Chinese Journal OF Rice Science ›› 2018, Vol. 32 ›› Issue (6): 519-528.DOI: 10.16819/j.1001-7216.2018.8023
• Orginal Article • Next Articles
Feng LÜ1, Qianying TANG1, Qiming WANG1, Hai ZHENG1, Shimin YOU1, Wenting BAI1, Yanjia XIAO1, Zhigang ZHAO1,*(), Jianmin WAN1,2
Received:
2018-03-09
Revised:
2018-04-03
Online:
2018-11-27
Published:
2018-11-10
Contact:
Zhigang ZHAO
吕凤1, 唐倩莹1, 王启明1, 郑海1, 尤世民1, 柏文婷1, 肖晏嘉1, 赵志刚1,*(), 万建民1,2
通讯作者:
赵志刚
基金资助:
CLC Number:
Feng LÜ, Qianying TANG, Qiming WANG, Hai ZHENG, Shimin YOU, Wenting BAI, Yanjia XIAO, Zhigang ZHAO, Jianmin WAN. Map-based Cloning of Female Abortion (FA) Gene in Rice[J]. Chinese Journal OF Rice Science, 2018, 32(6): 519-528.
吕凤, 唐倩莹, 王启明, 郑海, 尤世民, 柏文婷, 肖晏嘉, 赵志刚, 万建民. 水稻雌性败育基因FA的图位克隆[J]. 中国水稻科学, 2018, 32(6): 519-528.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.8023
正向引物 Forward sequence(5'-3') | 反向引物序列 Reverse sequence(5'-3') | 实验目的 Purpose |
---|---|---|
ACGCTGAAAAGCAAGGATGT | TTCTAGCCCTCCTCTTTGACA | 初定位 Preliminary mapping |
AATTCGGTCACTCGCTGTCACG | CTGCGGACGAAATTGCTTAGCC | 初定位 Preliminary mapping |
GGGATTATTTGAAATCTTTGC | ATATAGCATTGCCAGTTTGC | 初定位 Preliminary mapping |
GTCGACGGCTTCCTCAAGATTGG | TGAGACCTCTGTGAAGGCACTCG | 初定位 Preliminary mapping |
CGAGTTCGTCCAAGTGAGC | CATCCACCATTCCACCAATC | 精细定位Fine maping |
GAAAGGTGATGGGAGAGCAG | TGACACCCTCTCTCCACCTC | 精细定位Fine maping |
AAGCCAGCAATGTTATGAGC | CATTACCAGCAGCGGAGTA | 精细定位Fine maping |
CATGGGCCAGAATTAAGAGG | CATCCACTTTCCTCTCCTGC | 精细定位Fine maping |
GCATGCTACCACCTTGACTGC | GTGAGTAGCGAGACCGAGAGTGC | 精细定位Fine maping |
AGCTGTGCGAGGAATCCAAACG | CTCCGATCCCAGCAGCTACTCC | 精细定位Fine maping |
GTTATATGGCTCTGGCACGC | TTGTTTAGGACACCGCTTGC | 精细定位Fine maping |
TGTTGTGCAAGTGATTGGCA | CAAGACACATCGTACCGCTG | 精细定位Fine maping |
TTGCTCCTCCCTACAACAGT | AGCTATGGCAAGAAGAGGTGA | 精细定位Fine maping |
TGGTTACCTGCCTTGATCGA | CTTTCTGCTCCGTTTGTTGC | 精细定位Fine maping |
TGTGGCTGAGAAACCGAGCA | CGACTTCATGTCCCGGTGGA | qRT-PCR |
ACGACGACTGCCTCCTCAAC | GAGGCGTAGCAAATGGTGAG | qRT-PCR |
TGCCAGGAATAAGTCTGCTG | TAATACTTCGGCAAGCAACG | qRT-PCR |
CCCGGTAAGTGAGGGTACAA | TGATCCAAAACCACTCCAGA | qRT-PCR |
Table 1 Primer for gene mapping and qRT-PCR.
