Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (3): 232-238.DOI: 10.16819/j.1001-7216.2016.5156
• Orginal Article • Previous Articles Next Articles
Wei-jun YE1,2, Shi-kai HU2,3, Li-wen WU2, Long-biao GUO2, Qian QIAN2,3,*()
Received:
2015-10-26
Revised:
2015-12-19
Online:
2016-05-10
Published:
2016-05-10
Contact:
Qian QIAN
About author:
# These authors contributed equally to this work;
叶卫军1,2, 胡时开2,3, 吴立文2, 郭龙彪2, 钱前2,3,*()
通讯作者:
钱前
作者简介:
# 共同第一作者;
基金资助:
CLC Number:
Wei-jun YE, Shi-kai HU, Li-wen WU, Long-biao GUO, Qian QIAN. Genetic Analysis and Gene Mapping of a Heading-delayed Mutant dth9 in Rice (Oryza sativa L.)[J]. Chinese Journal OF Rice Science, 2016, 30(3): 232-238.
叶卫军, 胡时开, 吴立文, 郭龙彪, 钱前. 水稻迟抽穗突变体dth9的遗传分析与基因定位[J]. 中国水稻科学, 2016, 30(3): 232-238.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.5156
分子标记 Marker | 正向引物 (5'-3') Forward primer (5'-3') | 反向引物 (5'-3') Reverse primer (5'-3') | 大小 Size/bp | 物理位置 Physical position/Mb |
---|---|---|---|---|
D9-4 | AGCCTCATACCTCCCACA | CGCCTGGAAGACAATCAA | 151 | 3.047 |
D9-7 | AAAGATTCTCAAGGCCAGTC | TATCTAGATCGTGGCCCA | 172 | 3.583 |
D9-8 | TTGCATGGTCACGTTCCT | TGATTGCGGAGTGATGAG | 260 | 3.608 |
D9-9 | CCAATGTAGCAGCCGTAA | CGTTGAGGATTCAGTGGT | 129 | 3.983 |
D9-17 | AATCGGTGAATGTCCTTG | GAAACATCCATGCCTTGC | 124 | 4.223 |
D9-19 | TCCATCGCATTTGAGTGT | AAGTTAGTAGGCGGAAGG | 223 | 4.332 |
D9-12 | GGGGTGATGCTGGTTTAT | AAGGGTCTCATCTGGAAAA | 255 | 4.354 |
D9-2 | GGCTTCTCAACCAAGGTAA | ACGCATCAAATCAGGCAC | 205 | 4.554 |
RM444 | GCTCCACCTGCTTAAGCATC | TGAAGACCATGTTCTGCAGG | 162 | 5.925 |
Table 1 Primers used for fine mapping in the study.
分子标记 Marker | 正向引物 (5'-3') Forward primer (5'-3') | 反向引物 (5'-3') Reverse primer (5'-3') | 大小 Size/bp | 物理位置 Physical position/Mb |
---|---|---|---|---|
D9-4 | AGCCTCATACCTCCCACA | CGCCTGGAAGACAATCAA | 151 | 3.047 |
D9-7 | AAAGATTCTCAAGGCCAGTC | TATCTAGATCGTGGCCCA | 172 | 3.583 |
D9-8 | TTGCATGGTCACGTTCCT | TGATTGCGGAGTGATGAG | 260 | 3.608 |
D9-9 | CCAATGTAGCAGCCGTAA | CGTTGAGGATTCAGTGGT | 129 | 3.983 |
D9-17 | AATCGGTGAATGTCCTTG | GAAACATCCATGCCTTGC | 124 | 4.223 |
D9-19 | TCCATCGCATTTGAGTGT | AAGTTAGTAGGCGGAAGG | 223 | 4.332 |
D9-12 | GGGGTGATGCTGGTTTAT | AAGGGTCTCATCTGGAAAA | 255 | 4.354 |
D9-2 | GGCTTCTCAACCAAGGTAA | ACGCATCAAATCAGGCAC | 205 | 4.554 |
RM444 | GCTCCACCTGCTTAAGCATC | TGAAGACCATGTTCTGCAGG | 162 | 5.925 |
分子标记 Marker | 正向引物 (5'-3') Forward primer (5'-3') | 反向引物 (5'-3') Reverse primer (5'-3') |
---|---|---|
Ghd7 | AGGTGCTACGAGAAGCAAATCC | GGGCCTCATCTCGGCATAG |
Ghd8 | CGTGCAATGGTTTAGACTAAAG | AACAGCATCAGCATCAACAA |
Hd6 | ACGTGAAGCTATGGCACATC | TGTGGTCGTGCTCTGCTATT |
Hd3a | GCTAACGATGATCCCGAT | CCTGCAATGTATAGCATGC |
Hd1 | CGTTTCGCCAAGAGATCAG | AGATAGAGCTGCAGTGGAGAAC |
RFT1 | CGTCCATGGTGACCCAACA | CCGGGTCTACCATCACGAGT |
Ehd1 | AATCGATTCCAACAACAAGCAA | TGTCGAGAGCGGTGGATGA |
OsMADS51 | GTCGGCAAGCTCTACGAGTACTC | GCGAATTGCTGATAGCGATCA |
OsActin1 | GCTATGTACGTCGCCATCCA | GGACAGTGTGGCTGACACCAT |
Table 2 Primers used for qRT-PCR analysis of genes associated with heading date.
