Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (1): 1-7.DOI: 10.16819/j.1001-7216.2019.9101
• Research Papers • Next Articles
Xiaowu PAN, Yongchao LI, Wenqiang LIU, Haibo XIONG, Zheng DONG, Dan XUE, Xinnian SHENG, Wenjin ZHAO, Xiucai WEI, Xiaoxiang LI*()
Received:
2019-09-16
Revised:
2019-10-27
Online:
2020-01-10
Published:
2020-01-10
Contact:
Xiaoxiang LI
潘孝武, 黎用朝, 刘文强, 熊海波, 董铮, 薛丹, 盛新年, 赵文锦, 魏秀彩, 李小湘*()
通讯作者:
李小湘
基金资助:
CLC Number:
Xiaowu PAN, Yongchao LI, Wenqiang LIU, Haibo XIONG, Zheng DONG, Dan XUE, Xinnian SHENG, Wenjin ZHAO, Xiucai WEI, Xiaoxiang LI. Identification and Genetic Analysis of Waxy Sparse Mutant wax1 in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(1): 1-7.
潘孝武, 黎用朝, 刘文强, 熊海波, 董铮, 薛丹, 盛新年, 赵文锦, 魏秀彩, 李小湘. 水稻蜡质稀少突变体wax1的鉴定及基因定位[J]. 中国水稻科学, 2020, 34(1): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.9101
引物名称 Primer usage | 正向引物(5'→3') Forward primer (5'→3') | 反向引物(5'→3') Reverse primer (5'→3') |
---|---|---|
RM5806 | GAATGCTAATTGCGGTTGAAGC | GGATCTTTCCTCCCAATCTTTGC |
ID09139 | GAAACGGAGGGAGTATATCT | CTGTTTCCGATTCTAAGAGC |
RM25414 | GCTACCCAACCGCCTCCATAGC | GATCGATCGGAGAGCTTGAGTTGG |
ID09071 | AAGGTATTTCCCTCTCCTGA | AAGAAGAAGAAAAACCCAGG |
P1 | TCAACGAACACCAACAAGC | CAGATTATCGGCGGTCACT |
OsActin | CATTGGTGCTGAGCGTTTCC | AGAAACAAGCAGGAGGACGG |
OSH6 | GGTATTTGGTGGTGATTGTGTC | AACCCTTGAGTTGAGCCATT |
OsIAA1 | ACCAAGAGCCGCTCAATGAG | ATCACACGTGGGCGAACATC |
OsIAA4 | GCTCTTGCTGGATGGGTATGA | AGGTGATGGGCGTCTTGAAC |
OsIAA6 | GGCTATCGTCAGCTGTCAAACA | GCAATTTGCGCATTAGTTTGG |
OsIAA9 | CGAGAAGAAAATGGCCAATGA | ATCCCCATCACCATCCTCGTA |
OsIAA15 | CGTCCCCTGGAAAATGTTTG | TGCTAAATTGACTGCTTCAGAGCTT |
OsIAA18 | AAGAATGTGGGAAGGAGCTAACG | ATGGTGGTGAGGGACAGCAT |
Table 1 Primers for gene mapping and expression analysis.
