Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (3): 247-255.DOI: 10.16819/j.1001-7216.2016.5172
• Orginal Article • Previous Articles Next Articles
Jun WANG1,2, Jin-yan ZHU2, Yong ZHOU1, Jie YANG2, Fang-jun FAN2, Wen-qi LI2, Fang-quan WANG2, Wei-gong ZHONG2, Guo-hua LIANG1,*()
Received:
2015-11-18
Revised:
2016-01-07
Online:
2016-05-10
Published:
2016-05-10
Contact:
Guo-hua LIANG
王军1,2, 朱金燕2, 周勇1, 杨杰2, 范方军2, 李文奇2, 王芳权2, 仲维功2, 梁国华1,*()
通讯作者:
梁国华
基金资助:
CLC Number:
Jun WANG, Jin-yan ZHU, Yong ZHOU, Jie YANG, Fang-jun FAN, Wen-qi LI, Fang-quan WANG, Wei-gong ZHONG, Guo-hua LIANG. QTL Analysis for Heading Date in Rice (Oryza sativa L.) Under Different Temperatures and Light Intensities[J]. Chinese Journal OF Rice Science, 2016, 30(3): 247-255.
王军, 朱金燕, 周勇, 杨杰, 范方军, 李文奇, 王芳权, 仲维功, 梁国华. 不同温光条件下水稻抽穗期QTL的定位与分析[J]. 中国水稻科学, 2016, 30(3): 247-255.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.5172
Fig. 2. Substitution mapping of QTLs for the heading date in rice. The substituted segments are represented by horizontal dark bars. The regions to which the substituted segments best map QTLs are shown by two vertical dotted lines.
代换系 CSSSLs | 代换区间 Substituted segment | 长度 Length /Mb | 染色体 Chromosome | QTL | E1 | E2 | 类型 Type | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
表型 Phenotype | 加型效应 Additive effect/d | 加性效应百分率 Additive effect contribution/% | 表型 Phenotype | 加型效应 Additive effect/d | 加性效应百分率 Additive effect contribution/% | ||||||
C32007 | RM6324-S1-3 | 7.34 | 1 | qHD1.1 | 67.0 | -4.6 | -6.0 | 84.6 | -10.3 | -9.8 | Ⅰ |
C32009 | Lsts1-34-RM11189 | 7.92 | 1 | qHD1.2 | 68.3 | -4.0 | -5.2 | 85.4 | -9.9 | -9.4 | Ⅰ |
C32016 | RM11762-S1-15 | 0.69 | 1 | qHD1.3 | 66.0 | -5.1 | -6.7 | 82.4 | -11.4 | -10.8 | Ⅰ |
C32042 | RM13034-RM13263 | 8.67 | 2 | qHD2.2 | 70.0 | -3.3 | -4.3 | 85.8 | -9.9 | -9.4 | Ⅰ |
C32050 | S2-30-S2-9 | 1.01 | 2 | qHD2.3 | 69.3 | -3.7 | -4.8 | 84.8 | -10.4 | -9.8 | Ⅰ |
C32076 | S4-2 | 2.50 | 4 | qHD4.1 | 68.2 | -2.8 | -3.8 | 85.8 | -8.5 | -8.3 | Ⅰ |
C32121 | RM21767-S7-17 | 5.83 | 7 | qHD7.2 | 69.2 | -4.4 | -5.8 | 85.2 | -10.9 | -10.2 | Ⅰ |
C32122 | S7-5 | 1.48 | 7 | qHD7.3 | 66.0 | -6.0 | -7.9 | 82.8 | -12.1 | -11.3 | Ⅰ |
C32129 | RM22722 | 1.39 | 8 | qHD8.2 | 70.4 | -3.8 | -5.0 | 86.6 | -10.2 | -9.5 | Ⅰ |
C32145 | RM25213-S10-24 | 4.44 | 10 | qHD10.1 | 67.4 | -4.4 | -5.8 | 84.8 | -10.2 | -9.7 | Ⅰ |
C32146 | S10-27-RM25486 | 3.62 | 10 | qHD10.2 | 68.2 | -4.0 | -5.2 | 84.2 | -10.5 | -10.0 | Ⅰ |
C32153 | S11-9-ZHsts11-43 | 7.15 | 11 | qHD11.3 | 67.4 | -4.4 | -5.8 | 84.6 | -10.3 | -9.8 | Ⅰ |