正向引物 Forward sequence(5'-3') | 反向引物序列 Reverse sequence(5'-3') | 实验目的 Purpose |
---|---|---|
ACGCTGAAAAGCAAGGATGT | TTCTAGCCCTCCTCTTTGACA | 初定位 Preliminary mapping |
AATTCGGTCACTCGCTGTCACG | CTGCGGACGAAATTGCTTAGCC | 初定位 Preliminary mapping |
GGGATTATTTGAAATCTTTGC | ATATAGCATTGCCAGTTTGC | 初定位 Preliminary mapping |
GTCGACGGCTTCCTCAAGATTGG | TGAGACCTCTGTGAAGGCACTCG | 初定位 Preliminary mapping |
CGAGTTCGTCCAAGTGAGC | CATCCACCATTCCACCAATC | 精细定位Fine maping |
GAAAGGTGATGGGAGAGCAG | TGACACCCTCTCTCCACCTC | 精细定位Fine maping |
AAGCCAGCAATGTTATGAGC | CATTACCAGCAGCGGAGTA | 精细定位Fine maping |
CATGGGCCAGAATTAAGAGG | CATCCACTTTCCTCTCCTGC | 精细定位Fine maping |
GCATGCTACCACCTTGACTGC | GTGAGTAGCGAGACCGAGAGTGC | 精细定位Fine maping |
AGCTGTGCGAGGAATCCAAACG | CTCCGATCCCAGCAGCTACTCC | 精细定位Fine maping |
GTTATATGGCTCTGGCACGC | TTGTTTAGGACACCGCTTGC | 精细定位Fine maping |
TGTTGTGCAAGTGATTGGCA | CAAGACACATCGTACCGCTG | 精细定位Fine maping |
TTGCTCCTCCCTACAACAGT | AGCTATGGCAAGAAGAGGTGA | 精细定位Fine maping |
TGGTTACCTGCCTTGATCGA | CTTTCTGCTCCGTTTGTTGC | 精细定位Fine maping |
TGTGGCTGAGAAACCGAGCA | CGACTTCATGTCCCGGTGGA | qRT-PCR |
ACGACGACTGCCTCCTCAAC | GAGGCGTAGCAAATGGTGAG | qRT-PCR |
TGCCAGGAATAAGTCTGCTG | TAATACTTCGGCAAGCAACG | qRT-PCR |
CCCGGTAAGTGAGGGTACAA | TGATCCAAAACCACTCCAGA | qRT-PCR |
Fig. 1. Phenotypes of the wild type and the fa mutant.^ A, Plant morphology of the wild type(WT) and the fa mutant during heading, bar=20 cm. B, Spikelet of WT and the fa mutant, bar=2 mm. le, Lemma; pa, Palea; gl, Glume. C, Pistil of WT and the fa mutant, bar=1 mm. D, Mature spikelet of WT and the fa mutant, bar=2.5 cm.
Fig. 2. Embryo sac development of the wild type(WT) and fa mutant and statistics of different types of embryo sacs.^ A to D and I to L, Wild type; E to H and M to T, fa mutant. A and E, Archesporial cell stage; B and F, Megaspore mother cell stage; C and G, Tetrad stage; D and H, Functional megaspore stage; I and M, Bi-nuclear embryo sac; J and M, Tetra-nuclear embryo sac; K and O, Eight-nuclear embryo sac; L and P to T, Mature embryo sac. Arrows indicate nuclei. U, Statistics of different types of embryo sacs in mature embryo sac of the wild type (n=156) and the mutant (n=216). An, Antipode cell; Ar, Archesporial cell; Ec, Egg cell; MMC, Megaspores mother cell; Pn, Polar nuclei; NES, Normal embryo sac; MNES, Multi-nucleated embryo sac; DES, Degenerated embryo sac; EES, Empty sac with no embryo formation; Others, Other abnormal embryo sacs. Bar= 50 µm in A to P and 100 µm in Q to T.
