Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (1): 17-27.DOI: 10.16819/j.1001-7216.2020.9052
• Research Papers • Previous Articles Next Articles
Xiaolei WANG, Yang LIU, Xiaotang SUN, Linjuan OUYANG, Jinlong PAN, Xiaosong PENG, Xiaorong CHEN, Xiaopeng HE, Junru FU, Jianmin BIAN, Lifang HU, Jie XU, Haohua HE*(), Changlan ZHU*()
Received:
2019-04-30
Revised:
2019-06-13
Online:
2020-01-10
Published:
2020-01-10
Contact:
Haohua HE, Changlan ZHU
About author:
About author:#These authors contributed equally to this work
王小雷, 刘杨, 孙晓棠, 欧阳林娟, 潘锦龙, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华*(), 朱昌兰*()
通讯作者:
贺浩华,朱昌兰
作者简介:
作者简介:#共同第一作者
基金资助:
CLC Number:
Xiaolei WANG, Yang LIU, Xiaotang SUN, Linjuan OUYANG, Jinlong PAN, Xiaosong PENG, Xiaorong CHEN, Xiaopeng HE, Junru FU, Jianmin BIAN, Lifang HU, Jie XU, Haohua HE, Changlan ZHU. Identification and Stability Analysis of QTL for Grain Quality Traits Under Multiple Environments in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(1): 17-27.
王小雷, 刘杨, 孙晓棠, 欧阳林娟, 潘锦龙, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 朱昌兰. 不同环境下稻米品质性状QTL的检测及稳定性分析[J]. 中国水稻科学, 2020, 34(1): 17-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9052
性状 Trait | 环境 E | 亲本 Parent | CSSL群体 CSSL population | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
昌恢121 Changhui 121 | 越光 Koshihikari | 变异范围 Range | 平均±标准差 Mean±SD | 峰度 Kurtosis | 偏度 Skewness | ||||||||
垩白粒率PGWC/% | E1 | 4.5±0.5 | 5.0±0.0 | 4.0~42.0 | 14.9±9.6 | 1.4 | 1.4 | ||||||
E2 | 2.5±0.5 | 3.0±1.0 | 0.5~49.0 | 6.2±8.1 | 13.8 | 3.5 | |||||||
E3 | 3.5±1.5 | 33.0±2.0 | 2.0~56.0 | 16.0±9.8 | 3.4 | 1.3 | |||||||
E4 | 7.0±0.5 | 6.0±1.0 | 4.0~41.0 | 15.8±7.8 | 1.2 | 1.1 | |||||||
胶稠度 GC/mm | E1 | 30.0±2.0 | 51.5±0.5 | 24.5~66.0 | 36.0±9.8 | 2.4 | 1.7 | ||||||
E2 | 30.5±0.5 | 56.5±0.5 | 30.5~92.5 | 43.5±15.9 | 2.4 | 1.7 | |||||||
E3 | 55.5±1.5 | 82.5±1.5 | 34.0~87.5 | 57.4±13.3 | -0.7 | 0.3 | |||||||
E4 | 32.5±1.5 | 67.5±1.5 | 31.5~100.0 | 59.3±19.0 | -0.6 | 0.4 | |||||||
蛋白质含量PC/% | E1 | 8.6±0.2 | 8.11±0.1 | 5.9~10.6 | 7.7±0.8 | 1.6 | 0.8 | ||||||
E2 | 8.9±0.1 | 8.98±0.1 | 6.4~10.1 | 8.5±0.8 | 0.8 | 0.7 | |||||||
E3 | 10.2±0.0 | 9.04±0.0 | 70~11.3 | 8.6±1.0 | 0.1 | 0.6 | |||||||
E4 | 7.1±0.0 | 7.44±0.0 | 5.6~7.9 | 6.5±0.5 | 0.2 | 0.7 | |||||||
最高黏度PKV/cP | E1 | 4936.0±91.0 | 5718.0±29.0 | 3850.5~5922.0 | 4962.1±434.3 | 0.6 | -0.3 | ||||||
E2 | 4972.0±24.0 | 4557.5±77.0 | 3193.5~6027.0 | 4387.6±536.1 | 0.7 | 0.7 | |||||||
E3 | 3900.0±22.0 | 4448.0±73.0 | 2567.0~4949.5 | 4152.1±336.9 | 8.0 | -1.6 | |||||||
E4 | 4878.0±82.0 | 4944.5±48.5 | 4015.0~5194.5 | 4462.5±228.8 | 0.7 | 0.6 | |||||||
热浆黏度HPV/cP | E1 | 3412.5±100.5 | 2321.5±56.5 | 2163.5~4098.5 | 3298.6±456.0 | 0.3 | -1.1 | ||||||
E2 | 4136.5±54.5 | 2965.5±50.5 | 2637.5~4645.0 | 3485.9±431.3 | 0.1 | 0.2 | |||||||
E3 | 2784.0±86.0 | 1948.0±52.0 | 1592.5~3709.5 | 2807.3±428.7 | 1.6 | -1.2 | |||||||
E4 | 3404.5±48.5 | 2818.5±55.5 | 2029.0~3589.0 | 3097.8±340.4 | 2.2 | -1.5 | |||||||
崩解值BDV/cP | E1 | 1523.5±103.5 | 3396.5±98.5 | 1037.0~3713.5 | 1663.5±620.4 | 3.5 | 2.1 | ||||||
E2 | 835.5±30.5 | 1592.0±27.0 | 298.0~3000.0 | 901.7±490.8 | 5.5 | 2.2 | |||||||
E3 | 1116.0±60.7 | 2500.0±17.0 | 700.5~2556.0 | 1344.8±354.2 | 2.7 | 1.4 | |||||||
E4 | 1473.5±75.5 | 2126.0±81.0 | 903.0~3165.5 | 1364.8±436.2 | 6.2 | 2.4 | |||||||
冷浆黏度CPV/cP | E1 | 6664.0±34.5 | 3723.5±18.5 | 3351.0~7426.0 | 6008.0±1028.7 | 1.4 | -1.5 | ||||||
E2 | 7332.5±4.5 | 4775.5±40.5 | 3963.0~8000.0 | 6459.8±951.6 | 0.4 | -1.0 | |||||||
E3 | 5643.5±47.5 | 2901.5±6.5 | 2790.5~7454.5 | 5350.3±870.2 | 2.7 | -1.5 | |||||||
E4 | 6222.0±35.0 | 4224.5±37.5 | 3254.0~6477.5 | 5641.7±773.1 | 3.1 | -2.0 | |||||||
消减值SBV/cP | E1 | 1728.0±36.0 | -1994.5±97.5 | -2505.0~2160.5 | 1045.9±1177.2 | 3.1 | -2.1 | ||||||
