Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (3): 219-226.DOI: 10.16819/j.1001-7216.2019.8125
• Orginal Article • Previous Articles Next Articles
Yi WEN1,2, Yunxia FANG3, Peng HU2, Yueying WANG2, Linlin HOU2, Yiqing TAN2, Lixin ZHU2, Xuemei DENG2, Dali ZENG2, Guangheng ZHANG2, Longbiao GUO2, Li ZHU2, Guang CHEN2, Deyong REN2, Yuchun RAO1, Dawei XUE3, Qian QIAN1,2,*(), Jiang HU2,*()
Received:
2018-11-20
Revised:
2018-12-18
Online:
2019-05-10
Published:
2019-05-10
Contact:
Qian QIAN, Jiang HU
About author:
#These authors contributed equally to this work;
文艺1,2, 方云霞3, 胡鹏2, 王月影2, 侯琳琳2, 谭义青2, 朱黎欣2, 邓雪梅2, 曾大力2, 张光恒2, 郭龙彪2, 朱丽2, 陈光2, 任德勇2, 饶玉春1, 薛大伟3, 钱前1,2,*(), 胡江2,*()
通讯作者:
钱前,胡江
作者简介:
#共同第一作者;
基金资助:
CLC Number:
Yi WEN, Yunxia FANG, Peng HU, Yueying WANG, Linlin HOU, Yiqing TAN, Lixin ZHU, Xuemei DENG, Dali ZENG, Guangheng ZHANG, Longbiao GUO, Li ZHU, Guang CHEN, Deyong REN, Yuchun RAO, Dawei XUE, Qian QIAN, Jiang HU. Identification and Fine Mapping of a Narrow Leaf Mutant nal12 in Rice[J]. Chinese Journal OF Rice Science, 2019, 33(3): 219-226.
文艺, 方云霞, 胡鹏, 王月影, 侯琳琳, 谭义青, 朱黎欣, 邓雪梅, 曾大力, 张光恒, 郭龙彪, 朱丽, 陈光, 任德勇, 饶玉春, 薛大伟, 钱前, 胡江. 水稻窄叶突变体nal12的鉴定与基因精细定位[J]. 中国水稻科学, 2019, 33(3): 219-226.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.8125
Fig. 1. Phenotype of wild-type Wuyunjing 31 and mutant nal12. A, Seedlings(10-day-old), scale bar=3 cm; B, Plant at the tillering stage, scale bar=5 cm; C, Panicle, scale bar =1 cm; D and E, Six sections of the culm, scale bar=1 cm. Bars represent standard deviations (n=20), ** significant difference between WT and nal12 by t-test (P<0.01).
Fig. 2. Leaf microstructure of Wuyunjing 31(wild type, WT) and mutant nal12. A, Morphology of top four leaves in the wild-type Wuyunjing 31 and mutant nal12, scale bar = 1 cm; B, The main vein (MV), large vein (LV) and small vein (SV) of leaves, scale bar = 1 cm; C and D, Paraffin section of main vein, scale bar = 200 μm; E and F, Paraffin section of large veins and small veins, scale bar=200 μm; G and H, Leaf width and length of top four leaves; I and J, Number of large veins and small veins of top four leaves; FL, Flag leaf; L2, The second leaf from the top; L3, The third leaf from the top; L4, The fourth leaf from the top. Bars represents standard deviations (n=20), **significant difference between WT and nal12 by t-test (P<0.01).
Fig. 3. Fine mapping of NAL12. A, NAL12 was primarily mapped on chromosome 10; B, NAL12 was narrowed to a 64.7 kb genomic region; C, Total ten genes were predicted in the region.
分子标记 Marker | 正向引物序列(5'-3') Forward primer sequence (5'-3') | 反向引物序列(5'-3') Reverse primer sequence (5'-3') | |
---|---|---|---|
RF13 | GTGTACATTTCGTGCGTACCA | TTGACTGATGAAGCAGAATGC | |
RF16 | GCGTACGTTCAACAAGACCC | CAGTTCAACACAAGTAATGCAGAG | |
RF21 | ATTATTCAACAACGAAGGAG | AAATTAAGAAAGATGGAGGG | |
P42299-1 | AACGGAACAAGTCCACTAAACC | ATCCTCCTCCTTCTTGACCCT | |
P42430-1 | TTCAGGAATGCCAAGAAGACG | CGCTGCTATCAGTATCAAAAACAAG | |
P42490-1 | GATGCGGGCACTCCTTGAACA | ATGCCATTGCCAGCCGTTTCG | |
LC2-RF37 | CATATTGCCTTTTGCCTTTGT | AGCGAGCATGGTGTTATCTT | |
LC4R-RF39 | TTAAGCAGACAAGAGTCAACA | CCCCATCCAGATGTGAATCCGCCAT | |
H42800-1 | AGGGTGCCGGATCAGAACAGC | CCATGGGGAATGGGGATTTAGTTT | |
P43040-2 | CTCGCCGAGGTGAACCTATTT | AGGAGGGTGGTGGAAAGCAAA |
Table 1 Markers developed for mapping of NAL12 and quantitative real-time PCR (qRT-PCR) analysis.
