[1]Wang Y, Chen J, Zhu Y C, et al. Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stl) (Homoptera: Delphacidae). Pest Manag Sci, 2008, 64(12): 12781284.
[2]Bottrell D G, Schoenly K G. Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to highyielding rice production in tropical Asia. J AsiaPacif Entomol, 2012, 15(1): 122140.
[3]傅强,张志涛,胡萃,等. 高温处理后褐飞虱体内共生酵母菌和氨基酸需求的变化. 昆虫学报,2001,44(4):534540.
Fu Q, Zhang Z T, Hu C, et al. The effects of high temperature on both yeastlike symbionts and amino acid requirements of Nilaparvata lugens. Acta Entomol Sin, 2001, 44(4): 534540.(in Chinese with English abstract)
[4]Chen Y H, Bernal C C, Tan J, et al. Planthopper "adaptation" to resistant rice varieties: Changes in amino acid composition over time. J Insect Physiol, 2011, 57(10): 13751384.
[5]王国超,傅强,赖凤香,等. 褐飞虱体内类酵母共生菌与氨基酸营养的关系. 昆虫学报,2005,48(4): 483490.
Wang G C, Fu Q, Lai F X, et al. Relationship between yeastlike symbiotes and amino acid requirements in the rice brown planthopper, Nilaparvata lugens (Stl) ( Homoptera: Delphacidae).Acta Entomol Sin, 2005, 48(4): 483490.(in Chinese with English abstract)
[6]Wan P J, Yang L, Yuan S Y, et al. RNA interferenceaided knockdown of a putative saccharopine dehydrogenase leads to abnormal ecdysis in the brown planthopper, Nilaparvata lugens (Stl) (Hemiptera: Delphacidae). Bull Entomol Res, 2015, 105(4): 390398.
[7]Xue J, Zhou X, Zhang CX, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genom Biol, 2014, 15(521): 119.
[8]Wan P J, Yang L, Wang W X, et al. Constructing the major biosynthesis pathways for amino acids in the brown planthopper, Nilaparvata lugens Stl (Hemiptera: Delphacidae), based on the transcriptome data. Insect Mol Biol, 2014, 23(2): 152164.
[9]傅强. 褐飞虱全纯人工饲料继代饲养技术及营养生理学研究.杭州:浙江大学,1999.
Fu Q. Continous rearing and nutitional physiology of the brown planthopper, Nilaparvata lugens (Stl) on chemically defined diets. Hangzhou:Zhejiang University, 1999.(in Chinese with English abstract)
[10]Fan H W, Noda H, Xie H Q, et al. Genomic analysis of an Ascomycete fungus from the rice planthopper reveals how it adapts to an endosymbiotic lifestyle. Genome Biol Evol, 2015, 7(9): 1334.
[11]Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 29472958.
[12]Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28(10): 27312739.
[13]王渭霞,罗举,赖凤香,等. 水稻褐飞虱内生共生细菌Arsenophonus的鉴定和系统分析. 昆虫学报,2010,53(6): 647654.
Wang W X, Luo J, Lai F X, et al. Identification and phylogenetic analysis of symbiotic bacteria Arsenophonusfrom the rice brown planthopper, Nilaparvata lugens (Stl) ( Homoptera: Delphacidae).Acta Entomol Sin, 2010, 53(6): 647654.(in Chinese withEnglishabstract)
[14]Wang W X, Li K L, Chen Y, et al. Identification and function analysis of enolase gene NlEno1 from Nilaparvata lugens (Stl) (Hemiptera:Delphacidae). J Insect Sci, 2015, 15(1): 19.
[15]Li K L, Wan P J, Wang W X, et al. Ran involved in the development and reproduction is a potential target for RNAinterferencebased pest management in Nilaparvata lugens. PLoS ONE, 2015, 10(11): e0142142.
[16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(T)(Delta Delta C) method. Methods, 2001, 25(4): 402408.
[17]Yuan M, Lu Y, Zhu X, et al. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reversetranscription quantitative PCR. PLoS ONE, 2014, 9(1): e86503.
[18]Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, 2013, 20(2): 254260.
[19]Cheng D J, Hou R F. Histological observations on transovarial transmission of a yeastlike symbiote in Nilaparvata lugens Stl (Homoptera, Delphacidae). Tissue Cell, 2001, 33(3): 273279.
[20]Dong S, Pang K, Bai X, et al. Identification of two species of yeastlike symbiotes in the brown planthopper, Nilaparvata lugens. Curr Microbiol, 2011, 62(4): 11331138.
[21]Fu Q, Zhang Z, Hu C, et al. The effects of high temperature on both yeastlike symbionts and amino acid requirements of Nilaparvata lugens. Acta Entomol Sin, 2001, 44(4): 534540.
[22]Wilkinson T L, Ishikawa H. On the functional significance of symbiotic microorganisms in the Homoptera: A comparative study of Acyrthosiphon pisum and Nilaparvata lugens. Physiol Entomol, 2001, 26(1): 8693.
[23]Wan P J, Yuan S Y, Tang Y H, et al. Pathways of amino acid degradation in Nilaparvata lugens (Stl) with special reference to lysineketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). PLoS ONE, 2015, 10(5): e0127789.
[24]Hinnebusch A G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Revi, 1988, 52(2): 248273.
[25]Koslowsky S, Riegler H, Bergmuller E, et al. Higher biomass accumulation by increasing phosphoribosylpyrophosphate synthetase activity in Arabidopsis thaliana and Nicotiana tabacum. Plant Biotechnol J, 2008, 6(3): 281294.
[26]Zhang Y, Morar M, Ealick S E. Structural biology of the purine biosynthetic pathway. Cellul Mol Life Sci, 2008, 65(23): 36993724.
[27]Ingle R A. Histidine biosynthesis. The Arabidopsis book / American Society of Plant Biologists, 2011, 115.
[28]Stepansky A, Leustek T. Histidine biosynthesis in plants. Amino Acids, 2006, 30(2): 127142. |