C32163 | S12-17 | 0.80 | 12 | qHD12.2 | 69.6 | -3.3 | -4.3 | 86.6 | -9.3 | -8.8 | Ⅰ |
C32070 | S3-9-S3-10 | 3.80 | 3.0 | qHD3.3 | 99.3 | 12.8 | 17.3 | 109.0 | 3.1 | 3 | Ⅱ |
C32102 | RM7158-S6-18 | 1.50 | 6 | qHD6.1 | 94.2 | 10.0 | 13.5 | 112.2 | 4.5 | 4.4 | Ⅱ |
C32107 | RM20069 | 0.77 | 6 | qHD6.3 | 95.2 | 10.5 | 14.2 | 117.2 | 7.0 | 6.8 | Ⅱ |
C32034 | Zsts2-1-RM12705 | 3.81 | 2 | qHD2.1 | 96.4 | 9.9 | 12.9 | 99.6 | -3.0 | -2.8 | Ⅲ |
C32086 | RM17305-S4-29 | 3.79 | 4 | qHD4.2 | 92.9 | 9.6 | 12.9 | 99.2 | -1.8 | -1.8 | Ⅲ |
C32113 | RM20659-S6-40 | 2.24 | 6 | qHD6.5 | 85.3 | 5.6 | 7.5 | 98.8 | -2.2 | -2.1 | Ⅲ |
C32124 | S7-26-RM22185 | 0.33 | 7 | qHD7.4 | 101.7 | 11.9 | 15.6 | 103.4 | -1.8 | -1.7 | Ⅲ |
C32126 | RM6925-S8-1 | 2.55 | 8 | qHD8.1 | 99.0 | 10.5 | 13.9 | 103.2 | -1.9 | -1.8 | Ⅲ |
C32020 | S1-15-S1-27 | 3.60 | 1 | qHD1.4 | 102.1 | 13.0 | 17.0 | 104.2 | - | - | Ⅳ |
C32053 | RM3894 | 1.02 | 2 | qHD3.1 | 92.1 | 7.8 | 10.1 | 103.2 | - | - | Ⅳ |
C32071 | S3-11-S3-12 | 5.22 | 3 | qHD3.4 | 90.8 | 8.5 | 11.5 | 101.6 | - | - | Ⅳ |
C32098 | S5-15-RM3170 | 4.26 | 5 | qHD5.2 | 100.4 | 13.1 | 17.7 | 102.8 | - | - | Ⅳ |
C32105 | S6-21-S6-7 | 3.06 | 6 | qHD6.2 | 88.9 | 7.4 | 9.9 | 104.8 | - | - | Ⅳ |
C32112 | RM162-S6-16 | 3.08 | 6 | qHD6.4 | 102.2 | 14.0 | 18.9 | 105.4 | - | - | Ⅳ |
C32115 | RM21344-S7-3 | 6.60 | 7 | qHD7.1 | 95.0 | 10.4 | 14.0 | 103.2 | - | - | Ⅳ |
C32130 | RM22825-RM22905 | 4.32 | 8 | qHD8.3 | 91.7 | 6.9 | 9.0 | 109.2 | - | - | Ⅳ |
C32133 | RM23175-RM23642 | 8.07 | 8 | qHD8.4 | 85.5 | 3.8 | 4.9 | 109.0 | - | - | Ⅳ |
C32140 | S9-4 | 1.54 | 9 | qHD9.1 | 97.3 | 9.7 | 12.7 | 109.8 | - | - | Ⅴ |
C32144 | RM24805 | 1.47 | 9 | qHD9.2 | 99.4 | 10.7 | 14.1 | 109.0 | - | - | Ⅳ |
C32147 | RM26076-S11-4 | 2.17 | 11 | qHD11.1 | 86.8 | 5.3 | 7.0 | 105.8 | - | - | Ⅳ |
C32154 | S11-29-S11-31 | 4.33 | 11 | qHD11.4 | 88.7 | 6.3 | 8.2 | 104.8 | - | - | Ⅳ |
C32157 | RM6094 | 0.08 | 11 | qHD11.5 | 94.3 | 9.1 | 11.9 | 103.2 | - | - | Ⅳ |
C32158 | RM27460-S12-8 | 0.56 | 12 | qHD12.1 | 97.1 | 10.5 | 13.7 | 108.2 | - | - | Ⅳ |
C32061 | RM3434-Zsts3-8 | 7.20 | 3 | qHD3.2 | 72.3 | - | - | 87.2 | -7.8 | -7.6 | Ⅴ |
C32088 | M17605-RM17693 | 2.51 | 4 | qHD4.3 | 70.0 | - | - | 86.4 | -8.4 | -8.1 | Ⅴ |
C32091 | S5-1 | 1.70 | 5 | qHD5.1 | 70.2 | - | - | 86.6 | -8.3 | -8.0 | Ⅴ |
C32149 | S11-5-RM26343 | 3.60 | 11 | qHD11.2 | 72.4 | - | - | 84.8 | -10.2 | -9.7 | Ⅴ |
Table 1 Detection of the QTL and their additive effects for heading date in various CSSSLs in various environments.