E2 | 2360.5±28.5 | 218.0±37.0 | -1765.0~3005.5 | 2072.3±982.7 | 4.6 | -2.3 | |||||||
E3 | 1743.5±31.5 | -1546.5±12.5 | -1434.5~2505.0 | 1198.3±760.4 | 3.9 | -2.1 | |||||||
E4 | 1344.0±42.0 | -720.0±31.0 | -1940.5~2189.5 | 1179.2±865.0 | 4.6 | -2.3 | |||||||
回复值CSV/cP | E1 | 3251.5±125.5 | 1402.0±20.0 | 1187.5~3546.5 | 2709.4±602.8 | 1.9 | -1.7 | ||||||
E2 | 3196.0±59.0 | 1810.0±10.0 | 1235.0~3757.5 | 2973.9±584.8 | 1.5 | -1.5 | |||||||
E3 | 2859.5±27.5 | 953.5±5.5 | 1121.5~3745.0 | 2543.1±545.3 | 1.0 | -1.1 | |||||||
E4 | 2817.5±55.5 | 1406.0±28.0 | 1138.5~3460.0 | 2544.0±520.0 | 1.2 | -1.2 | |||||||
成糊温度PaT/℃ | E1 | 72.4±0.3 | 74.6±0.7 | 68.1~76.0 | 71.8±1.5 | 1.3 | 0.3 | ||||||
E2 | 78.4±0.8 | 80.7±0.1 | 74.1~87.0 | 81.1±3.3 | -0.6 | -0.6 | |||||||
E3 | 70.6±0.1 | 76.8±0.3 | 70.0~76.4 | 72.1±1.2 | 1.2 | 0.9 | |||||||
E4 | 72.1±0.1 | 73.7±0.3 | 70.9~74.8 | 72.1±1.5 | 1.6 | 1.1 | |||||||
成糊时间PeT/min | E1 | 5.9±0.1 | 5.7±0.1 | 5.5~6.2 | 5.9±0.1 | 1.4 | -1.0 | ||||||
E2 | 6.1±0.0 | 6.0±0.0 | 5.7~6.4 | 6.0±0.1 | 0.4 | 0.2 | |||||||
E3 | 6.0±0.1 | 5.7±0.3 | 5.7~6.7 | 6.0±0.2 | 0.3 | 0.6 | |||||||
E4 | 6.0±0.2 | 6.2±0.1 | 5.6~6.4 | 6.1±0.2 | -0.2 | -0.2 |
Table 1 Phenotypic performance of CSSLs population and its parents in 4 environments.
性状 Trait | 环境 E | 亲本 Parent | CSSL群体 CSSL population | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
昌恢121 Changhui 121 | 越光 Koshihikari | 变异范围 Range | 平均±标准差 Mean±SD | 峰度 Kurtosis | 偏度 Skewness | ||||||||
垩白粒率PGWC/% | E1 | 4.5±0.5 | 5.0±0.0 | 4.0~42.0 | 14.9±9.6 | 1.4 | 1.4 | ||||||
E2 | 2.5±0.5 | 3.0±1.0 | 0.5~49.0 | 6.2±8.1 | 13.8 | 3.5 | |||||||
E3 | 3.5±1.5 | 33.0±2.0 | 2.0~56.0 | 16.0±9.8 | 3.4 | 1.3 | |||||||
E4 | 7.0±0.5 | 6.0±1.0 | 4.0~41.0 | 15.8±7.8 | 1.2 | 1.1 | |||||||
胶稠度 GC/mm | E1 | 30.0±2.0 | 51.5±0.5 | 24.5~66.0 | 36.0±9.8 | 2.4 | 1.7 | ||||||
E2 | 30.5±0.5 | 56.5±0.5 | 30.5~92.5 | 43.5±15.9 | 2.4 | 1.7 | |||||||
E3 | 55.5±1.5 | 82.5±1.5 | 34.0~87.5 | 57.4±13.3 | -0.7 | 0.3 | |||||||
E4 | 32.5±1.5 | 67.5±1.5 | 31.5~100.0 | 59.3±19.0 | -0.6 | 0.4 | |||||||
蛋白质含量PC/% | E1 | 8.6±0.2 | 8.11±0.1 | 5.9~10.6 | 7.7±0.8 | 1.6 | 0.8 | ||||||
E2 | 8.9±0.1 | 8.98±0.1 | 6.4~10.1 | 8.5±0.8 | 0.8 | 0.7 | |||||||
E3 | 10.2±0.0 | 9.04±0.0 | 70~11.3 | 8.6±1.0 | 0.1 | 0.6 | |||||||
E4 | 7.1±0.0 | 7.44±0.0 | 5.6~7.9 | 6.5±0.5 | 0.2 | 0.7 | |||||||
最高黏度PKV/cP | E1 | 4936.0±91.0 | 5718.0±29.0 | 3850.5~5922.0 | 4962.1±434.3 | 0.6 | -0.3 | ||||||
E2 | 4972.0±24.0 | 4557.5±77.0 | 3193.5~6027.0 | 4387.6±536.1 | 0.7 | 0.7 | |||||||
E3 | 3900.0±22.0 | 4448.0±73.0 | 2567.0~4949.5 | 4152.1±336.9 | 8.0 | -1.6 | |||||||
E4 | 4878.0±82.0 | 4944.5±48.5 | 4015.0~5194.5 | 4462.5±228.8 | 0.7 | 0.6 | |||||||
热浆黏度HPV/cP | E1 | 3412.5±100.5 | 2321.5±56.5 | 2163.5~4098.5 | 3298.6±456.0 | 0.3 | -1.1 | ||||||
E2 | 4136.5±54.5 | 2965.5±50.5 | 2637.5~4645.0 | 3485.9±431.3 | 0.1 | 0.2 | |||||||
E3 | 2784.0±86.0 | 1948.0±52.0 | 1592.5~3709.5 | 2807.3±428.7 | 1.6 | -1.2 | |||||||
E4 | 3404.5±48.5 | 2818.5±55.5 | 2029.0~3589.0 | 3097.8±340.4 | 2.2 | -1.5 | |||||||
崩解值BDV/cP | E1 | 1523.5±103.5 | 3396.5±98.5 | 1037.0~3713.5 | 1663.5±620.4 | 3.5 | 2.1 | ||||||
E2 | 835.5±30.5 | 1592.0±27.0 | 298.0~3000.0 | 901.7±490.8 | 5.5 | 2.2 | |||||||
E3 | 1116.0±60.7 | 2500.0±17.0 | 700.5~2556.0 | 1344.8±354.2 | 2.7 | 1.4 | |||||||
E4 | 1473.5±75.5 | 2126.0±81.0 | 903.0~3165.5 | 1364.8±436.2 | 6.2 | 2.4 | |||||||
冷浆黏度CPV/cP | E1 | 6664.0±34.5 | 3723.5±18.5 | 3351.0~7426.0 | 6008.0±1028.7 | 1.4 | -1.5 | ||||||
E2 | 7332.5±4.5 | 4775.5±40.5 | 3963.0~8000.0 | 6459.8±951.6 | 0.4 | -1.0 | |||||||
E3 | 5643.5±47.5 | 2901.5±6.5 | 2790.5~7454.5 | 5350.3±870.2 | 2.7 | -1.5 | |||||||
E4 | 6222.0±35.0 | 4224.5±37.5 | 3254.0~6477.5 | 5641.7±773.1 | 3.1 | -2.0 | |||||||