分子标记 Marker | 正向引物 (5'-3') Forward primer (5'-3') | 反向引物 (5'-3') Reverse primer (5'-3') |
---|---|---|
Ghd7 | AGGTGCTACGAGAAGCAAATCC | GGGCCTCATCTCGGCATAG |
Ghd8 | CGTGCAATGGTTTAGACTAAAG | AACAGCATCAGCATCAACAA |
Hd6 | ACGTGAAGCTATGGCACATC | TGTGGTCGTGCTCTGCTATT |
Hd3a | GCTAACGATGATCCCGAT | CCTGCAATGTATAGCATGC |
Hd1 | CGTTTCGCCAAGAGATCAG | AGATAGAGCTGCAGTGGAGAAC |
RFT1 | CGTCCATGGTGACCCAACA | CCGGGTCTACCATCACGAGT |
Ehd1 | AATCGATTCCAACAACAAGCAA | TGTCGAGAGCGGTGGATGA |
OsMADS51 | GTCGGCAAGCTCTACGAGTACTC | GCGAATTGCTGATAGCGATCA |
OsActin1 | GCTATGTACGTCGCCATCCA | GGACAGTGTGGCTGACACCAT |
Fig. 1. Phenotypes of the wild-type and the heading-delayed mutant dth9. A, Phenotypes of the wild-type and the heading-delayed mutant DTH9, bar=20 cm. B, Phenotype of DTH9 at mature stage, bar=20 cm.
农艺性状 Agronomic trait | 野生型 Wild-type | 突变体 Mutant |
---|---|---|
株高Plant height /cm | 118.67±1.52 | 115.30±0.58* |
穗长Panicle length/cm | 23.05±0.91 | 21.33±1.15 |
有效穗数 No. of effective panicles | 8.3±0.5 | 8.0±0.8 |
抽穗期 Heading date/d | 98.0±0.8 | 147.3±2.5** |
每穗实粒数 No. of filled grains per panicle | 171.5±4.0 | 173.0±2.7 |
结实率 Seed-setting rate/% | 93.72±0.01 | 92.20±0.01 |
千粒重 1000-grain weight/g | 31.50±0.57 | 31.57±0.40 |
一次枝梗数 Primary rachis branch number | 12.0±0.7 | 12.6±0.6 |
二次枝梗数 Secondary rachis branch number | 36.8±1.3 | 37.3±0.6 |
Table 3 Comparison of major agronomic traits between the wild-type and the mutant (Hangzhou, Zhejiang, 2013).
农艺性状 Agronomic trait | 野生型 Wild-type | 突变体 Mutant |
---|---|---|
株高Plant height /cm | 118.67±1.52 | 115.30±0.58* |
穗长Panicle length/cm | 23.05±0.91 | 21.33±1.15 |
有效穗数 No. of effective panicles | 8.3±0.5 | 8.0±0.8 |
抽穗期 Heading date/d | 98.0±0.8 | 147.3±2.5** |
每穗实粒数 No. of filled grains per panicle | 171.5±4.0 | 173.0±2.7 |
结实率 Seed-setting rate/% | 93.72±0.01 | 92.20±0.01 |
千粒重 1000-grain weight/g | 31.50±0.57 | 31.57±0.40 |
一次枝梗数 Primary rachis branch number | 12.0±0.7 | 12.6±0.6 |
二次枝梗数 Secondary rachis branch number | 36.8±1.3 | 37.3±0.6 |
组合 Cross | F1表型 Phenotype of F1 | F2 | χ2 | ||
---|---|---|---|---|---|
正常植株数 No. of normal plants | 迟抽穗植株数 No. of heading- delayed plants | 总数 Total | |||
DTH9/93-11 | 正常抽穗期 Normal | 662 | 208 | 870 | 0.281 |
93-11/DTH9 | 正常抽穗期 Normal | 389 | 119 | 508 | 0.343 |
Table 4 Genetic analysis of the dth9 mutant.
组合 Cross | F1表型 Phenotype of F1 | F2 | χ2 | ||
---|---|---|---|---|---|
正常植株数 No. of normal plants | 迟抽穗植株数 No. of heading- delayed plants | 总数 Total | |||
DTH9/93-11 | 正常抽穗期 Normal | 662 | 208 | 870 | 0.281 |
93-11/DTH9 | 正常抽穗期 Normal | 389 | 119 | 508 | 0.343 |
Fig. 2. Genotype analysis of the 21 F2 plants with mutant phenotype using the marker RM444. 1, Nipponbare; 2, 93-11; 3, F1; 4-24, Individuals with mutant phenotype in the F2 population; 7, Single crossing-over plant.
Fig. 4. Expression levels of genes associated with heading date in the dth9 mutant and the wild-type. Figures were shown as mean ± SD (n=3). *, ** Significant at 0.05 and 0.01 levels by t-test, respectively.
