Chinese Journal OF Rice Science ›› 2018, Vol. 32 ›› Issue (5): 437-444.DOI: 10.16819/j.1001-7216.2018.7154
• 研究论文 • Previous Articles Next Articles
Lingling DOU, Haichao HU, Long MA, Xiaonan KE, Mingyue LIU, Wangmin LIAN, Ke JIN, Lingjuan XIE, Qingpo LIU*()
Received:
2017-12-25
Revised:
2018-02-01
Online:
2018-09-10
Published:
2018-09-10
Contact:
Qingpo LIU
窦玲玲, 胡海超, 马龙, 柯笑楠, 刘明月, 练旺民, 金珂, 谢玲娟, 刘庆坡*()
通讯作者:
刘庆坡
基金资助:
CLC Number:
Lingling DOU, Haichao HU, Long MA, Xiaonan KE, Mingyue LIU, Wangmin LIAN, Ke JIN, Lingjuan XIE, Qingpo LIU. Functional Analysis of a Copper/Zinc SOD Encoding Gene in Response to Arsenite Stress in Rice[J]. Chinese Journal OF Rice Science, 2018, 32(5): 437-444.
窦玲玲, 胡海超, 马龙, 柯笑楠, 刘明月, 练旺民, 金珂, 谢玲娟, 刘庆坡. 一个水稻铜锌SOD酶基因在应答亚砷酸盐胁迫中的作用[J]. 中国水稻科学, 2018, 32(5): 437-444.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.7154
基因名称 Gene symbol | 正向引物 Forward primer(5′-3′) | 反向引物 Reverse primer(5′-3′) |
---|---|---|
Os08g44770.1 | GCTTCCACCTCCACGAGTTT | GCCACCCTTCCCCAAATCAT |
β-actin | TGTGGATTGCCAAGGCTGAG | ACGGCGATAACAGCTCCTC |
Table 1 The real-time RT-PCR primer sequences.
基因名称 Gene symbol | 正向引物 Forward primer(5′-3′) | 反向引物 Reverse primer(5′-3′) |
---|---|---|
Os08g44770.1 | GCTTCCACCTCCACGAGTTT | GCCACCCTTCCCCAAATCAT |
β-actin | TGTGGATTGCCAAGGCTGAG | ACGGCGATAACAGCTCCTC |
Fig. 1. PCR analysis of transgenic rice plants carrying overexpressed Os08g44770.1. M–DNA marker 2000; 1, Positive control; 2, 3, 5-7, 9-12, 14, 15, 19, 21, 23, 24 are transformed plants; The others are untransformed plants.
Fig. 4. Comparison of biomass of WT and transgenic rice plants after 6-day As(Ⅲ) treatment(n=8). Common lowercase letters above the bars indicate no significant difference among treatments or materials (P≤0.05).
Fig. 5. Comparison of relative root elongation of WT and transgenic rice plants under As(Ⅲ) stress for 6 days (n=8). Common lowercase letters above the bars indicate no significant difference among treatments or materials (P≤0.05).