消减值SBV/cP | E1 | 1728.0±36.0 | -1994.5±97.5 | -2505.0~2160.5 | 1045.9±1177.2 | 3.1 | -2.1 | ||||||
E2 | 2360.5±28.5 | 218.0±37.0 | -1765.0~3005.5 | 2072.3±982.7 | 4.6 | -2.3 | |||||||
E3 | 1743.5±31.5 | -1546.5±12.5 | -1434.5~2505.0 | 1198.3±760.4 | 3.9 | -2.1 | |||||||
E4 | 1344.0±42.0 | -720.0±31.0 | -1940.5~2189.5 | 1179.2±865.0 | 4.6 | -2.3 | |||||||
回复值CSV/cP | E1 | 3251.5±125.5 | 1402.0±20.0 | 1187.5~3546.5 | 2709.4±602.8 | 1.9 | -1.7 | ||||||
E2 | 3196.0±59.0 | 1810.0±10.0 | 1235.0~3757.5 | 2973.9±584.8 | 1.5 | -1.5 | |||||||
E3 | 2859.5±27.5 | 953.5±5.5 | 1121.5~3745.0 | 2543.1±545.3 | 1.0 | -1.1 | |||||||
E4 | 2817.5±55.5 | 1406.0±28.0 | 1138.5~3460.0 | 2544.0±520.0 | 1.2 | -1.2 | |||||||
成糊温度PaT/℃ | E1 | 72.4±0.3 | 74.6±0.7 | 68.1~76.0 | 71.8±1.5 | 1.3 | 0.3 | ||||||
E2 | 78.4±0.8 | 80.7±0.1 | 74.1~87.0 | 81.1±3.3 | -0.6 | -0.6 | |||||||
E3 | 70.6±0.1 | 76.8±0.3 | 70.0~76.4 | 72.1±1.2 | 1.2 | 0.9 | |||||||
E4 | 72.1±0.1 | 73.7±0.3 | 70.9~74.8 | 72.1±1.5 | 1.6 | 1.1 | |||||||
成糊时间PeT/min | E1 | 5.9±0.1 | 5.7±0.1 | 5.5~6.2 | 5.9±0.1 | 1.4 | -1.0 | ||||||
E2 | 6.1±0.0 | 6.0±0.0 | 5.7~6.4 | 6.0±0.1 | 0.4 | 0.2 | |||||||
E3 | 6.0±0.1 | 5.7±0.3 | 5.7~6.7 | 6.0±0.2 | 0.3 | 0.6 | |||||||
E4 | 6.0±0.2 | 6.2±0.1 | 5.6~6.4 | 6.1±0.2 | -0.2 | -0.2 |
性状Trait | 环境E | 性状Trait | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PGWC | GC | PC | PKV | HPV | BDV | CPV | SBV | CSV | PaT | |||
GC | E1 | 0.08 | ||||||||||
E2 | 0.11 | |||||||||||
E3 | 0.05 | |||||||||||
E4 | –0.14 | |||||||||||
PC | E1 | –0.08 | –0.13 | |||||||||
E2 | –0.31* | –0.00 | ||||||||||
E3 | –0.42** | –0.29* | ||||||||||
E4 | –0.18 | –0.05 | ||||||||||
PKV | E1 | –0.18 | 0.27* | –0.21 | ||||||||
E2 | 0.23 | 0.25 | –0.76** | |||||||||
E3 | 0.02 | 0.19 | –0.31* | |||||||||
E4 | –0.07 | 0.37** | –0.03 | |||||||||
HPV | E1 | –0.04 | –0.48** | –0.08 | 0.03 | |||||||
E2 | –0.23 | –0.48** | –0.46** | 0.50** | ||||||||
E3 | 0.25 | –0.27* | –0.28* | 0.55** | ||||||||
E4 | 0.16 | –0.35** | –0.08 | –0.14 | ||||||||
BDV | E1 | –0.09 | 0.54** | –0.09 | 0.68** | –0.71** | ||||||
E2 | 0.45** | 0.70** | –0.43** | 0.65** | –0.33* | |||||||
E3 | –0.27* | 0.48** | 0.04 | 0.26 | –0.66** | |||||||
E4 | –0.16 | 0.47** | 0.05 | 0.64** | –0.86** | |||||||
CPV | E1 | –0.04 | –0.50** | –0.05 | –0.16 | 0.96** | –0.82** | |||||
E2 | –0.34** | –0.62** | –0.33** | 0.22 | 0.91** | –0.56** | ||||||
E3 | 0.17 | –0.41** | –0.15 | 0.44** | 0.85** | –0.59** | ||||||
E4 | –0.03 | –0.47** | –0.05 | –0.28* | 0.84** | –0.80** | ||||||
SBV | E1 | 0.03 | –0.54** | 0.03 | –0.51** | 0.83** | –0.96** | 0.93** | ||||
E2 | –0.45** | –0.74** | 0.10 | –0.33** | 0.61** | –0.90** | 0.85** | |||||
E3 | 0.19 | –0.54** | –0.04 | 0.06 | 0.71** | –0.77** | 0.92** | |||||
E4 | –0.01 | –0.51** | –0.04 | –0.51** | 0.79** | –0.89** | 0.97** | |||||
CSV | E1 | –0.04 | –0.49** | –0.03 | –0.29* | 0.89** | –0.85** | 0.98** | 0.96** | |||
E2 | –0.38** | –0.65** | –0.19 | –0.01 | 0.75** | –0.67** | 0.95** | 0.93** | ||||
E3 | 0.08 | –0.43** | –0.03 | 0.26 | 0.55** | –0.41** | 0.91** | 0.90** | ||||
E4 | –0.15 | –0.46** | –0.03 | –0.32* | 0.60** | –0.63** | 0.94** | 0.92** | ||||
PaT | E1 | –0.18 | 0.16 | 0.48** | 0.16 | –0.54** | 0.51** | –0.57** | –0.55** | –0.56** | ||
E2 | –0.29* | –0.11 | 0.76** | –0.89** | –0.45** | –0.58** | –0.26* | 0.23 | –0.09 | |||
E3 | –0.05 | –0.18 | 0.27* | –0.42** | –0.40** | 0.09 | –0.43** | –0.30* | –0.36** | |||
E4 | –0.19 | –0.01 | 0.44** | –0.14 | –0.32** | 0.18 | –0.23 | –0.17 | –0.14 | |||
PeT | E1 | 0.18 | –0.37** | 0.14 | –0.38** | 0.67** | –0.76** | 0.66** | 0.71** | 0.61** | –0.30* | |
E2 | –0.18 | –0.51** | 0.48** | –0.44** | 0.21 | –0.67** | 0.24 | 0.47** | 0.24 | 0.49** | ||