引物名称 Primer usage | 正向引物(5'→3') Forward primer (5'→3') | 反向引物(5'→3') Reverse primer (5'→3') |
---|---|---|
RM5806 | GAATGCTAATTGCGGTTGAAGC | GGATCTTTCCTCCCAATCTTTGC |
ID09139 | GAAACGGAGGGAGTATATCT | CTGTTTCCGATTCTAAGAGC |
RM25414 | GCTACCCAACCGCCTCCATAGC | GATCGATCGGAGAGCTTGAGTTGG |
ID09071 | AAGGTATTTCCCTCTCCTGA | AAGAAGAAGAAAAACCCAGG |
P1 | TCAACGAACACCAACAAGC | CAGATTATCGGCGGTCACT |
OsActin | CATTGGTGCTGAGCGTTTCC | AGAAACAAGCAGGAGGACGG |
OSH6 | GGTATTTGGTGGTGATTGTGTC | AACCCTTGAGTTGAGCCATT |
OsIAA1 | ACCAAGAGCCGCTCAATGAG | ATCACACGTGGGCGAACATC |
OsIAA4 | GCTCTTGCTGGATGGGTATGA | AGGTGATGGGCGTCTTGAAC |
OsIAA6 | GGCTATCGTCAGCTGTCAAACA | GCAATTTGCGCATTAGTTTGG |
OsIAA9 | CGAGAAGAAAATGGCCAATGA | ATCCCCATCACCATCCTCGTA |
OsIAA15 | CGTCCCCTGGAAAATGTTTG | TGCTAAATTGACTGCTTCAGAGCTT |
OsIAA18 | AAGAATGTGGGAAGGAGCTAACG | ATGGTGGTGAGGGACAGCAT |
Fig. 1. Morphological traits of the wild type(WT) and its mutant waxy1. A and B, Plant morphology of the wild type and waxy1 mutant; C, Panicle morphology of the wild type and waxy1 mutant; D, Leaf morphology of the wild type and waxy1 mutant; E, Infiltration characteristics of leaf blade contaminated with water.
材料 Material | 株高 Plant height / cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|
WT | 81.4±3.4 | 5.5±0.5 | 134.3±6.7 | 81.8±6.3 | 23.9±0.4 |
wax1 | 61.2±2.3** | 7.4±0.2** | 94.6±4.0** | 77.7±2.5 | 21.9±0.3** |
Table 2 Agronomic traits of the wild type (WT) and wax1 mutant.
材料 Material | 株高 Plant height / cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of spikelets per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|
WT | 81.4±3.4 | 5.5±0.5 | 134.3±6.7 | 81.8±6.3 | 23.9±0.4 |
wax1 | 61.2±2.3** | 7.4±0.2** | 94.6±4.0** | 77.7±2.5 | 21.9±0.3** |
[1] | Lee S B, Suh M C.Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4): 557-572. |
[2] | Yeats T H, Rose J K C. The formation and function of plant cuticles[J]. Plant Physiology, 2013, 163(1): 5-20. |
[3] | 陈伟, 刘德春, 杨莉, 刘山蓓, 刘勇. 植物表皮蜡质及相关基因研究进展[J]. 植物生理学报, 2016, 52(8): 1117-1127. |
Chen W, Liu D C, Yang L, Liu S B, Liu Y.Advances in studies on plant epidermal wax and related genes[J]. Plant Physiology Journal, 2016, 52(8): 1117-1127. (in Chinese with English abstract). | |
[4] | 杨贤鹏, 王宙雅, 高翔, 李荣俊, 吕世友. 植物表皮蜡质生物合成及调控[J]. 中国生物工程杂志, 2016, 36(9): 75-80. |
Yang X P, Wang Z Y, Gao X, Li R J, Lü S Y.Biosynthesis and regulation of wax in plant epidermis[J]. China Biotechnology, 2016, 36(9): 75-80. (in Chinese with English abstract). | |
[5] | Zhou L, Ni E, Yang J, Zhou H, Liang H, Li J, Jiang D, Wang Z, Liu Z, Zhuang C.Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance[J]. PLoS One, 2013, 8(5): e65139. |
[6] | 倪郁, 郭彦军. 植物超长链脂肪酸及角质层蜡质生物合成相关酶基因研究现状[J]. 遗传, 2008, 30(5): 561-567. |
Ni Y, Guo Y J.Progress in the study on genes encoding enzymes involved in bio-synthesis of very long chain fatty acids and cuticular wax in plants[J]. Hereditas, 2008, 30(5): 561-567. (in Chinese with English abstract). | |
[7] | Millar A, Kunst L.Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J]. Plant Journal, 2010, 12(1): 121-131. |
[8] | Tomoaki T, Yukihiro I.Altered expression of auxin-related genes in the fatty acid elongase mutant oni1 of rice[J]. Plant Signal Behavior, 2011, 6(6): 887-888. |
[9] | Yukihiro I, Fumiko K, Kazuma H, Katsutoshi T, Tomoaki T, Mitsugu E, Kiyotaka N, Nori K.Fatty acid elongase is required for shoot development in rice[J]. Plant Journal, 2011, 66: 680-688. |
[10] | Tsuda K, Akiba T, Kimura F, Ishibashi M, Moriya C, Nakagawa K, Kurata N, Ito Y.ONION2 fatty acid elongase is required for shoot development in rice[J]. Plant Cell Physiology, 2013, 54(2): 209-217. |
[11] | Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C.Wax Crystal-Sparse Leaf1 encodes a β-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf[J]. Planta, 2008, 228(4): 675-685. |
[12] | Wang X, Guan Y, Zhang D, Dong X, Tian L, Qu L Q.A β-ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor[J]. Plant Physiology, 2016, 173(2): 944-955. |