处理 Treatment | 供试材料 Tested material | 叶绿素a含量 Chlorophyll a content / (mg∙g-1) | 叶绿素b含量 Chlorophyll b content / (mg∙g-1) | 总叶绿素含量 Chlorophyll a+b content / (mg∙g-1) | 类胡萝卜素含量 Carotenoid content / (mg∙g-1) | 叶绿素a /叶绿素b Chlorophyll a/ Chlorophyll b | 类胡萝卜素 /总叶绿素 Carotenoid/ Chlorophyll a+b |
---|---|---|---|---|---|---|---|
对照CK | WT | 24.25±1.16 a | 8.14±1.16 a | 32.39±1.79 a | 4.69±0.30 abc | 2.98±0.35 a | 0.14±0.02 b |
OE-44770-4 | 22.90±1.30 b | 6.20±1.30 ab | 29.21±2.68 ab | 4.94±0.25 ab | 3.67±0.50 a | 0.17±0.01 ab | |
OE-44770-13 | 23.90±1.34 a | 7.27±1.34 ab | 31.20±2.44 a | 5.20±0.07 a | 3.30±0.49 a | 0.17±0.01 ab | |
亚砷酸处理As(Ⅲ) stress | WT | 23.83±0.44 a | 7.03±0.20 ab | 30.86±0.59 a | 4.23±0.07 cd | 3.38±0.07 a | 0.14±0.00 b |
OE-44770-4 | 22.05±0.89 b | 5.41±0.07 b | 25.13±0.77 b | 3.78±0.07 d | 3.64±0.16 a | 0.15±0.00 ab | |
OE-44770-13 | 23.00±0.30 b | 5.33±0.16 b | 24.81±0.48 b | 4.50±0.29 bc | 3.65±0.17 a | 0.18±0.00 a |
Table 2 Effects of As(Ⅲ) stress on chlorophyll contents of wild type(WT) and transgenic rice plants (n=3).
处理 Treatment | 供试材料 Tested material | 叶绿素a含量 Chlorophyll a content / (mg∙g-1) | 叶绿素b含量 Chlorophyll b content / (mg∙g-1) | 总叶绿素含量 Chlorophyll a+b content / (mg∙g-1) | 类胡萝卜素含量 Carotenoid content / (mg∙g-1) | 叶绿素a /叶绿素b Chlorophyll a/ Chlorophyll b | 类胡萝卜素 /总叶绿素 Carotenoid/ Chlorophyll a+b |
---|---|---|---|---|---|---|---|
对照CK | WT | 24.25±1.16 a | 8.14±1.16 a | 32.39±1.79 a | 4.69±0.30 abc | 2.98±0.35 a | 0.14±0.02 b |
OE-44770-4 | 22.90±1.30 b | 6.20±1.30 ab | 29.21±2.68 ab | 4.94±0.25 ab | 3.67±0.50 a | 0.17±0.01 ab | |
OE-44770-13 | 23.90±1.34 a | 7.27±1.34 ab | 31.20±2.44 a | 5.20±0.07 a | 3.30±0.49 a | 0.17±0.01 ab | |
亚砷酸处理As(Ⅲ) stress | WT | 23.83±0.44 a | 7.03±0.20 ab | 30.86±0.59 a | 4.23±0.07 cd | 3.38±0.07 a | 0.14±0.00 b |
OE-44770-4 | 22.05±0.89 b | 5.41±0.07 b | 25.13±0.77 b | 3.78±0.07 d | 3.64±0.16 a | 0.15±0.00 ab | |
OE-44770-13 | 23.00±0.30 b | 5.33±0.16 b | 24.81±0.48 b | 4.50±0.29 bc | 3.65±0.17 a | 0.18±0.00 a |
[1] | 刘雪琴, 仝瑞建, 宋睿. 植物的砷污染研究进展. 湖北农业科学, 2014, 53(15): 3477-3481. |
Liu X Q, Tong R J, Song R.Arsenic contamination of plant.Hubei Agric Sci, 2014, 53(15): 3477-3481. (in Chinese with English abstract) | |
[2] | Brammer H, Ravenscroft P.Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environ Int, 2009, 35(3): 647-654. |
[3] | Su Y H, Mcgrath S P, Zhao F J.Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil, 2010, 328(1-2): 27-34. |
[4] | 段桂兰. 植物体内砷酸盐还原的生物化学与分子生物学研究. 北京: 中国科学院生态环境研究中心, 2006. |
Duan G L.The biochemical and biomolecular mechanisms of arsenate reduction in plants. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2006. (in Chinese with English abstract) | |
[5] | Duan G L, Zhou Y, Tong Y R, Mukhopadhyay R, Rosen B P, Zhu Y G.A CDC25 homologue from rice functions as an arsenate reductase. New Phytol, 2007, 174(2): 311-321. |
[6] | Dhankher O P, Rosen B P, Mckinney E C, Meagher R B.Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA, 2006, 103(14): 5413-5418. |