代换系 CSSSLs | 代换区间 Substituted segment | 长度 Length /Mb | 染色体 Chromosome | QTL | E1 | E2 | 类型 Type | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
表型 Phenotype | 加型效应 Additive effect/d | 加性效应百分率 Additive effect contribution/% | 表型 Phenotype | 加型效应 Additive effect/d | 加性效应百分率 Additive effect contribution/% | ||||||
C32007 | RM6324-S1-3 | 7.34 | 1 | qHD1.1 | 67.0 | -4.6 | -6.0 | 84.6 | -10.3 | -9.8 | Ⅰ |
C32009 | Lsts1-34-RM11189 | 7.92 | 1 | qHD1.2 | 68.3 | -4.0 | -5.2 | 85.4 | -9.9 | -9.4 | Ⅰ |
C32016 | RM11762-S1-15 | 0.69 | 1 | qHD1.3 | 66.0 | -5.1 | -6.7 | 82.4 | -11.4 | -10.8 | Ⅰ |
C32042 | RM13034-RM13263 | 8.67 | 2 | qHD2.2 | 70.0 | -3.3 | -4.3 | 85.8 | -9.9 | -9.4 | Ⅰ |
C32050 | S2-30-S2-9 | 1.01 | 2 | qHD2.3 | 69.3 | -3.7 | -4.8 | 84.8 | -10.4 | -9.8 | Ⅰ |
C32076 | S4-2 | 2.50 | 4 | qHD4.1 | 68.2 | -2.8 | -3.8 | 85.8 | -8.5 | -8.3 | Ⅰ |
C32121 | RM21767-S7-17 | 5.83 | 7 | qHD7.2 | 69.2 | -4.4 | -5.8 | 85.2 | -10.9 | -10.2 | Ⅰ |
C32122 | S7-5 | 1.48 | 7 | qHD7.3 | 66.0 | -6.0 | -7.9 | 82.8 | -12.1 | -11.3 | Ⅰ |
C32129 | RM22722 | 1.39 | 8 | qHD8.2 | 70.4 | -3.8 | -5.0 | 86.6 | -10.2 | -9.5 | Ⅰ |
C32145 | RM25213-S10-24 | 4.44 | 10 | qHD10.1 | 67.4 | -4.4 | -5.8 | 84.8 | -10.2 | -9.7 | Ⅰ |
C32146 | S10-27-RM25486 | 3.62 | 10 | qHD10.2 | 68.2 | -4.0 | -5.2 | 84.2 | -10.5 | -10.0 | Ⅰ |
C32153 | S11-9-ZHsts11-43 | 7.15 | 11 | qHD11.3 | 67.4 | -4.4 | -5.8 | 84.6 | -10.3 | -9.8 | Ⅰ |
C32163 | S12-17 | 0.80 | 12 | qHD12.2 | 69.6 | -3.3 | -4.3 | 86.6 | -9.3 | -8.8 | Ⅰ |
C32070 | S3-9-S3-10 | 3.80 | 3.0 | qHD3.3 | 99.3 | 12.8 | 17.3 | 109.0 | 3.1 | 3 | Ⅱ |
C32102 | RM7158-S6-18 | 1.50 | 6 | qHD6.1 | 94.2 | 10.0 | 13.5 | 112.2 | 4.5 | 4.4 | Ⅱ |
C32107 | RM20069 | 0.77 | 6 | qHD6.3 | 95.2 | 10.5 | 14.2 | 117.2 | 7.0 | 6.8 | Ⅱ |
C32034 | Zsts2-1-RM12705 | 3.81 | 2 | qHD2.1 | 96.4 | 9.9 | 12.9 | 99.6 | -3.0 | -2.8 | Ⅲ |
C32086 | RM17305-S4-29 | 3.79 | 4 | qHD4.2 | 92.9 | 9.6 | 12.9 | 99.2 | -1.8 | -1.8 | Ⅲ |
C32113 | RM20659-S6-40 | 2.24 | 6 | qHD6.5 | 85.3 | 5.6 | 7.5 | 98.8 | -2.2 | -2.1 | Ⅲ |
C32124 | S7-26-RM22185 | 0.33 | 7 | qHD7.4 | 101.7 | 11.9 | 15.6 | 103.4 | -1.8 | -1.7 | Ⅲ |
