function of small heat shock proteins[J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 23(11): 911-915. (in Chinese with English abstract) | |
[8] | Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J.Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae[J]. EMBO Journal, 2004, 23(3): 638-649. |
[9] | Friedrich K L, Giese K C, Buan N R, Vierling E.Interactions between small heat shock protein subunits and substrate in small heat shock protein substrate complexes[J]. Journal of Biological Chemistry, 2004, 279(2): 1080-1089. |
[10] | Basha E, Lee G J, Breci L A, Hausrath A C, Buan N, Giese K C, Vierling E.The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions[J]. Journal of Biological Chemistry, 2004, 279(9): 7566-7575. |
[11] | Narberhaus F.Alpha-crystalin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network[J]. Microbiology and Molecular Biology Reviews, 2002, 66(1): 64-93. |
[12] | Vgh L, Török Z, Balogh G, Glatz A, Piotto S, Horváth I.Membrane regulated stress response: A theoretical and practical approach[J]. Advances in Experimental Medicine and Biology, 2007, 594: 114-131. |
[13] | Kedersha N L, Gupta M, Li W, Miller I, Anderson P.RNA binding proteins TIA-1 and TIAR link the phophorylation of eIF-2 alpha to the assembly of mammalian stress granules[J]. Journal of Cell Biology, 1999, 147(7): 1431-1442. |
[14] | Duverger O, Paslaru L, Morange M.HSP25 is involved in two steps of the differentiation of PAM212 keratinocytes[J]. Journal of Biological Chemistry, 2004, 279(11): 10252-10260. |
[15] | Lu K, Chen X, Liu W, Zhou Q.Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål)[J]. Comparative Biochemistry and Physiology: Part A, 2016, 199: 47-53. |
[16] | Lu K, Chen X, Liu W, Zhou Q.Identification of a heat shock protein 90 gene involved in resistance to temperature stress in two wing-morphs of Nilaparvata lugens (Stål)[J]. Comparative Biochemistry and Physiology: Part A, 2016, 197: 1-8. |
[17] | Huang H J, Xue J, Zhuo J C, Cheng R L, Xu H J, Zhang C X.Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species[J]. Molecular Ecology, 2017, 26(10): 2726-2737. |
[18] | Chen X E, Zhang Y L.Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses[J]. Cell Stress&Chaperones, 2015, 20(1): 23-35. |
[19] | Zhang Y Y, Liu Y L, Guo X L, Li Y L, Gao H R, Guo X Q, Xu B H. sHsp22.6, an intronless small heat shock protein gene, is involved in stress defense and development in Apis cerana[J]. Insect Biochemistry and Molecular Biology, 2014, 53: 1-12. |
[20] | Wang L H, Zhang Y L, Pan L, Hang Y C, Niu H T, Shan D, Fang J C.Induced expression of small heat shock proteins is associated with thermotolerance in female Laodelphax striatellus planthoppers[J]. Cell Stress& Chaperones, 2019, 24(1): 115-123. |
[21] | 单丹, 王利华, 张月亮, 韩阳春, 牛洪涛, 潘磊, 方继朝. 褐飞虱热激蛋白70在不同温度胁迫下的差异表达特性研究. 中国水稻科学, 2017, 31(5): 533-541. |
Shan D, Wang L H, Zhang Y L, Hang Y C, Niu H T, Pan L, Fang J C.Differential expression characteristics of heat shock protein 70 from brown planthopper, Nilaparvata lugens under different temperature stress[J]. Chinese Journal of Rice Sciences, 2017, 31(5): 533-541. (in Chinese with English abstract) | |
[22] | Jiang J J, Huang L F, Chen H S, Yang L.Identification of reference genes and expression analysis of heat shock protein genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae), after exposure to heat stress[J]. Acta Entomology Sinica, 2015, 58(5): 479-486. |
[23] | Crack J A, Mansour M, Sun Y, MacRae T H. Functional analysis of a small heat shock/α-crystallin protein from Artemia franciscana[J]. European Journal of Biochemistry, 2002, 269(3): 933-942. |
[24] | Livak K J, Schmittgen T D.Analysis of relative geneexpression data using real-time quantitative PCR and the 2[-Delta Delta C (T)] method[J]. Methods, 2001, 25(4): 402-408. |
[25] | Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J.Independent evolution of the core domain and its flanking sequences in small heat shock proteins[J]. Faseb Journal, 2010, 24(10): 3633-3642. |
[26] | Dou W, Tian Y, Liu H, Shi Y, Smagghe G, Wang J J.Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth[J]. Comparative Biochemistry and Physiology: Part B, 2017, 11: 8-16. |
[27] | Quan G X, Duan J, Fick W, Kyei-Poku G, Candau J N.Expression profiles of 14 small heat shock protein (sHSP) transcripts during larval diapause and under thermal stress in the spruce budworm, Choristoneura fumiferana (L.)[J]. Cell Stress&Chaper, 2018, 23(6): 1247-1256. |