分子标记 Marker | 正向引物序列(5'-3') Forward primer sequence (5'-3') | 反向引物序列(5'-3') Reverse primer sequence (5'-3') | |
---|---|---|---|
RF13 | GTGTACATTTCGTGCGTACCA | TTGACTGATGAAGCAGAATGC | |
RF16 | GCGTACGTTCAACAAGACCC | CAGTTCAACACAAGTAATGCAGAG | |
RF21 | ATTATTCAACAACGAAGGAG | AAATTAAGAAAGATGGAGGG | |
P42299-1 | AACGGAACAAGTCCACTAAACC | ATCCTCCTCCTTCTTGACCCT | |
P42430-1 | TTCAGGAATGCCAAGAAGACG | CGCTGCTATCAGTATCAAAAACAAG | |
P42490-1 | GATGCGGGCACTCCTTGAACA | ATGCCATTGCCAGCCGTTTCG | |
LC2-RF37 | CATATTGCCTTTTGCCTTTGT | AGCGAGCATGGTGTTATCTT | |
LC4R-RF39 | TTAAGCAGACAAGAGTCAACA | CCCCATCCAGATGTGAATCCGCCAT | |
H42800-1 | AGGGTGCCGGATCAGAACAGC | CCATGGGGAATGGGGATTTAGTTT | |
P43040-2 | CTCGCCGAGGTGAACCTATTT | AGGAGGGTGGTGGAAAGCAAA |
基因Locus name | 功能注释Function annotation |
---|---|
LOC_Os10g42690 | jmjC结构域蛋白 jmjC domain containing protein, expressed |
LOC_Os10g42700 | 假定的CS结构域蛋白 CS domain containing protein, putative, expressed |
LOC_Os10g42710 | RCD1酶 RCD1, putative, expressed |
LOC_Os10g42720 | 假定的酰基转移酶 Acyltransferase, putative, expressed |
LOC_Os10g42724 | 编码VHS和GAT结构域蛋白 VHS and GAT domain containing protein, expressed |
LOC_Os10g42730 | 未知蛋白 Expressed protein |
LOC_Os10g42750 | CSLD1纤维素合成酶 CSLD1-cellulose synthase-like family D, expressed |
LOC_Os10g42754 | 未知蛋白 Expressed protein |
LOC_Os10g42760 | PPR重复结构域蛋白 PPR repeat domain containing protein, putative, expressed |
LOC_Os10g42770 | 编码假定的a_IG002N01.7蛋白 a_IG002N01.7, putative, expressed |
Table 2 Predicted genes in fine-mapping region.
基因Locus name | 功能注释Function annotation |
---|---|
LOC_Os10g42690 | jmjC结构域蛋白 jmjC domain containing protein, expressed |
LOC_Os10g42700 | 假定的CS结构域蛋白 CS domain containing protein, putative, expressed |
LOC_Os10g42710 | RCD1酶 RCD1, putative, expressed |
LOC_Os10g42720 | 假定的酰基转移酶 Acyltransferase, putative, expressed |
LOC_Os10g42724 | 编码VHS和GAT结构域蛋白 VHS and GAT domain containing protein, expressed |
LOC_Os10g42730 | 未知蛋白 Expressed protein |
LOC_Os10g42750 | CSLD1纤维素合成酶 CSLD1-cellulose synthase-like family D, expressed |
LOC_Os10g42754 | 未知蛋白 Expressed protein |
LOC_Os10g42760 | PPR重复结构域蛋白 PPR repeat domain containing protein, putative, expressed |
LOC_Os10g42770 | 编码假定的a_IG002N01.7蛋白 a_IG002N01.7, putative, expressed |
Fig. 4. Expression analysis of auxin-related genes in the wild-type Wuyunjing 31 and mutant nal12. Bars represent standard error (n=3). ** and * indicate significant difference between WT and nal12 by t-test (P<0.01, P<0.05) respectively.