C32126 | RM6925-S8-1 | 2.55 | 8 | qHD8.1 | 99.0 | 10.5 | 13.9 | 103.2 | -1.9 | -1.8 | Ⅲ |
C32020 | S1-15-S1-27 | 3.60 | 1 | qHD1.4 | 102.1 | 13.0 | 17.0 | 104.2 | - | - | Ⅳ |
C32053 | RM3894 | 1.02 | 2 | qHD3.1 | 92.1 | 7.8 | 10.1 | 103.2 | - | - | Ⅳ |
C32071 | S3-11-S3-12 | 5.22 | 3 | qHD3.4 | 90.8 | 8.5 | 11.5 | 101.6 | - | - | Ⅳ |
C32098 | S5-15-RM3170 | 4.26 | 5 | qHD5.2 | 100.4 | 13.1 | 17.7 | 102.8 | - | - | Ⅳ |
C32105 | S6-21-S6-7 | 3.06 | 6 | qHD6.2 | 88.9 | 7.4 | 9.9 | 104.8 | - | - | Ⅳ |
C32112 | RM162-S6-16 | 3.08 | 6 | qHD6.4 | 102.2 | 14.0 | 18.9 | 105.4 | - | - | Ⅳ |
C32115 | RM21344-S7-3 | 6.60 | 7 | qHD7.1 | 95.0 | 10.4 | 14.0 | 103.2 | - | - | Ⅳ |
C32130 | RM22825-RM22905 | 4.32 | 8 | qHD8.3 | 91.7 | 6.9 | 9.0 | 109.2 | - | - | Ⅳ |
C32133 | RM23175-RM23642 | 8.07 | 8 | qHD8.4 | 85.5 | 3.8 | 4.9 | 109.0 | - | - | Ⅳ |
C32140 | S9-4 | 1.54 | 9 | qHD9.1 | 97.3 | 9.7 | 12.7 | 109.8 | - | - | Ⅴ |
C32144 | RM24805 | 1.47 | 9 | qHD9.2 | 99.4 | 10.7 | 14.1 | 109.0 | - | - | Ⅳ |
C32147 | RM26076-S11-4 | 2.17 | 11 | qHD11.1 | 86.8 | 5.3 | 7.0 | 105.8 | - | - | Ⅳ |
C32154 | S11-29-S11-31 | 4.33 | 11 | qHD11.4 | 88.7 | 6.3 | 8.2 | 104.8 | - | - | Ⅳ |
C32157 | RM6094 | 0.08 | 11 | qHD11.5 | 94.3 | 9.1 | 11.9 | 103.2 | - | - | Ⅳ |
C32158 | RM27460-S12-8 | 0.56 | 12 | qHD12.1 | 97.1 | 10.5 | 13.7 | 108.2 | - | - | Ⅳ |
C32061 | RM3434-Zsts3-8 | 7.20 | 3 | qHD3.2 | 72.3 | - | - | 87.2 | -7.8 | -7.6 | Ⅴ |
C32088 | M17605-RM17693 | 2.51 | 4 | qHD4.3 | 70.0 | - | - | 86.4 | -8.4 | -8.1 | Ⅴ |
C32091 | S5-1 | 1.70 | 5 | qHD5.1 | 70.2 | - | - | 86.6 | -8.3 | -8.0 | Ⅴ |
C32149 | S11-5-RM26343 | 3.60 | 11 | qHD11.2 | 72.4 | - | - | 84.8 | -10.2 | -9.7 | Ⅴ |
Fig. 3. Physical locations of polymorphic markers and the distribution of 40 QTLs for heading date on 12 rice chromosomes. The molecular markers are indicated in the right side, and the physical locations (Mb) of each marker are indicated in the left side. The regions of 19 newly detected QTLs for heading date are shown in black, and the regions of the other 21 QTLs which share the same regions with the previously detected QTLs are shown in gray.