[13] | Gan L, Zhu S, Zhao Z, Liu L, Wang X, Zhang Z, Zhang X, Wang J, Wang J, Guo X.Wax Crystal-Sparse Leaf 4, encoding a β-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation[J]. Plant Cell Reports, 2017, 36(10): 1655-1666. |
[14] | Tsuda K, Ito Y, Yamaki S, Miyao A, Hirochika H, Kurata N.Isolation and mapping of three rice mutants that showed ectopic expression of KNOX genes in leaves[J]. Plant Science, 2009, 177(2): 131-135. |
[15] | Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa N K, Kawaiyamada M, Tsutsumi N.Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots[J]. Plant Physiology, 2015, 169(1): 180-193. |
[16] | Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M.Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation[J]. PLoS Biology, 2013, 11(4): e1001531. |
[17] | Lu G, Wang X, Cheng Z, Liu L, Wang J, Zhe Z, Ren Y, Lei C, Zhao Z, Zhu S.Wax crystal-sparse leaf 3 encoding a β-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice[J]. Plant Cell Reports, 2016, 35(8): 1687-1698. |
[18] | Fang Y, Hu J, Xu J, Yu H, Shi Z, Xiong G, Zhu L, Zeng D, Zhang G, Gao Z.Identification and characterization of Mini1, a gene regulating rice shoot development[J]. Journal of Integrative Plant Biology, 2015, 57(2): 151-161. |
[19] | Akiba T, Hibara K, Kimura F, Tsuda K, Shibata K, Ishibashi M, Moriya C, Nakagawa K, Kurata N, Itoh J.Organ fusion and defective shoot development in oni3 mutants of rice[J]. Plant Cell Physiology, 2014, 55(1): 42-51. |
[20] | Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F.Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2012, 235(1): 39-52. |
[21] | Xia K, Ou X, Gao C, Tang H, Jia Y, Deng R, Xu X, Zhang M.OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848[J]. Plant Cell Environment, 2015, 38(12): 2662-2673. |
[22] | Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C, Ueno Y, Yamamoto K T, Machida Y, Nakamura K, Ishiguro S.Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes[J]. Plant Cell Physiology, 2010, 51(1): 164-175. |
[23] | Mahin G, Jaworski J G.Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS[J]. European Journal of Biochemistry, 2010, 269(14): 3531-3539. |
[24] | Takada S, Iida H.Specification of epidermal cell fate in plant shoots[J]. Frontiers in Plant Science, 2014, 5: 49. |
[25] | Knauer S, Holt a L, Rubiosomoza I, Tucker E J, Hinze A, Pisch M, Javelle M, Timmermans M C P, Tucker M R, Laux T. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem[J]. Developmental Cell, 2013, 24(2): 125-132. |
[26] | Rast M I, Simon R.Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems[J]. Plant Cell, 2012, 24(7): 2917-2933. |
[27] | Ito Y, Eiguchi M, Kurata N.KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice[J]. Genesis, 2001, 30(4): 231-238. |
[28] | Tsuda K, Ito Y, Sato Y, Kurata N.Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice[J]. Plant Cell, 2011, 23(12): 4368-4381. |
[29] | Kerstetter R A, Laudenciachingcuanco D, Smith L G, Hake S.Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance[J]. Development, 1997, 124(16): 3045-3054. |
[1] | WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan. Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] | XU Yongqiang, XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu. Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] | HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong. Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] | LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao. Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] | YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming. Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] | JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian. Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] | YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen. Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] | XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping. Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||