E3 | 0.21 | –0.10 | –0.13 | –0.06 | 0.55** | –0.69** | 0.17 | 0.21 | –0.17 | 0.05 | ||
E4 | 0.37** | –0.18 | –0.04 | –0.32* | 0.64** | –0.67** | 0.23 | 0.29* | –0.07 | –0.05 |
Table 2 Coefficients of pairwise correlations among rice quality traits in the Changhui 121/Koshihikari CSSLs population.
性状Trait | 环境E | 性状Trait | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PGWC | GC | PC | PKV | HPV | BDV | CPV | SBV | CSV | PaT | |||
GC | E1 | 0.08 | ||||||||||
E2 | 0.11 | |||||||||||
E3 | 0.05 | |||||||||||
E4 | –0.14 | |||||||||||
PC | E1 | –0.08 | –0.13 | |||||||||
E2 | –0.31* | –0.00 | ||||||||||
E3 | –0.42** | –0.29* | ||||||||||
E4 | –0.18 | –0.05 | ||||||||||
PKV | E1 | –0.18 | 0.27* | –0.21 | ||||||||
E2 | 0.23 | 0.25 | –0.76** | |||||||||
E3 | 0.02 | 0.19 | –0.31* | |||||||||
E4 | –0.07 | 0.37** | –0.03 | |||||||||
HPV | E1 | –0.04 | –0.48** | –0.08 | 0.03 | |||||||
E2 | –0.23 | –0.48** | –0.46** | 0.50** | ||||||||
E3 | 0.25 | –0.27* | –0.28* | 0.55** | ||||||||
E4 | 0.16 | –0.35** | –0.08 | –0.14 | ||||||||
BDV | E1 | –0.09 | 0.54** | –0.09 | 0.68** | –0.71** | ||||||
E2 | 0.45** | 0.70** | –0.43** | 0.65** | –0.33* | |||||||
E3 | –0.27* | 0.48** | 0.04 | 0.26 | –0.66** | |||||||
E4 | –0.16 | 0.47** | 0.05 | 0.64** | –0.86** | |||||||
CPV | E1 | –0.04 | –0.50** | –0.05 | –0.16 | 0.96** | –0.82** | |||||
E2 | –0.34** | –0.62** | –0.33** | 0.22 | 0.91** | –0.56** | ||||||
E3 | 0.17 | –0.41** | –0.15 | 0.44** | 0.85** | –0.59** | ||||||
E4 | –0.03 | –0.47** | –0.05 | –0.28* | 0.84** | –0.80** | ||||||
SBV | E1 | 0.03 | –0.54** | 0.03 | –0.51** | 0.83** | –0.96** | 0.93** | ||||
E2 | –0.45** | –0.74** | 0.10 | –0.33** | 0.61** | –0.90** | 0.85** | |||||
E3 | 0.19 | –0.54** | –0.04 | 0.06 | 0.71** | –0.77** | 0.92** | |||||
E4 | –0.01 | –0.51** | –0.04 | –0.51** | 0.79** | –0.89** | 0.97** | |||||
CSV | E1 | –0.04 | –0.49** | –0.03 | –0.29* | 0.89** | –0.85** | 0.98** | 0.96** | |||
E2 | –0.38** | –0.65** | –0.19 | –0.01 | 0.75** | –0.67** | 0.95** | 0.93** | ||||
E3 | 0.08 | –0.43** | –0.03 | 0.26 | 0.55** | –0.41** | 0.91** | 0.90** | ||||
E4 | –0.15 | –0.46** | –0.03 | –0.32* | 0.60** | –0.63** | 0.94** | 0.92** | ||||
PaT | E1 | –0.18 | 0.16 | 0.48** | 0.16 | –0.54** | 0.51** | –0.57** | –0.55** | –0.56** | ||
E2 | –0.29* | –0.11 | 0.76** | –0.89** | –0.45** | –0.58** | –0.26* | 0.23 | –0.09 | |||
E3 | –0.05 | –0.18 | 0.27* | –0.42** | –0.40** | 0.09 | –0.43** | –0.30* | –0.36** | |||
E4 | –0.19 | –0.01 | 0.44** | –0.14 | –0.32** | 0.18 | –0.23 | –0.17 | –0.14 | |||
PeT | E1 | 0.18 | –0.37** | 0.14 | –0.38** | 0.67** | –0.76** | 0.66** | 0.71** | 0.61** | –0.30* | |
E2 | –0.18 | –0.51** | 0.48** | –0.44** | 0.21 | –0.67** | 0.24 | 0.47** | 0.24 | 0.49** | ||
E3 | 0.21 | –0.10 | –0.13 | –0.06 | 0.55** | –0.69** | 0.17 | 0.21 | –0.17 | 0.05 | ||
E4 | 0.37** | –0.18 | –0.04 | –0.32* | 0.64** | –0.67** | 0.23 | 0.29* | –0.07 | –0.05 |
位点 QTL | 区间 Marker interval | LOD值LOD value | 贡献率PVE/% | 加性效应Additive effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | ||
qPGWC1 | RM3143-RM1117 | 5.02 | 10.45 | 4.40 | 29.34 | 57.67 | 30.84 | 18.40 | 13.34 | 20.36 | |||
qPGWC2 | RM5529-RM7581 | 4.27 | 16.61 | 4.58 | |||||||||
qPGWC5 | RM3345-RM17954 | 2.93 | 10.99 | 8.89 | |||||||||
qPGWC6 | RM7088-RM7311 | 3.54 | 19.27 | 10.65 | |||||||||
qGC5 | RM3345-RM17954 | 6.54 | 34.67 | 15.72 | |||||||||
qGC6.1 | RM1369-RM510 | 6.76 | 5.64 | 41.02 | 25.07 | 15.78 | 13.60 | ||||||
qGC6.2 | RM510-RM1163 | 2.99 | 22.48 | 10.86 | |||||||||
qGC9 | STS-P0692F07- STS-OJ1001_G09 | 3.48 | 16.05 | 6.97 | |||||||||
qPC10.1 | RM6737-RM25923 | 2.71 | 19.04 | ﹣0.59 | |||||||||
qPC10.2 | RM25923-RM271 | 2.76 | 13.15 | 0.28 |
Table 3 QTL detected for PGWC, GC, PC in the CSSLs population.
