Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (1): 73-81.DOI: 10.3969/j.issn.1001-7216.2015.01.009
• Orginal Article • Previous Articles Next Articles
Hua ZHAO1,3, Jun-min WANG2, Qi-fang ZHANG3, Qian ZHAO3, Shu-fang MEI1, Xiang-lei LIU1, Fang-min CHENG3,*()
Received:
2014-08-27
Revised:
2014-11-03
Online:
2015-01-10
Published:
2015-01-10
Contact:
Fang-min CHENG
赵华1,3, 王俊敏2, 张其芳3, 赵倩3, 梅淑芳1, 刘向蕾1, 程方民3,*()
通讯作者:
程方民
基金资助:
CLC Number:
Hua ZHAO, Jun-min WANG, Qi-fang ZHANG, Qian ZHAO, Shu-fang MEI, Xiang-lei LIU, Fang-min CHENG. Activities of Several Starch Synthesis Enzymes in Filling Grains for Rice Sugary Endosperm Mutant (Sug-11)and Its Relation to Starch Quality[J]. Chinese Journal OF Rice Science, 2015, 29(1): 73-81.
赵华, 王俊敏, 张其芳, 赵倩, 梅淑芳, 刘向蕾, 程方民. 水稻糖质胚乳突变体Sug-11籽粒灌浆过程的淀粉合成关键酶活性及其与淀粉理化特性关系[J]. 中国水稻科学, 2015, 29(1): 73-81.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.01.009
基因名 Gene name | 登录号 Accession No. | 引物 Primer pairs | 产物大小 Product size/ bp |
---|---|---|---|
Actin | XM_469569 | F:5’-CAGCACATTCCAGCAGATGT | 198 |
R:5’-TAGGCCGGTTGAAAACTTTG | |||
ISA1 | AB093426 | F:5’-GTTGGAACCGTGTGGTGGAT | 112 |
R:5’-AGCAGAATGGAAGAGTATGGAGC | |||
ISA2 | AC132483 | F:5’-CAGTGAGTGCTGCCTTGC | 106 |
R:5’-TTGGGATTAGATTCGGTTG | |||
ISA3 | AP005574 | F:5’-CGCAGACTTCCCAACAGC | 144 |
R:5’-CCTTTCGTTTCATCTTTCGTG | |||
PUL | AB012915 | F:5’-ACCTTTCTTCCATGCTGG | 202 |
R:5’-CAAAGGTCTGAAAGATGGG |
Table 1 Primer sequences of four debranching enzyme(DBE) isoforms involving in starch biosynthesis pathway in rice grains.
基因名 Gene name | 登录号 Accession No. | 引物 Primer pairs | 产物大小 Product size/ bp |
---|---|---|---|
Actin | XM_469569 | F:5’-CAGCACATTCCAGCAGATGT | 198 |
R:5’-TAGGCCGGTTGAAAACTTTG | |||
ISA1 | AB093426 | F:5’-GTTGGAACCGTGTGGTGGAT | 112 |
R:5’-AGCAGAATGGAAGAGTATGGAGC | |||
ISA2 | AC132483 | F:5’-CAGTGAGTGCTGCCTTGC | 106 |
R:5’-TTGGGATTAGATTCGGTTG | |||
ISA3 | AP005574 | F:5’-CGCAGACTTCCCAACAGC | 144 |
R:5’-CCTTTCGTTTCATCTTTCGTG | |||
PUL | AB012915 | F:5’-ACCTTTCTTCCATGCTGG | 202 |
R:5’-CAAAGGTCTGAAAGATGGG |
年份与基因型 Year and genotype | 株高 Plant height/cm | 每穗实粒数 Number of filled grains per panicle | 千粒重 Grain weight/g | 结实率 Setting-rate /% | 蔗糖含量 Sucrose content/% | 可溶性总糖含量 Total soluble sugar contents/% | 淀粉含量 Starch content/% |
---|---|---|---|---|---|---|---|
2011 | |||||||
中花11 Zhonghua 11 | 90.6±4.6 | 132.6±8.2 | 24.4±0.5 | 83.1±3.9 | 1.73±0.15 | 1.99±0.13 | 76.83±1.87 |
Sug-11 | 86.9±3.9 | 107.3±6.6 | 20.6±0.3 | 75.9±6.7 | 5.40±0.49 | 5.87±0.22 | 71.35±0.89 |
差值Difference | 3.7 | 25.3** | 3.8** | 7.2* | -3.67** | -3.88** | 5.48** |
2012 | |||||||
中花11 Zhonghua 11 | 97.6±4.9 | 127.2±7.7 | 25.5±0.3 | 88.7±4.6 | 1.63±0.41 | 1.82±0.54 | 75.16±0.91 |
Sug-11 | 95.5±4.0 | 119.3±10.2 | 19.6±0.6 | 83.3±5.5 | 5.76±0.53 | 5.91±0.61 | 72.51±1.02 |
差值 Difference | 2.1 | 8.8 | 5.9** | 5.4 | -4.13** | 4.09** | 2.65* |
Table 2 Comparison of sucrose content, total soluble sugar contents, plant height and other agronomic traits between Sug-11 mutant and its wild type.