杂交组合 Combination | 授粉的花数目 No. of flowers pollinated | 成熟种子数目 No. of mature seeds |
---|---|---|
fa×宁粳4 fa×Ningjing 4 fa×fa | 128 143 | 15 0 |
Table 2 Combinations of the fa mutant and statistics of mature seeds.
杂交组合 Combination | 授粉的花数目 No. of flowers pollinated | 成熟种子数目 No. of mature seeds |
---|---|---|
fa×宁粳4 fa×Ningjing 4 fa×fa | 128 143 | 15 0 |
Fig. 3. FA gene mapping on chromosome 1 and structural analysis.^ A, Fine mapping of the FA gene, P0413C03 and P0678F11 are genomic BAC accession numbers, and the FA gene is mapped to a 117-kb region between two molecular markers L10 and L11; B, Genomic structure of the FA gene, black box represent exon beginning with the start codon ATG (+1) and ending with the stop codon TAA (+1295), encoding 1294 amino acids, and amino acids 655 to 883 representing LRR-RLKs(Leu-rich repeat receptor-like protein kinase) domain, and the 1001th to 1278th amino acids represent a kinase domain. The 1074th amino acid leucine is replaced by proline. The blue box represents the 5'- untranslated region and the white box represents the 3'- untranslated region.
Fig. 4. Relative expression levels of FA in rice tissues. ^ PA, Panicle; R, Root; ST, Stem; YL, Young Leaf; LS, Leaf sheath; A, Anther; PI, Pistil. OsUbiquitin was used as an internal control, Error bars show SD (n=3). S1, Archesporial cell stage; S2, Megaspore mother cell stage; S3a, Dyad stage; S3b, Tetrad stage; S4, Functional megaspore stage.
Fig. 5. Subcellular localization of FA protein in tobacco. ^ A, Subcellular localization of FA-GFP in tobacco epidermal cells; B, Localization of membrane marker in tobacco epidermal cells; C, Bright field of tobacco epidermal cell status; D, The merging of GFP, membrane marker and bright field. GFP indicates the green fluorescence of proteins. Bar=100 µm.
Fig. 6. Expression of embryo sac related genes of the wild type and fa mutant at different stages.^ Expression levels of gene related to embryo sac development in the wild type (WT) and mutant fa at different stages. OsUbiquitin was used as an internal control; Error bars show SD (n=3). * and ** indicate significant difference between the wild type and fa mutant by t-test, respectively(P<0.05, P<0.01). S1, Archesporial cell stage; S2, Megaspore mother cell stage; S3a, Dyad stage; S3b, Tetrad stage; S4, Functional megaspore stage.
[1] | Zhao L H, He J M, Lin H Y, Li Y Q, Liu R Y, Yang Z B, Qin Y.Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. Plant Physiol, 2014, 80(4): 615-628. |
[2] | Evans M M S. Theindeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell, 2007, 19(1): 46-62. |
[3] | Wang N, Huang H J, Ren S T, Li J J, Sun Y, Sun D Y, Zhang S Q.The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiol, 2012, 160(2): 696-707. |
[4] | 官文祥, 邓赟, 李小旭, 吴为人, 郑燕. 水稻雌性不育分子机理研究进展. 分子植物育种, 2017, 15(2): 672-684. |
Guan W X, Deng Y, Li X X, Wu W R, Zheng Y.Advances in research on molecular mechanism of female sterility in rice (Oryza sativa L.). Mol Plant Breed, 2017, 15(2): 672-684. (in Chinese with English abstract) | |
[5] | 凌定厚, 马镇荣, 陈梅芳, 陈琬瑛. 起源于体细胞培养的籼稻雌性不育突变. 遗传学报, 1991, 18(5): 446-451. |
Ling D H, Ma Z H, Chen M F, Chen W Y.Female sterile mutant from somaclones in somatic cell culture of indica rice.Acta Genet Sin, 1991, 18(5): 446-451. (in Chinese with English abstract) | |
[6] | Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F.B and C floral organ identity function require SEPALLATA MADS-box genes.Nature, 2000, 405(6783): 200-203. |