[1] | Chang T T, Li C C, Vergara B S.Component analysis of duration from seeding to heading in rice by the basic vegetative phase and the photoperiod-sensitive phase.Euphytica, 1969, 18(1): 79-91. |
[2] | Tsai K H.Gene loci and alleles controlling the duration of basic vegetative growth of rice.Rice Genet, 1986, 5(6): 339-349. |
[3] | 胡时开, 苏岩, 叶卫军, 等. 水稻抽穗期遗传与分子调控机理研究进展. 中国水稻科学, 2012, 26(3): 373-382. |
Hu S K, Su Y, Ye W J, et al.Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.).Chin J Rice Sci, 2012, 26(3): 189-196. (in Chinese with English abstract) | |
[4] | Yano M, Katayose Y, Ashikari M, et al.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene constans.Plant Cell, 2000, 12(12): 2473-2483. |
[5] | Itoh H, Nonoue Y, Yano M, et al.A pair of floral regulators sets critical day length for Hd3a florigen expression in rice.Nat Genet, 2010, 42(7): 635-638. |
[6] | Takahashi Y, Shomura A, Sasaki T, et al.Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2.Proc Natl Acad Sci USA, 2001, 98(14): 7922-7927. |
[7] | Hori K, Ogiso-Tanaka E, Matsubara K, et al.Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response.Plant J, 2013, 76(1): 36-46. |
[8] | Matsubara K, Ogiso-Tanaka E, Hori K, et al.Natural variation in Hd17, a homolog of arabidopsis ELF3 that is involved in rice photoperiodic flowering.Plant Cell Physiol, 2012, 53(4): 709-716. |
[9] | Doi K, Izawa T, Fuse T, et al.Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd.Genes Dev, 2004, 18(8): 926-936. |
[10] | Matsubara K, Yamanouchi U, Wang Z X, et al.Ehd2, a rice ortholog of the maize INDETERMINATE 1 gene, promotes flowering by up-regulating Ehd.Plant Physiol, 2008, 148(3): 1425-1435. |
[11] | Matsubara K, Yamanouchi U, Nonoue Y, et al.Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering.Plant J, 2011, 66(4): 603-612. |
[12] | Gao H, Zheng X M, Fei G, et al.Ehd4 encodes a novel and Oryza-genus-specific regulator of hotoperiodic flowering in rice.PLoS Genet, 2013, 9(2): e1003281. |
[13] | Andrés F, Galbraith D W, Talón M, et al.Analysis of photoperiod sensitivity sheds light on the role of phytochromes in photoperiodic flowering in rice.Plant Physiol, 2009, 151(2): 681-690. |
[14] | Xue W Y, Xing Y Z, Weng X Y, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nat Genet, 2008, 40(6): 761-767. |
[15] | Yan W H, Liu H Y, Zhou X C, et al.Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice.Cell Res, 2013, 23(7): 969-971. |
[16] | Wu W X, Zheng X M, Lu G W, et al.Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia.Proc Natl Acad Sci USA, 2013, 110(8): 2775-2780. |
[17] | Wei X J, Xu J F, Guo H N, et al.DTH8 Suppresses flowering in rice, influencing plant height and yield potential simultaneously.Plant Physiol, 2010, 153(4): 1747-1758. |
[18] | 刘冠明, 李文涛, 曾瑞珍, 等. 水稻单片段代换系代换片段的QTL鉴定. 遗传学报, 2004, 31(12): 1395-1400. |
Liu G M, Li W T, Zeng R Z, et al.Identification of QTLs on substituted segments in single segment substitution lines of rice.J Genet Genom, 2004, 31(12): 1395-1400. (in Chinese with English abstract) | |
[19] | Eshed Y, Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics, 1995, 141(3): 1147-1162. |
[20] | McCouch S R,CGSNL.Gene nomenclature system for rice.Rice,2008,1(1): 72-84. |
[21] | Paterson A H, Deverna J W, Lanini B, et al.Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato.Genetics, 1990, 124(3): 735-742. |
[22] | Young N D, Tanksley S D.Restriction fragment length polymorphism maps and the concept of graphical genotypes.Theor Appl Genet, 1989, 77(1): 95-101. |