年份与基因型 Year and genotype | 株高 Plant height/cm | 每穗实粒数 Number of filled grains per panicle | 千粒重 Grain weight/g | 结实率 Setting-rate /% | 蔗糖含量 Sucrose content/% | 可溶性总糖含量 Total soluble sugar contents/% | 淀粉含量 Starch content/% |
---|---|---|---|---|---|---|---|
2011 | |||||||
中花11 Zhonghua 11 | 90.6±4.6 | 132.6±8.2 | 24.4±0.5 | 83.1±3.9 | 1.73±0.15 | 1.99±0.13 | 76.83±1.87 |
Sug-11 | 86.9±3.9 | 107.3±6.6 | 20.6±0.3 | 75.9±6.7 | 5.40±0.49 | 5.87±0.22 | 71.35±0.89 |
差值Difference | 3.7 | 25.3** | 3.8** | 7.2* | -3.67** | -3.88** | 5.48** |
2012 | |||||||
中花11 Zhonghua 11 | 97.6±4.9 | 127.2±7.7 | 25.5±0.3 | 88.7±4.6 | 1.63±0.41 | 1.82±0.54 | 75.16±0.91 |
Sug-11 | 95.5±4.0 | 119.3±10.2 | 19.6±0.6 | 83.3±5.5 | 5.76±0.53 | 5.91±0.61 | 72.51±1.02 |
差值 Difference | 2.1 | 8.8 | 5.9** | 5.4 | -4.13** | 4.09** | 2.65* |
淀粉指标 Starch parameters | 中花11 Zhonghua 11 | Sug-11 | 差值 Difference | ||||
---|---|---|---|---|---|---|---|
直链淀粉含量 Amylose content/% | 17.74 | ± | 0.68 | 10.46 | ± | 0.61 | 7.28** |
淀粉膨胀势 Swelling power/(g·g-1) | 13.68 | ± | 0.31 | 9.26 | ± | 0.57 | 4.45** |
淀粉溶解度 Starch solubility/% | 4.06 | ± | 0.51 | 24.95 | ± | 0.58 | -20.89** |
直链淀粉最大吸收波长 λmax.Am | 620.2 | ± | 2.0 | 608.0 | ± | 1.3 | 12.0** |
直链淀粉碘蓝值 BVAm | 0.39 | ± | 0.01 | 0.35 | ± | 0.03 | 0.04* |
支链淀粉最大吸收波长λmax.Ap | 589.3 | ± | 2.1 | 600.4 | ± | 2.2 | -11.1** |
支链淀粉碘蓝值 BVAp | 0.09 | ± | 0.01 | 0.12 | ± | 0.04 | -0.03 |
Table 3 Difference in starch physico-chemical parameters between Sug-11 mutant and its wild type(2012).
淀粉指标 Starch parameters | 中花11 Zhonghua 11 | Sug-11 | 差值 Difference | ||||
---|---|---|---|---|---|---|---|
直链淀粉含量 Amylose content/% | 17.74 | ± | 0.68 | 10.46 | ± | 0.61 | 7.28** |
淀粉膨胀势 Swelling power/(g·g-1) | 13.68 | ± | 0.31 | 9.26 | ± | 0.57 | 4.45** |
淀粉溶解度 Starch solubility/% | 4.06 | ± | 0.51 | 24.95 | ± | 0.58 | -20.89** |
直链淀粉最大吸收波长 λmax.Am | 620.2 | ± | 2.0 | 608.0 | ± | 1.3 | 12.0** |
直链淀粉碘蓝值 BVAm | 0.39 | ± | 0.01 | 0.35 | ± | 0.03 | 0.04* |
支链淀粉最大吸收波长λmax.Ap | 589.3 | ± | 2.1 | 600.4 | ± | 2.2 | -11.1** |
支链淀粉碘蓝值 BVAp | 0.09 | ± | 0.01 | 0.12 | ± | 0.04 | -0.03 |
Fig. 2. Difference in the temporal pattern of total soluble sugar, sucrose contents and starch accumulation between Sug-11 mutant and its wild type Zhonghua 11 in grains during grain filling.
Fig. 3. Difference in the temporal patterns of some key enzymes activities related to starch synthesis pathway in filling grains between Sug-11 mutant and its wild type Zhonghua 11. ADPGase, Adenosine diphosphoglucose pyrophosphprylase; SSS, Soluble starch synthase; SBE, Starch branching enzyme; DBE, Debranching enzyme.
Fig. 4. Transcriptional expressions and temporal pattern of 4 isoform genes encoding debranching enzyme(DBE) in grains during filling for Sug-11 mutant and its wild type Zhonghua 11.