[7] | Zhao F J, Ma J F, Ma J F, Meharg A A, Mcgrath S P.Arsenic uptake and metabolism in plants.New Phytol, 2009, 181(4): 777-794. |
[8] | Chen Y, Sun S K, Tang Z, Liu G, Moore K L, Maathuis F J M, Miller A J, Mcgrath S P, Zhao F J. The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice.J Exp Bot, 2017, 68(11): 3007-3016. |
[9] | Zhao X Q, Mitani N, Yamaji N, Shen R F, Ma J F.Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice.Plant Physiol, 2010, 153(4): 1871-1877. |
[10] | Ma J F, Yamaji N, Mitani N, Tamai K, Saeko K, Fujiwara T, Katsuhara M, Yano M.An efflux transporter of silicon in rice.Nature, 2007, 448(7150): 209-212. |
[11] | Mosa K A, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White J C, Dhankher O P.Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.Transg Res, 2012, 21(6): 1265-1277. |
[12] | Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi R D, Trivedi P K.Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ, 2014, 37(1): 140-152. |
[13] | Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma L Q.Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol, 2017, 51(21): 12131-12138. |
[14] | Wang P, Zhang W, Mao C, Xu G, Zhao F J.The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot, 2016, 67(21): 6051-6059. |
[15] | Xu J, Shi S, Wang L, Tang Z, Lü T, Zhu X L, Ding X M, Wang Y F, Zhao F J, Wu Z C. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol, 2017, 215(3): 1090-1101. |
[16] | Liu Q, Hu H, Zhu L, Li R, Feng Y, Zhang L, Yang Y, Liu X, Zhang H.Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L.). J Agric Food Chem, 2015, 63(40): 8849-8861. |
[17] | 张丽清, 陈霞, 胡海超, 张俊艇, 官慧谦, 刘庆坡. miR3979在水稻砷耐受性中的作用. 浙江农林大学学报, 2016, 33(4): 571-580. |
Zhang L Q, Chen X, Hu H C, Zhang J T, Liu Q P. miR3979-mediated arsenite tolerance in rice. J Zhejiang A & F Univ, 2016, 33(4): 571-580. (in Chinese with English abstract) | |
[18] | 王建华, 刘鸿先, 徐同. 超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用. 植物生理学报, 1989(1): 1-7. |
Wang J H, Liu H X, Xu T.The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant.Plant Physiol Commun, 1989(1): 1-7. (in Chinese) | |
[19] | Kaminaka H, Morita S, Yokoi H, Masumura T, Tanaka K.Molecular cloning and characterization of a cDNA for plastidic copper/zinc-superoxide dismutase in rice (Oryza sativa L.). Plant Cell Physiol, 1997, 38(1): 65-69. |
[20] | Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K.Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses.Free Radic Res, 1999, 31: S219-S225. |
[21] | Murray M G, Thompson W F.Rapid isolation of high molecular weight plant DNA.Nucl Acids Res, 1980, 8(19): 4321-4325. |
[22] | 刘全吉, 孙学成, 胡承孝. 砷对小麦生长和光合作用特性的影响. 生态学报, 2009, 29(2): 854-859. |
Liu Q J, Sun X C, Hu C X.Growth and photosynthesis characteristics of wheat (Triticum aestivun L.) under arsenic stress condition. Acta Ecol Sin, 2009, 29(2): 854-859. (in Chinese with English abstract) | |
[23] | 詹洁, 余永昌, 何龙飞. 逆境条件下的植物细胞程序性死亡. 南方农业学报, 2006, 37(1): 13-16. |
Zhan J, Yu Y C, He L F.Programmed cell death of plant in adversity conditions. J Southern Agric, 2006, 37(1): 13-16. (in Chinese with English abstract) | |