[7] | Dreni L, Jacchia S, Fornara F, Fornari M,Ouwerkerk P B F, An G, Colombo L,Kater M M. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J, 2007, 52(4): 690-699. |
[8] | Li H F, Liang W Q, Yin C S, Zhu L, Zhang D B.Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol, 2011, 156(1): 263-274. |
[9] | Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y.The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16(2): 500-509. |
[10] | Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N.The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15(8): 1728-1739. |
[11] | Zhao X A, Palma J D, Oane R, Gamuyao R, Luo M, Chaudhury A, Herve P, Xue Q Z, Bennett J.OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J, 2008, 54(3): 375-387. |
[12] | Hong L L, Tang D, Shen Y, Hu Q, Wang K J, Li M, Lu T G, Cheng Z K.MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther.New Phytol, 2012, 196(2): 402-413. |
[13] | Li Y, Qian X L, Chen M J, Fei Q L, Meyers B C, Liang W Q, Zhang D B.Regulatory role of a receptor-like kinase in specifying anther cell identity.Plant Physiol, 2016, 171(3): 2085-2100. |
[14] | Kumar M, Basha P O, Puri A, Rajpurohit D, Randhawa G S, Sharma T R, Dhaliwal H S.A candidate gene OsAPC6 of anaphase-promoting complex of rice identified through T-DNA insertion. Funct Integr Genom, 2010, 10(3): 349-358. |
[15] | Awasthi A, Paul P, Kumar S, Verma S K, Prasad R, Dhaliwal H S.Abnormal endosperm development causes female sterility in rice insertional mutantOsAPC6. Plant Sci, 2012, 183: 167-174. |
[16] | Rogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues.Plant Mol Biol, 1985, 5(2): 69-76. |
[17] | 刘向东, 徐雪宾, 卢永根, 徐是雄. 水稻胚囊形成过程与分期. 中国水稻科学, 1997, 11(3): 141-150. |
Liu X D, Xu X B, Lu Y G, Xu S X.The proeess of embryo sac formation and its stages dividing in rice.Chin J Rice Sci, 1997, 11(3): 141-150. (in Chinese with English abstract) | |
[18] | Shiu S H, Bleecker A B.Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98(19): 10 763-10 768. |
[19] | Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R F, Komeda Y.The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 1996, 8(6): 735-746. |
[20] | Kim C H, Jeong D H, An G.Molecular cloning and characterization of OsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa. Plant Sci, 2000, 152(1): 17-26. |
[21] | Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y, The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131(22): 5649-5657. |
[22] | Pu C X, Han Y F, Zhu S, Song F Y, Zhao Y, Wang C Y, Zhang Y C, Yang Q, Wang J, Bu S L, Sun L J, Zhang S W, Zhang S Q, Sun D Y, Sun Y.The rice receptor-like kinases DWARF AND RUNTISH SPIKELET1 and 2 repress cell death and affect sugar utilization during reproductive development.Plant Cell, 2017, 29(1): 70-89. |
[23] | Yu J P, Han J J, Kim Y J, Song M, Yang Z, He Y, Fu R F, Luo Z J, Hu J P, Liang W Q, Zhang D B.Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci USA, 2017, 114(46): 12327-12332. |
[24] | Canales C, Bhatt A M, Scott R, Dickinson H.EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis.Curr Biol, 2002, 12(20): 1718-1727. |
[25] | Zhao D Z, Wang G F, Speal B, Ma H.The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16(15): 2021-2031. |
[26] | Shin H S, Bleecker A B.Plant receptor-like kinase gene family: Diversity, function, and signaling.Sci STKE, 2001, 113: 22. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||