[1] | Jeon J S, Ryoo N, Hahn T R, et al.Starch biosynthesis in cereal endosperm.Plant Physiol Biochem, 2010, 48:383-392. |
[2] | Ball S, Guan H P, James M, et al.From glycogen to amylopectin: A model for the biogenesis of the plant starch granule.Cell, 1996, 86:349-352. |
[3] | 左晓旭,郑涛,舒小丽,等.水稻胚乳突变体筛选与特性研究进展.核农学报,2006,20(2):118-122. |
[4] | Yano M, Isono Y, Satoh H, et al.Gene analysis of sugary and shrunken mutants of rice, Oryza sativa L.Jpn J Breed,1984:34(1):43-49 |
[5] | Satoh H, Nishi A, Fujita N, et al.Isolation and characterization of starch mutants in rice.J Appl Glycosci, 2003, 50: 225-230. |
[6] | Kubo A, Rahman S, Utsumi Y, et a1. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylasel gene supports a direct role for isoamylasel in amylopectin biosynthesis.Plant Physiol, 2005,137:43-56. |
[7] | Kawagoe Y, Kubo A, Satoh H, et al.Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm.Plant J, 2005,42:164-174. |
[8] | Vandeputte G E, Delcour J A.From sucrose to starch granule to starch physical behavior: A focus on rice starch.Carbohydrate Polymer, 2004,58: 245-266. |
[9] | Wong K S, Kubo A, Jane J L, et al.Structure and properties of amylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice.J Cereal Sci, 2003,37: 139-149. |
[10] | Geigenberger P.Regulation of starch biosynthesis in response to a fluctuating environment.Plant Physiol, 2011, 155:1566-1577. |
[11] | 程方民, 蒋德安, 吴平, 等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报, 2001, 27(2): 201-206. |
[12] | Nakamura Y, Yuki K, Park S Y, et al.Carbohydrate metabolism in the developing endosperm of rice grains.Plant Cell Physiol,1989, 30: 833-839. |
[13] | Livak J K, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method.Methods, 2001,25: 402-408. |
[14] | 中国科学院上海植物生理研究所,上海市植物生理学会. 现代植物生理学实验指南. 北京:科学出版社, 1999. |
[15] | 邹琦. 植物生理学实验指导. 北京:中国农业出版社,2000. |
[16] | 钟连进,程方民.水稻籽粒灌浆过程直链淀粉积累及其相关酶的品种类型间差异.作物学报,2003,29(3): 93-498. |
[17] | 蔡一霞,王维,朱智伟,等.不同类型水稻支链淀粉理化特性及其与米粉糊化特征的关系.中国农业科学,2006, 9(6): 122-1129. |
[18] | Mizuno K, Kawasaki T, Shimada H, et al.Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds.J Biol Chem, 1993, 268:19084-19091. |
[19] | Hussain H, Mant A, Seale R, et al.Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans.Plant Cell, 2003,15:133-149. |
[20] | Li Q F, Zhang G Y, Dong Z W, et al.Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice.Plant Physiol Biochem, 2009, 47:351-358. |
[21] | Wattebled F, Dong Y, Dumez S, et al.Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin.Plant Physiol, 2005, 138:184-195. |
[22] | Tetlow I J, Morell M K, Emes M J.Recent developments in understanding the regulation of starch metabolism in higher plants.J Exp Bot, 2004,55: 2131-2145. |
[23] | Thitisaksakul M, Jiménez R C, Arias M C, et al.Effects of environmental factors on cereal starch biosynthesis and composition,J Cereal Sci, 2012, 56: 67-80. |
[24] | Kubo A, Fujita N, Harada K, et al.The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm.Plant Physiol, 1999, 121: 399-410. |
[25] | 李钱峰,张桂云,于恒秀,等.水稻异淀粉酶基因ISA1及其启动子的表达特性分析.中国水稻科学,2009,23(1):21-18. |
[26] | Ohdan T, Francisco P B, Sawada T, et al.Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J Exp Bot, 2005, 56:3229-3244. |
[27] | Nakamura Y, Umemoto T, Ogata N, et al.Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: Purification, cDNA and chromosomal localization of the gene.Planta, 1996,199:209-218. |
[28] | Utsumi Y, Nakamura Y.Structural and enzymatic characterization of the isoamylase1 homo-oligomer and the isoamylase1-isoamylase2 hetero-oligomer from rice endosperm.Planta, 2006, 225:75-87. |
[29] | Satoh H, Nishi A, Yamashita K, et al.Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm.Plant Physiol, 2003, 133:1111-1121. |
[30] | Fujita N, Kubo A, Suh D S, et al.Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm.Plant Cell Physiol,2003,44: 607-618. |
[31] | Fujita N, Toyosawa Y, Utsumi Y, et al.Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm.J Exp Bot, 2009, 60:1009-1023. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||