[1] | 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6. |
Yuan L P.Breeding of super high yield hybrid rice.Hybrid Rice, 1997, 12(6): 1-6. (in Chinses with English abstract) | |
[2] | Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G, Ren F G, Palme K, Zhao B G, Chen J F, Chen M S, Li C Y.Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147(4): 1947-1959. |
[3] | Cho S H, Yoo S C, Zhang H T, Pandeya D, Koh H J, Hwang J Y, Kim G T, Paek N C.The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol, 2013, 198(4): 1071-1084. |
[4] | Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H.NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom, 2008, 279(5): 499-507. |
[5] | Li W, Wu C, Hu G C, Xing L, Qian W J, Si H M, Sun Z X, Wang X C, Fu Y P, Liu W Z.Characterization and fine mapping of a novel rice narrow leaf mutant nal9. J Integr Plant Biol, 2013, 55(11): 1016-1025. |
[6] | Jiang H, Li Z, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q.Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73(3): 283-292. |
[7] | Li M, Xiong G Y, Li R, Cui J J, Tang D, Zhang B C, Pauly M, Cheng Z K, Zhou Y H.Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth.Plant J, 2009, 60(6): 1055-1069. |
[8] | Wu C, Fu Y P, Hu G C, Si H M, Cheng S H, Liu W Z.Isolation and characterization of a rice mutant with narrow and rolled leaves.Planta, 2010, 232(2): 313-324. |
[9] | Zhao S S, Zhao L, Liu F X, Wu Y Z, Zhu Z F, Sun C Q, Tan L B.NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice. J Integr Plant Biol, 2016, 58(12): 983-996. |
[10] | Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K.Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67(8): 2139-2150. |
[11] | Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, Zhang C W, Ling Y H, Yang Z L, He G H.ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017, 213(1): 275-286. |
[12] | Xu J, Wang L, Zhou M Y, Zeng D L, Hu J, Zhu L, Ren D Y, Dong G J, Gao Z Y, Guo L B, Qian Q, Zhang W Z, Zhang G H.Narrow albino leaf 1 is allelic to CHR729, regulates leaf morphogenesis and development by affecting auxin metabolism in rice. Plant Growth Regul, 2017, 82(1): 175-186. |
[13] | Ma X D, Ma J, Zhai H H, Xin P Y, Chu J F, Qiao Y L, Han L Z.CHR729 is a chd3 protein that controls seedling development in rice.PLoS One, 2015, 10(9): e0138934. |
[14] | Zhang G H, Li S Y, Wang L, Ye W J, Zeng D L, Rao Y C, Peng Y L, Hu J, Yang Y L, Xu J, Ren D Y, Gao Z Y, Zhu L, Dong G J, Hu X M, Yan M X, Guo L B, Li C Y, Qian Q.LSCHL4, from japonica cultivar, which is allelic to nal1, increases yield of indica super rice 93-11. Mol Plant, 2014, 7(8): 1350-1364. |
[15] | 桑贤春, 林婷婷, 何沛龙, 王晓雯, 廖红香, 张孝波, 马玲, 何光华. 水稻显性窄叶突变体Dnal1的鉴定与基因定位.中国农业科学, 2014, 47(9): 1819-1827. |
Sang X C, Lin T T, He P L, Wang X W, Liao H S, Zhang X B, Ma L, He G H.Identification and gene mapping of a dominant narrow leaf mutant Dnal1 in rice(Oryza sativa). Sci Agric Sin, 2014, 47(9): 1819-1827. (in Chinses with English abstract) | |
[16] | 方云霞, 朱丽, 潘江杰, 余海平, 薛大伟, 饶玉春, 王小虎, 石珍源, 张栋, 祝阳舟, 董国军, 曾大力, 张光恒, 郭龙标, 胡江, 钱前. 水稻窄叶突变体nal10的鉴定与基因精细定位. 中国水稻科学, 2015, 29(6): 587-594. |
Fang Y X, Zhu L, Pan J J, Yu H P, Xue D W, Rao Y C, Wang X H, Shi Z Y, Zhang D, Zhu Y Z, Dong G J, Zeng D L, Zhang G H, Guo L B, Hu J, Qian Q.Identification and fine mapping of a narrow leaf mutant nal10 in rice. Chin J Rice Sci, 2015, 29(6): 587-594. (in Chinses with English abstract) | |
[17] | Kim C M, Park S H, Je B I, Park S H, Park S J, Piao H L, Eun M Y, Dolan L, Han C D.OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol, 2007, 143(3): 1220-1230. |
[18] | Takahisa Y, Kenji S, Naoki S, Akio M, Hirohiko H, Masahiko I, Taketa S.Root hairless 2 (rth2) mutant represents a loss-of-function allele of the cellulose synthase-like gene OsCSLD1 in rice. Breeding Sci, 2011, 61(3): 225-233. |
[19] | Vanneste S, Friml J.Auxin: A trigger for change in plant development.Cell, 2009, 136(6): 1005-1016. |
[20] | Zhao Y.Auxin biosynthesis and its role in plant development.Annu Rev Plant Biol, 2010, 61: 49-64. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||