[1] | 刘广林, 罗群昌, 陈远孟, 等. 水稻种质资源抽穗扬花期耐冷性鉴定评价. 西南农业学报, 2013, 26(2): 395-398. |
Liu G L, Luo Q C, Chen Y M, et al.Analysis and evaluation on cold tolerance for rice germplasm resources at flowering stage.Southwest China J Agric Sci, 2013, 26(2): 395-398.(in Chinese with English abstract) | |
[2] | 邱磊, 蒋海潮, 冯玉涛, 等.控制水稻抽穗期和株高的QTL定位及遗传分析. 基因组学与应用生物学, 2014, 33(4): 828-835 |
Qiu L, Jiang H C,Feng Y T, et al.Mapping and genetic analycis of QTL for heading date and plant height in rice.Genonm Appl Biol,2014,33(4):828-835.(in Chinese with English abstract) | |
[3] | 邓晓建, 周开达, 李仁端, 等. 水稻完全显性早熟性的发现和基因定位. 中国农业科学, 2001, 34(3): 233-239. |
Deng X J, Zhou K D, Li R D, et al.Identification and gene mapping of completely dominant earliness in rice (Oryza sativa L.).Sci Agric Sin, 2001, 34(3): 233-239.(in Chinese with English abstract) | |
[4] | 胡时开, 苏岩, 叶卫军, 等. 水稻抽穗期遗传与分子调控机理研究进展. 中国水稻科学, 2012, 26(3): 373-382. |
Hu S K, Sun Y, Ye W J, et al.Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.).Chin J Rice Sci, 2012, 26(3): 373-382.(in Chinese with English abstract) | |
[5] | Yano M, Katayose Y, Ashikari M, et al.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS,Plant Cell, 2000, 12(12): 2473-2484. |
[6] | Kojima S, Takahashi Y, Kobayashi Y, et al.Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.Plant Cell Physiol, 2002, 43(10): 1096-1105. |
[7] | Doi K, Izawa T, Fuse T, et al.Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.Genes & Dev, 2004, 18(8): 926-936. |
[8] | Takahashi Y, Shomura A, Sasaki T, et al.Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2.Proc Natl Acad Sci USA, 2001, 98(14): 7922-7927. |
[9] | Matsubara K, Yamanouchi U, Nonoue Y, et al.Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering.Plant J, 2011, 66(4): 603-612. |
[10] | Gao H, Zheng X M, Fei G, et al.Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.Plos Genet, 2013, 9(2): e1003281. |
[11] | Xue W, Xing Y, Weng X, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nat Genet, 2008, 40(6): 761-767. |
[12] | Wei X, Xu J, Guo H, et al.DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously.Plant Physiol, 2010, 153(4): 1747-1758. |
[13] | Wu K S, Tanksley S D.Abundance, polymorphism and genetic mapping of microsatellites in rice.Mol Gen Genet, 1993, 241(1): 225-235. |
[14] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.Methods, 2001, 25: 402-408. |
[15] | Hirochika H, Guiderdoni E, An G, et al.Rice mutant resources for gene discovery.Plant Mol Biol, 2004, 54(3): 325-334. |
[16] | 郭梁, 张振华, 庄杰云. 水稻抽穗期QTL及其与产量性状遗传控制的关系. 中国水稻科学, 2012, 26(2): 235-245. |
Guo L, Zhang Z H, Zhuang J Y.Quantiative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa).Chin J Rice Sci, 2012, 26(2): 235-245.(in Chinese with English abstract) | |
[17] | Thomson M J, Edwards J D, Septiningsih E M, et a1. Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL.Genetics, 2006, 172: 2501-2514. |
[18] | Lin H, Ashikari M, Yamanouchi U, et a1. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice.Breeding Sci, 2002, 52(1): 35-41. |
[19] | Takeuchi Y, Lin S Y, Sasaki T, et a1. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice.Theor Appl Genet, 2003, 107(7): 1174-1180. |
[20] | Matsubara K, Kono I, Hori K, et a1. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars.Theor Appl Genet, 2008, 117(6): 935-945. |
[21] | Monna L, Lin H X, Kojima S, et a1. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice.Theor Appl Genet, 2002, 104(5): 772-778. |
[22] | Lin H, Liang Z W, Sasaki T, et a1. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice.Breeding Sci, 2003, 53(1): 51-59. |
[23] | Yamamoto T, Kuboki Y, Lin S Y, et a1. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors.Theor Appl Genet, 1998, 97(1): 37-44. |
[24] | Yan W H, Wang P, Chen H X, et al.A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice.Mol Plant, 2011, 4(2): 319-330. |
[25] | 杜雪树, 戚华雄, 廖世勇, 等.水稻抽穗期分子生物学研究进展. 湖北农业科学, 2013,52(24): 5958-5962. |
Du X S,Qi H X,Liao S Y, et al.Advances on the molecular biology of rice heading date.Hubei Agric Sci,2013,52(24):5958-5962.(in Chinese) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||