[24] | 桑子阳, 马履一, 陈发菊. 干旱胁迫对红花玉兰幼苗生长和生理特性的影响. 西北植物学报, 2011, 31(1): 109-115. |
Sang Z Y, Ma L Y, Chen F J.Growth and physiological characteristics ofMagnolia wufengensis seedlings under drought stress. Acta Bot Bor-Occid Sin, 2011, 31(1): 109-115. (in Chinese with English abstract) | |
[25] | Srivastava M, Ma L Q, Rathinasabapathi B, Srivastava P.Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour Technol, 2009, 100(3): 1115-1121. |
[26] | 谢亚军, 王兵, 梁新华, 韩招迪. 干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响. 农业科学研究, 2008, 29(4): 19-22. |
Xie Y J, Wang B, Liang X H, Han Z D.Effect of drought stress on active oxygen metabolism and activities of protective enzymes of licorice seedlings.J Agric Sci, 2008, 29(4): 19-22. (in Chinese with English abstract) | |
[27] | Tripathi P, Tripathi R D, Singh R P, Dwivedi S, Chakrabarty D, Trivedi P K, Adhikari B.Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut Res, 2013, 20(2): 884-896. |
[28] | 李黎, 宋帅杰, 方小梅. 高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响. 浙江农林大学学报, 2017, 34(2): 268-275. |
Li L, Song S J, Fang X M.Protection enzymes and lipid peroxidation in Phyllostachys edulis seedlings with temperature and water stresses. J Zhejiang A&F Univ, 2017, 34(2): 268-275. (in Chinese with English abstract) | |
[29] | 汪攀, 陈奶莲, 邹显花. 植物根系解剖结构对逆境胁迫响应的研究进展. 生态学杂志, 2015, 34(2): 550-556. |
Wang P, Chen N L, Zou X H.Research progress on adaptive responses of anatomical structure of plant roots to stress.Chin J Ecol, 2015, 34(2): 550-556. (in Chinese with English abstract) | |
[30] | 袁菊红, 胡绵好. 彩叶草根系对亚硒酸钠胁迫的适应机制研究. 西南农业学报, 2015, 28(5): 2009-2015. |
Yuan J H, Hu M H.Study on adaptive mechanisms of Coleus blumei roots to Na2SeO3 stress. Southwest China J Agric Sci, 2015, 28(5): 2009-2015. (in Chinese with English abstract) | |
[31] | Zgallai H, Steppe K, Lemeur R.Effects of different levels of water stress on leaf water potential, stomatal, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants.J Integr Plant Biol, 2006, 48(6): 679-685. |
[32] | 常思敏, 马新明, 蒋媛媛, 贺德先, 张贵龙. 土壤砷污染及其对作物的毒害研究进展. 河南农业大学学报, 2005, 39(2): 161-186. |
Chang S M, Ma X M, Jiang Y Y, He D L, Zhang G L.Research progress on arsenic contamination in soils and arsenic toxicity in crops.J Henan Agric Univ, 2005, 39(2): 161-186. (in Chinese with English abstract) | |
[33] | 蒋明义, 郭绍川. 水分亏缺诱导的氧化胁迫和植物的抗氧化作用. 植物生理学报, 1996, 32(2): 144-150. |
Jiang M Y, Guo S C.Oxidative stress and antioxidation induced by water deficiency in plants.Acta Phytophysiol Sin, 1996, 32(2): 144-150. (in Chinese with English abstract) | |
[34] | 林阳, 王世忠. 4 种油松混交灌木树种的耐阴性研究. 河北林果研究, 2014, 29(3): 258-262. |
Lin Y, Wang S Z.Research on the shade tolerance of 4 shrub tree species mixed with Chinese pine. Hebei J For Orch Res, 2014, 29(3): 258-262. (in Chinese with English abstract) | |
[35] | 肖姣娣. 3种刺篱植物对干旱胁迫的生理生化响. 西北农林科技大学学报, 2015, 43(7): 155-160. |
Xiao J D.Physiological and biochemical responses of three spiny plants to drought stress.J Northwest A & F Univ, 2015, 43(7): 155-160. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||