位点 QTL | 区间 Marker interval | LOD值LOD value | 贡献率PVE/% | 加性效应Additive effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | ||
qPGWC1 | RM3143-RM1117 | 5.02 | 10.45 | 4.40 | 29.34 | 57.67 | 30.84 | 18.40 | 13.34 | 20.36 | |||
qPGWC2 | RM5529-RM7581 | 4.27 | 16.61 | 4.58 | |||||||||
qPGWC5 | RM3345-RM17954 | 2.93 | 10.99 | 8.89 | |||||||||
qPGWC6 | RM7088-RM7311 | 3.54 | 19.27 | 10.65 | |||||||||
qGC5 | RM3345-RM17954 | 6.54 | 34.67 | 15.72 | |||||||||
qGC6.1 | RM1369-RM510 | 6.76 | 5.64 | 41.02 | 25.07 | 15.78 | 13.60 | ||||||
qGC6.2 | RM510-RM1163 | 2.99 | 22.48 | 10.86 | |||||||||
qGC9 | STS-P0692F07- STS-OJ1001_G09 | 3.48 | 16.05 | 6.97 | |||||||||
qPC10.1 | RM6737-RM25923 | 2.71 | 19.04 | ﹣0.59 | |||||||||
qPC10.2 | RM25923-RM271 | 2.76 | 13.15 | 0.28 |
位点 QTL | 区间 Marker interval | LOD值LOD value | 贡献率PVE/% | ||||||
---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | ||
qPKV1 | RM6292-RM5362 | 3.08 | 10.44 | ||||||
qPKV3 | RM6297-RM1278 | 6.30 | 40.98 | ||||||
qPKV6.1 | RM1369-RM510 | 3.42 | 25.32 | ||||||
qPKV6.2 | RM510-RM1163 | 5.61 | 20.35 | ||||||
qPKV10 | RM6737-RM25923 | 4.19 | 22.55 | ||||||
qPKV11 | STS-OSJNBa0095P22-RM5766 | 3.05 | 15.69 | ||||||
qHPV3 | RM6297-RM1278 | 5.61 | 17.01 | ||||||
qHPV6 | RM1369-RM510 | 12.22 | 4.98 | 12.64 | 30.11 | 64.75 | 30.21 | 53.41 | 76.71 |
qHPV8 | RM6838-RM5767 | 2.79 | 3.21 | ||||||
qBDV3 | RM15887-RM15903 | 3.79 | 3.34 | ||||||
qBDV5 | RM3345-RM17954 | 3.72 | 14.25 | ||||||
qBDV6 | RM1369-RM510 | 25.94 | 4.98 | 11.39 | 35.00 | 89.05 | 32.21 | 61.47 | 77.94 |
qCPV3.1 | RM15887-RM15903 | 2.78 | 4.40 | ||||||
qCPV3.2 | RM6297-RM1278 | 11.11 | 13.98 | ||||||
qCPV6 | RM1369-RM510 | 20.80 | 10.46 | 22.26 | 45.45 | 80.40 | 50.81 | 60.34 | 90.23 |
qCPV8 | RM5556-RM6838 | 11.58 | 14.92 | ||||||
qSBV2 | RM5529-RM7581 | 2.88 | 5.12 | ||||||
qSBV3 | RM15887-RM15903 | 5.06 | 1.61 | ||||||
qSBV5 | RM3345-RM17954 | 3.54 | 6.45 | ||||||
qSBV6.1 | RM1369-RM510 | 33.68 | 19.23 | 22.89 | 56.05 | 94.34 | 70.67 | 85.28 | 90.49 |
qSBV6.2 | RM510-RM1163 | 5.81 | 1.89 | ||||||
qSBV8 | RM7049-RM7556 | 3.37 | 1.03 | ||||||
qCSV3 | RM15887-RM15903 | 3.23 | 3.72 | ||||||
qCSV5 | RM3476-RM3790 | 2.74 | 2.97 | ||||||
qCSV6 | RM1369-RM510 | 24.77 | 12.92 | 11.12 | 30.99 | 85.33 | 63.53 | 60.61 | 76.79 |
qPaT4 | RM3839-RM303 | 3.53 | 5.04 | ||||||
qPaT6.1 | RM1369-RM510 | 2.70 | 11.27 | 15.05 | 19.62 | ||||
qPaT6.2 | RM510-RM1163 | 4.63 | 32.63 | ||||||
qPaT10 | RM6737-RM25923 | 4.59 | 30.13 | ||||||
qPaT12 | RM3331-RM5479 | 3.90 | 20.99 | 22.88 | 48.48 | ||||
qPeT6 | RM1369-RM510 | 11.05 | 3.59 | 48.48 | 16.77 | ||||
qPeT7.1 | RM1132-RM8261 | 3.51 | 10.78 | ||||||
qPeT7.2 | STS-OJ1123_C12-RM5752 | 4.47 | 23.25 | ||||||
qPeT7.3 | RM7273-RM3404 | 2.95 | 14.44 |
Table 4 QTL detected for RVA in CSSLs population.