[28] | Lu M X, Hua J, Cui Y D, Du Y Z.Five small heat shock protein genes from Chilo suppressalis: Characteristics of gene, genomic organization, structural analysis, and transcription profiles[J]. Cell Stress&Chaper, 2014, 19: 91-104. |
[29] | Daugaard M, Rohde M, Jäättelä M.The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions[J]. FEBS Letters, 2007, 581: 3702-3710. |
[30] | Jagla T, Dubińska-Magiera M, Poovathumkadavil P, Daczewska M, Jagla K.Developmental expression and functions of the small heat shock proteins in Drosophila[J]. International Journal of Molecular Sciences, 2018, 19: 3441. |
[1] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[2] | HU Li, YANG Fanmin, CHEN Weilan, YUAN Hua. Research Progress in Biological Functions of SPL Family Transcription Factors in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 223-232. |
[3] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
[4] | YI Xiaoxuan, LIU Weiqi, ZENG Gai, LUO Lihua, XIAO Yinghui. Effect of High Temperature Stress at Grain Filling Stage on Early indica Rice Quality Traits [J]. Chinese Journal OF Rice Science, 2024, 38(1): 72-80. |
[5] | WANG Jun, ZHOU Jing, TAO Yajun, LI Wenqi, ZHU Jianping, FAN Fangjun, WANG Fangquan, XU Yang, CHEN Zhihui, JIANG Yanjie, LI Xia, YANG Jie. Development of HRM-based Functional Marker for Gelatinization Temperature Gene ALK in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(1): 106-110. |
[6] | QI Panpan, GUO Liuming, LI Jing, LÜ Mingfang, YUAN Zhengjie, ZHANG Hengmu. cDNA Cloning and Molecular Characterization of OsTAF12b Gene in Oryza sativa [J]. Chinese Journal OF Rice Science, 2023, 37(6): 577-586. |
[7] | HUANG Qina, XU Youxiang, LIN Guanghao, DANG Hongyang, ZHENG Zhenquan, ZHANG Yan, WANG Han, SHAO Guosheng, YIN Xianyuan. Effects of Silicon on Antioxidant Enzyme System and Expression Levels of Genes Related to Cd2+ Uptake and Transportation in Rice Seedlings Under Cadmium Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 486-496. |
[8] | WANG Shengyong, CHEN Yuhang, CHEN Huili, HUANG Yujie, ZHANG Xiaotian, DING Shuangcheng, WANG Hongwei. Effects of High Temperature on Phenylpropane Metabolism and Downstream Branch Metabolic Pathways in Rice Meiosis [J]. Chinese Journal OF Rice Science, 2023, 37(4): 368-378. |
[9] | DUAN Min, XIE Liujie, GAO Xiuying, TANG Haijuan, HUANG Shanjun, PAN Xiaobiao. Creation of Thermo-sensitive Genic Male Sterile Rice Lines with Wide Compatibility Based on CRISPR/Cas9 Technology [J]. Chinese Journal OF Rice Science, 2023, 37(3): 233-243. |
[10] | LIN Dan, JIANG Min, MIAO Bo, GUO Meng, SHI Chunlin. Research on Simulation Model of High Temperature Stress on Rice and Its Application in Fujian Province [J]. Chinese Journal OF Rice Science, 2023, 37(3): 307-320. |
[11] | LUO Ju, YANG Suwen, BEI Wenyong, YU Junwei, TANG Jian, LIU Shuhua. Direct Multiplex TaqMan qPCR Assay for Rapid Detection of Three Sibling Species from Nilaparvata Distant [J]. Chinese Journal OF Rice Science, 2023, 37(3): 329-336. |
[12] | CHEN Liming, YANG Taotao, XIONG Ruoyu, TAN Xueming, HUANG Shang, ZENG Yongjun, PAN Xiaohua, SHI Qinghua, ZHANG Jun, ZENG Yanhua. Effect of Free-air Temperature Increasing on Activities of Enzymes Involved in Starch Synthesis and Accumulation of Double-cropping indica Rice [J]. Chinese Journal OF Rice Science, 2023, 37(2): 166-177. |
[13] | CAO Yuexuan, YAN Huijing, WANG Kejian, LIU Chaolei. Rapid Identification of Rice Clonal Seeds Generated by Synthetic Apomixis at Seedling Stage [J]. Chinese Journal OF Rice Science, 2022, 36(6): 656-662. |
[14] | CHEN Hongyang, JIA Yan, ZHAO Hongwei, QU Zhaojun, WANG Xinpeng, DUAN Yuyang, YANG Rui, BAI Xu, WANG Changcheng. Effects of Low Temperature Stress During Grain Filling on Starch Formation and Accumulation of Superior and Inferior Grains in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(5): 487-504. |
[15] | HUANG Qina, JIANG Su, WANG Limin, ZHANG Yan, YU Linfei, LI Chunfu, DING Liqun, SHAO Guosheng. Effects of Moisture Content on Root Vigor and the Expression of Aquaporin-related Genes in Rice Seedlings Under Low Temperature Stress [J]. Chinese Journal OF Rice Science, 2022, 36(4): 367-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||