[23] | Xu J J, Zhao Q, Du P N, et al.Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.).BMC Genom, 2010, 24(11): 656-669. |
[24] | Shomura A, Izawa T, Ebana K, et al.Deletion in a gene associated with grain size increased yields during rice domestication.Nat Genet, 2008, 40(8): 1023-1028. |
[25] | Li Y B, Fan C C, Xing Y Z, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet, 2011, 43(12): 1266-1269. |
[26] | Shen G J, Xing Y Z.Two novel QTLs for heading date are identified using a set of chromosome segment substitution lines in rice (Oryza sativa L.).J Genet Genom, 2014, 41(12): 659-662. |
[27] | 何风华, 席章营, 曾瑞珍, 等. 利用单片段代换系定位水稻抽穗期QTL. 中国农业科学, 2005, 38(8): 1505-1513. |
He F H, Xi Z Y, Zeng R Z, et al.Mapping of heading date QTLs in rice (Oryza sativa L.) using single segment substitution lines.Sci Agric Sin, 2005, 38(8): 1505-1513. (in Chinese with English abstract) | |
[28] | 杨德卫, 张亚东, 朱镇, 等. 基于CSSL的水稻抽穗期QTL定位及遗传分析. 植物学报, 2010, 45(2): 189-197. |
Yang D W, Zhang Y D, Zhu Z, et al.Mapping and genetic analysis of quantitative trait loci for heading date with chromosome segment substitution lines in Oryza sativa.Chin Bull Bot, 2010, 45(2): 189-197. (in Chinese with English abstract) | |
[29] | 周勇, 崔国昆, 张言周, 等. 水稻抽穗期主效QTL qHd8.1的精细定位. 中国水稻科学, 2012, 26(1): 43-48. |
Zhou Y, Cui G K, Zhang Y Z, et al.Fine mapping of a major QTL qHd8.1 for heading date in rice.Chin J Rice Sci, 2012, 26(1): 43-48. (in Chinese with English abstract) | |
[30] | 张永生, 江玲, 刘喜, 等. 控制水稻品种Koshihikari 抽穗期的数量性状位点. 作物学报, 2008, 34(11): 1869-1876. |
Zhang Y S, Jiang L, Liu X, et al.Quantitative trait loci for rice heading time in Koshihikari.Acta Agron Sin, 2008, 34(11): 1869-1876. (in Chinese with English abstract) | |
[31] | Cheng L R, Wang J M, Ye G Y, et al.Identification of stably expressed QTL for heading date using eciprocal introgression line and recombinant inbred line populations in rice. Genet Res (Camb), 2012, 94(5): 245-253. |
[32] | Lee S, Jia M H, Jia Y L, et al.Tagging quantitative trait loci for heading date and plant height in important breeding parents of rice (Oryza sativa).Euphytica, 2014, 197(2): 191-200. |
[33] | 曾晶, 姜恭好, 何予卿, 等. 利用籼粳交探讨水稻株高和抽穗期的遗传基础. 分子植物育种, 2006, 4(4): 527-534. |
Zeng J, Jiang G H, He Y Q, et al.The genetic bases analysis of plant height and heading date in Indica/Japonica hybrids.Mol Plant Breeding, 2006, 4(4): 527-534. (in Chinese with English abstract) | |
[34] | 邵迪, 李秋萍, 吴比, 等. 利用染色体片段代换系定位水稻主效抽穗期QTL. 湖南农业大学学报: 自然科学版: 2009, 35(4): 344-347. |
Shao D, Li Q P, Wu B, et al.Mapping of a major QTL for heading date in rice using chromosome segment substitution lines. J Hunan Agric Univ:Nat Sci, 2009, 35(4): 344-347. (in Chinese with English abstract) | |
[35] | 冯跃, 翟荣荣, 曹立勇, 等. 不同施氮水平下水稻株高与抽穗期的QTL比较分析. 作物学报, 2011, 37(9): 1525-1532. |
Feng Y, Zhai R R, Cao L Y, et al.QTL analysis for plant height and heading date in rice under two nitrogen levels.Acta Agron Sin, 2011, 37(9): 1525-1532. (in Chinese with English abstract) | |
[36] | Wang B B, Zhu C X, Liu X, et al.Fine mapping of qHD4-1, a QTL controlling the heading date, to a 20.7-kb DNA fragment in rice (Oryza sativa L.).Plant Mol Biol Rep, 2011, 29(3): 702-713. |
[37] | Pei C G, Liu X, Wang W Y, et al.Fine mapping of qHD8-1, a QTL controlling the heading date, to a 26-kb DNA fragment in rice (Oryza sativa L.).J Plant Biol, 2011, 54(3): 190-198. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||