位点 QTL | 区间 Marker interval | LOD值LOD value | 贡献率PVE/% | ||||||
---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | ||
qPKV1 | RM6292-RM5362 | 3.08 | 10.44 | ||||||
qPKV3 | RM6297-RM1278 | 6.30 | 40.98 | ||||||
qPKV6.1 | RM1369-RM510 | 3.42 | 25.32 | ||||||
qPKV6.2 | RM510-RM1163 | 5.61 | 20.35 | ||||||
qPKV10 | RM6737-RM25923 | 4.19 | 22.55 | ||||||
qPKV11 | STS-OSJNBa0095P22-RM5766 | 3.05 | 15.69 | ||||||
qHPV3 | RM6297-RM1278 | 5.61 | 17.01 | ||||||
qHPV6 | RM1369-RM510 | 12.22 | 4.98 | 12.64 | 30.11 | 64.75 | 30.21 | 53.41 | 76.71 |
qHPV8 | RM6838-RM5767 | 2.79 | 3.21 | ||||||
qBDV3 | RM15887-RM15903 | 3.79 | 3.34 | ||||||
qBDV5 | RM3345-RM17954 | 3.72 | 14.25 | ||||||
qBDV6 | RM1369-RM510 | 25.94 | 4.98 | 11.39 | 35.00 | 89.05 | 32.21 | 61.47 | 77.94 |
qCPV3.1 | RM15887-RM15903 | 2.78 | 4.40 | ||||||
qCPV3.2 | RM6297-RM1278 | 11.11 | 13.98 | ||||||
qCPV6 | RM1369-RM510 | 20.80 | 10.46 | 22.26 | 45.45 | 80.40 | 50.81 | 60.34 | 90.23 |
qCPV8 | RM5556-RM6838 | 11.58 | 14.92 | ||||||
qSBV2 | RM5529-RM7581 | 2.88 | 5.12 | ||||||
qSBV3 | RM15887-RM15903 | 5.06 | 1.61 | ||||||
qSBV5 | RM3345-RM17954 | 3.54 | 6.45 | ||||||
qSBV6.1 | RM1369-RM510 | 33.68 | 19.23 | 22.89 | 56.05 | 94.34 | 70.67 | 85.28 | 90.49 |
qSBV6.2 | RM510-RM1163 | 5.81 | 1.89 | ||||||
qSBV8 | RM7049-RM7556 | 3.37 | 1.03 | ||||||
qCSV3 | RM15887-RM15903 | 3.23 | 3.72 | ||||||
qCSV5 | RM3476-RM3790 | 2.74 | 2.97 | ||||||
qCSV6 | RM1369-RM510 | 24.77 | 12.92 | 11.12 | 30.99 | 85.33 | 63.53 | 60.61 | 76.79 |
qPaT4 | RM3839-RM303 | 3.53 | 5.04 | ||||||
qPaT6.1 | RM1369-RM510 | 2.70 | 11.27 | 15.05 | 19.62 | ||||
qPaT6.2 | RM510-RM1163 | 4.63 | 32.63 | ||||||
qPaT10 | RM6737-RM25923 | 4.59 | 30.13 | ||||||
qPaT12 | RM3331-RM5479 | 3.90 | 20.99 | 22.88 | 48.48 | ||||
qPeT6 | RM1369-RM510 | 11.05 | 3.59 | 48.48 | 16.77 | ||||
qPeT7.1 | RM1132-RM8261 | 3.51 | 10.78 | ||||||
qPeT7.2 | STS-OJ1123_C12-RM5752 | 4.47 | 23.25 | ||||||
qPeT7.3 | RM7273-RM3404 | 2.95 | 14.44 |
Fig. 2. Differences of phenotypic values of rice quality traits between genetic background parent Changhui 121 and the CSSLs harboring the QTL alleles. *and** mean significant difference at 5% and 1% levels between rice quality traits of Changhui 121 and the CSSLs harboring the QTL alleles. NC and HN mean Nanchang City, Jiangxi Province and Hainan Province, respectively.
染色体 Chr | 主效QTL簇 Major QTL cluster | 区间 Marker interval | 性状 Trait | 多效性QTL位点 Pleiotropic QTL cluster |
---|---|---|---|---|
2 | qPGWC2 | RM5529–RM7581 | PGWC, SBV | qPGWC2, qSBV2 |
3 | qCPV3.2 | RM6297–RM1278 | CPV, PKV, HPV | qPKV3, qHPV3, qCPV3.2 |
3 | qSBV3 | RM15887–RM15903 | BDV, CPV, SBV, CSV | qBDV3, qCPV3.1, qSBV3, qCSV3 |
5 | qBDV5 | RM3345–RM17954 | BDV, SBV, PGWC, GC | qPGWC5, qGC5, qBDV5, qSBV5 |
6 | qSBV6.1 | RM1369–RM510 | GC, PKV, HPV, BDV, CPV, SBV, CSV, PaT, PeT | qGC6.1, qPKV6.1, qHPV6, qBDV6, qCPV6, qSBV6.1, qCSV6, qPaT6.1, qPeT6 |
6 | qSBV6.2 | RM510–RM1163 | GC, PKV, SBV, PaT | qGC6.2, qPKV6.2, qSBV6.2, qPaT6.2 |
10 | qPaT10 | RM6737–RM25923 | PKV, PaT, PC | qPKV10, qPaT10, qPC10.1 |
Table 5 Grain quality traits QTL hotspot and pleiotropic region in rice.
染色体 Chr | 主效QTL簇 Major QTL cluster | 区间 Marker interval | 性状 Trait | 多效性QTL位点 Pleiotropic QTL cluster |
---|---|---|---|---|
2 | qPGWC2 | RM5529–RM7581 | PGWC, SBV | qPGWC2, qSBV2 |
3 | qCPV3.2 | RM6297–RM1278 | CPV, PKV, HPV | qPKV3, qHPV3, qCPV3.2 |
3 | qSBV3 | RM15887–RM15903 | BDV, CPV, SBV, CSV | qBDV3, qCPV3.1, qSBV3, qCSV3 |
5 | qBDV5 | RM3345–RM17954 | BDV, SBV, PGWC, GC | qPGWC5, qGC5, qBDV5, qSBV5 |
6 | qSBV6.1 | RM1369–RM510 | GC, PKV, HPV, BDV, CPV, SBV, CSV, PaT, PeT | qGC6.1, qPKV6.1, qHPV6, qBDV6, qCPV6, qSBV6.1, qCSV6, qPaT6.1, qPeT6 |
6 | qSBV6.2 | RM510–RM1163 | GC, PKV, SBV, PaT | qGC6.2, qPKV6.2, qSBV6.2, qPaT6.2 |
10 | qPaT10 | RM6737–RM25923 | PKV, PaT, PC | qPKV10, qPaT10, qPC10.1 |
[1] | Chen L K, Gao W W, Chen S P, Wang L P, Zou J Y, Liu Y Z, Wang H, Chen Z Q, Guo T.High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice[J]. Rice, 2016, 9(1): 48-65. |
[2] | Gao Y, Liu C L, Li Y Y, Zhang A P, Dong G J, Xie L H, Zhang B, Ruan B P, Hong K, Xue, D W, Zeng D L, Guo L B, Qian Q, Gao Z Y. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice, 2016, 9(1): 41. |
[3] | Xu X M, Xu Z J, Matsue Y J, Xu Q.Effects of genetic background and environmental conditions on texture properties in a recombinant inbred population of an inter-subspecies cross[J]. Rice, 2019, 12(1): 32. |
[4] | Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H.Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid[J]. Theoretical and Applied Genetics, 2001, 103(6/7): 1037-1045. |
[5] | 翁建峰, 万向元, 吴秀菊, 王海莲, 翟虎渠, 万建民. 利用CSSL群体研究稻米AC和PC相关QTL表达稳定性[J]. 作物学报, 2006, 32(1): 14-19. |
Weng J F, Wan X Y, Wu X J, Wang H L, Zhai H Q, Wan J M.Stable expression of QTL for AC and PC of milled rice (Oryza sativa L.) using a CSSL population[J]. Acta Agronomica Sinica, 2006, 32(1): 14-19. (in Chinese with English abstract) | |
[6] | 张涛, 郑家奎, 吴先军, 蒋开锋, 杨乾华, 陈温福, 杨莉. 水稻糙米蛋白质含量的QTL定位[J]. 分子植物育种, 2009, 7(1): 67-72. |
Zhang T, Zheng J K, Wu X J, Jang K F, Yang Q H, Chen W F, Yang L.QTL mapping of brown rice protein content in a RIL population of rice[J]. Molecular Plant Breeding, 2009, 7(1): 67-72. (in Chinese with English abstract) | |
[7] | 李晨, 潘大建, 孙传清, 周汉钦, 范芝兰, 陈建酉, 王象坤. 水稻糙米高蛋白基因的QTL定位[J]. 植物遗传资源学报, 2006, 7(2): 170-174. |
Li C, Pan D J, Sun C Q, Zhou H Q, Fan Z L, Chen J Y, Wang X K.QTL location of high protein gene in rice grain[J]. Journal of Plant Genet, 2006, 7(2): 170-174. (in Chinese with English abstract) | |
[8] | 杨亚春, 倪大虎, 宋丰顺, 李莉, 冯光, 李泽福, 杨剑波. 两个环境下糙米和精米蛋白质含量的QTL分析[J]. 中国水稻科学, 2012, 26(3): 351-355. |
Yang Y C, Ni D H, Song F S, Li L, Feng G, Li Z F, Yang J B.Identification of QTL for protein content in brown and milled rice in two environments[J]. Chinese Journal of Rice Science, 2012, 26(3): 351-355. (in Chinese with English abstract) | |
[9] | Bao J S, Harold C, He P, Zhu L H.Analysis of quantitative trait loci for starch properties of rice based on an RIL population[J]. Acta Botany Sinica, 2003, 45(8): 986-994. |
[10] | Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F.The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a double-haploid line population[J]. Theoretical and Applied Genetics, 2005, 110(8): 1445-1452. |
[11] | 吴长明, 孙传清, 王象坤, 李自超, 付秀林, 张强. 稻米食味品质性状的QTL分析[J]. 吉林农业科学, 2003, 28(2): 6-14. |
Wu C M, Sun C Q, Wang X K, Li Z C, Fu X L, Zhang Q.Study on QTLs of grain eating quality characters in rice[J]. Journal of Jilin Agricultural Science, 2003, 28(2): 6-14. (in Chinese with English abstract) | |
[12] | 邵高能, 唐绍清, 焦桂爱, 罗炬, 唐傲, 胡培松. 稻米蒸煮品质性状的QTL定位[J]. 中国水稻科学, 2009, 23(1): 94-98. |
Shao G N, Tang S Q, Jiao G A, Luo J, Tang A, Hu P S.Mapping of QTL for cooking quality traits of rice[J]. Chinese Journal of Rice Science, 2009, 23(1): 94-98. (in Chinese with English abstract) | |
[13] | Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S.Mapping of genes for cooking and eating qualities in Thai Jasmine rice (KDML105)[J]. DNA Research, 2000, 7(2): 93-101. |
[14] | 张巧凤, 张亚东, 朱镇, 赵凌, 赵庆勇, 许凌, 王才林. 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL定位分析[J]. 中国水稻科学, 2007, 21(6): 591-598. |
Zhang Q F, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Xu L, Wang C L.Analysis of inheritance and QTLs of rice starch viscosity (RVA profile) characteristics[J]. Chinese Journal of Rice Science, 2007, 21(6): 591-598. (in Chinese with English abstract) | |
[15] | 张永生, 江玲, 刘喜, 刘世家, 陈亮明, 翟虎渠, 万建民. 优质水稻品种越光(Koshihikari)中控制稻米淀粉RVA谱特征值的QTL分析[J]. 中国水稻科学, 2010, 24(2): 137-144. |
Zhang Y S, Jiang L, Liu X, Liu S J, Chen L M, Zhai H Q, Wan J M.Analysis of QTLs for starch RVA profile properties in the superior rice cultivar Koshihikari[J]. Chinese Journal of Rice Science, 2010, 24(2): 137-144. (in Chinese with English abstract) | |
[16] | 杨亚春, 倪大虎, 宋丰顺, 李莉, 陆徐忠, 李泽福, 杨剑波. 不同生态环境下稻米淀粉RVA谱特征值的QTL定位分析[J]. 作物学报, 2012, 38(2): 264-274. |
Yang Y C, Ni D H, Song F S, Li L, Lu X Z, Li Z F, Yang J B.Identification of QTL for rice starch RVA profile properties under different ecological sites[J]. Acta Agronomy Sinica, 2012, 38(2): 264-274. (in Chinese with English abstract) | |
[17] | 张昌泉, 胡冰, 朱孔志, 张华, 冷亚麟, 汤述翥, 顾铭洪, 刘巧泉. 利用重测序的水稻染色体片段代换系定位控制稻米淀粉黏滞性谱QTL[J]. 中国水稻科学, 2013, 27(1): 56-64. |
Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q.Mapping of QTLs for rice RVA properties using high-throughput re-sequenced chromosome segment substitution lines[J]. Chinese Journal of Rice Science, 2013, 27(1): 56-64. (in Chinese with English abstract) | |
[18] | 张杰, 郑蕾娜, 蔡跃, 尤小满, 孔飞, 汪国湘, 燕海刚, 金洁, 王亮. 稻米淀粉RVA谱特征值与直链淀粉、蛋白含量的相关性及QTL定位分析[J]. 中国水稻科学, 2017, 31(1): 31-39. |
Zhang J, Zheng L N, Cai Y, You X M, Kong F, Wang G X, Yan H G, Jin J, Wang L.Correlation analysis and QTL mapping for starch RVA profile properties and amylose and protein contents in rice[J]. Chinese Journal of Rice Science, 2017, 31(1): 31-39. (in Chinese with English abstract) | |
[19] | Matsushima R, Maekawa M, Kusano M, Kondo H, Naoko F, Kawagoe Y, Sakamoto W.Amyloplast- localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm[J]. Plant Physiology, 2014, 164(2): 623-636. |
[20] | She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H.A novel factor FLOURYENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294. |
[21] | Wang E, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B, Lin H X, Ma H, Zhang G Q, He Z H.Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1370-1374. |
[22] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q.Chalk5 encodes a vacuolar H+ translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[23] | Luo Q, Tang D, Wang M, Luo W X, Zhang L, Qin B X, Shen Y, Wang K J, Li Y F, Cheng Z K.The role ofOsMSH5 in crossover formation during rice meiosis. Molecular Plant, 2013, 3(6): 729-742. |
[24] | Han X H, Wang Y H, Liu X, Jiang L, Ren Y L, Liu F, Peng C, Li J J, Jin X M, Wu F Q, Wang J L, Guo X P, Zhang X, Cheng Z J, Wan J M.The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice[J]. Journal of Experiment Botany, 2012, 63(1): 121-130. |
[25] | Wan Y H, Ren Y L, Liu X, Jiang L, Chen L, Han X H, Jin M N, Liu S J, Liu F, Lv J, Zhou K N, Su N, Wan J M.OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant Journal, 2010, 64(5): 812-824. |
[26] | Yang R F, Sun C L, Bai J J, Luo Z X, Shi B, Zhang J M, Yan W G, Piao Z Z.A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.)[J]. PLoS ONE, 2012, 7(8): e43026. |
[27] | Cai Y C, Li S F, Jiao G A, Sheng Z H, Wu Y W, Shao G N, Xie L H, Peng C, Xu J F, Tang S Q, Wei X J, Hu P S.OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling[J]. Plant Biotechnology Journal, 2018, 16(11): 1878-1891. |
[28] | Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita T W, Hwang S K, Satoh H.The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme[J]. Plant Cell Physiology, 2014, 55(6):1169-83. |
[29] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
[30] | 吴殿星, 舒庆尧, 夏英武. 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉黏滞特性[J]. 中国水稻科学, 2001, 15(1): 58-60. |
Wu D X, Shu Q Y, Xia Y W.Rapid identification of starch viscosity property of early indica rice varieties with different apparent amylose content by RVA profile[J]. Chinese Journal of Rice Science, 2001, 15(1): 58-60. (in Chinese with English abstract) | |
[31] | 李欣, 张蓉, 隋炯明, 梁国华, 沈新平, 严长杰, 顾世梁, 顾铭洪. 稻米淀粉黏滞性谱特征的表现及其遗传[J]. 中国水稻科学, 2004, 18(5): 10-16. |
Li X, Zhang R, Sui J M, Liang G H, Shen X P, Yan C J, Gu S L, Gu M H.Performance and inheritance of rice starch viscosity (RVA Profile) characteristics[J]. Chinese Journal of Rice Science, 2004, 18(5): 10-16. (in Chinese with English abstract) | |
[32] | 张巧凤, 张亚东, 朱镇, 赵凌, 赵庆勇, 许凌, 王才林. 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL定位分析[J]. 中国水稻科学, 2007, 21(6): 591-598. |
Zhang Q F, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Xu L, Wang C L.Analysis of inheritance and QTLs of rice starch viscosity (RVA profile) characteristics[J]. Chinese Journal of Rice Science, 2007, 21(6): 591-598. (in Chinese with English abstract) | |
[33] | 刘鑫燕, 朱孔志, 张昌泉, 洪燃, 孙鹏, 汤述翥, 顾铭洪, 刘巧泉. 利用9311来源的粳型染色体片段代换系定位控制稻米糊化温度的微效QTL[J]. 作物学报, 2014, 40(10): 1740-1747. |
Liu X Y, Zhu K Z, Zhang C Q, Hong R, Sun P, Tang S Z, Gu M H, Liu Q Q.Mapping of minor QTLs for rice gelatinization temperature using chromo-some segment substitution lines from indica 9311 in the japonica background[J]. Acta Agronomy Sinica, 2014, 40(10): 1740-1747. (in Chinese with English abstract) |
[1] | WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan. Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] | XU Yongqiang, XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu. Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] | HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong. Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] | LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao. Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] | YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming. Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] | JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian. Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] | YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen. Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] | XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping. Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||