Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (1): 35-44.DOI: 10.3969/j.issn.1001-7216.2015.01.005
• Orginal Article • Previous Articles Next Articles
Hong-min ZHOU, Hua-dun WANG, Rui SUN, Wen-xia PEI, Xue-neng WU, Yue CAO, Ya-fei SUN, Guo-hua XU, Shu-bin SUN*()
Received:
2014-01-09
Revised:
2014-03-08
Online:
2015-01-10
Published:
2015-01-10
Contact:
Shu-bin SUN
周红敏, 王化敦, 孙瑞, 裴文霞, 吴学能, 曹越, 孙雅菲, 徐国华, 孙淑斌*()
通讯作者:
孙淑斌
基金资助:
CLC Number:
Hong-min ZHOU, Hua-dun WANG, Rui SUN, Wen-xia PEI, Xue-neng WU, Yue CAO, Ya-fei SUN, Guo-hua XU, Shu-bin SUN. OsSIZ1 Regulates the Development and Architecture of the Roots under Phosphate Starvation Conditions in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(1): 35-44.
周红敏, 王化敦, 孙瑞, 裴文霞, 吴学能, 曹越, 孙雅菲, 徐国华, 孙淑斌. 水稻SUMO化E3连接酶SIZ1调控缺磷条件下根的发育和根构型形成[J]. 中国水稻科学, 2015, 29(1): 35-44.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.01.005
基因 Gene | 引物序列 Primer sequences (5'-3') |
---|---|
OsActin | F: GGAACTGGTATGGTCAAGGC |
R: AGTCTCATGGATAACCGCAG | |
OsPIN1a | F: TCATCTGGTCGCTCGTCTGC |
R: CGAACGTCGCCACCTTGTTC | |
OsPIN1b | F: TGCACCCTAGCATTCTCAGCA |
R: CCCTCCTCCCAAATTCTACTT | |
OsYUCCA1 | F: TCATCGGACGCCCTCAACGTCGC |
R: GGCAGAGCAAGATTATCAGTC | |
OsPIN2 | F:CAACACCTACTCCAGCCTC |
R:TGGACCAGTCAAGAACCTC |
Table 1 Primers used to amplify the OsYUCCA1 and OsPINs cDNA fragments.
基因 Gene | 引物序列 Primer sequences (5'-3') |
---|---|
OsActin | F: GGAACTGGTATGGTCAAGGC |
R: AGTCTCATGGATAACCGCAG | |
OsPIN1a | F: TCATCTGGTCGCTCGTCTGC |
R: CGAACGTCGCCACCTTGTTC | |
OsPIN1b | F: TGCACCCTAGCATTCTCAGCA |
R: CCCTCCTCCCAAATTCTACTT | |
OsYUCCA1 | F: TCATCGGACGCCCTCAACGTCGC |
R: GGCAGAGCAAGATTATCAGTC | |
OsPIN2 | F:CAACACCTACTCCAGCCTC |
R:TGGACCAGTCAAGAACCTC |
Fig.1. Growth performances of seminal roots of ossiz1 and wild type. A, Root phenotype of rice seedlings 7 d after germination, bar=1 cm; B, The root hair proliferation on the seminal roots of rice seedlings 7 d after germination, bar=2 cm; C,D, The length and the growth rate of seminal root of rice seedlings for 7 d after transfer to the nutrient solution. WT, Wild type.
Fig. 2. Root phenotypic analysis of wild type(WT) and ossiz1 seedlings in the Pi-sufficient(+P) and Pi-deficient(-P) solid culture medium. In A, Bar=1 cm; In C, Bar=2 cm.
Fig. 3. Root phenotype of wild type (WT) and ossiz1 seedlings under Pi-sufficient(+P) and Pi-deficient(-P) conditions. In A, Bar=1 cm; In C; Bar=2 cm.
Fig. 4. Statistical analysis of adventitious roots of ossiz1 and its wild type (WT) seedlings under Pi-sufficient (+P) and Pi-deficient (-P) conditions. A,Root scanning; B, Adventitious roots without large lateral root formation in clumps (a, c, e, g) and adventitious roots with large lateral root formation in clumps (b, d, f, h); C,The ratio of adventitious roots with large lateral root formation in clumps to the total adventitious roots.
Fig. 5. Total P concentration in the shoots and roots of ossiz1 and its wild type (WT) seedlings under Pi-sufficient (+P) and Pi-deficient (-P) conditions in hydroponics culture.
Fig. 6. Expression of auxin genes in roots of WT and ossiz1 in hydroponics experiment. A,Relative expression of auxin biosynthesis gene OsYUCCA1 subjected to +P and -P conditions for 2 weeks; B, Relative expression of auxin efflux transporters OsPINs subjected to +P and -P conditions for 2 weeks.
[1] | 杨辉霞, 童依平, 王道文. 拟南芥低磷胁迫反应分子机理研究的最新进展. 植物学通报, 2007, 24: 726-734. |
[2] | Chiou T J, Lin S I.Signaling network in sensing phosphate availability in plants.Annu Rev Plant Biol, 2011, 62: 185-206. |
[3] | Grime J P, Crick J C, Rincon J E.The ecological significance of plasticity.Symp Soc Exp Biol, 1986, 40: 5-29. |
[4] | Price A H, Tomos A D, Virk D S.Genetic dissection of root growth in rice (Oryza sativa L.): Ⅰ. A hydrophonic screen.Theor Appl Genet, 1997, 95: 132-142. |
[5] | Narang R A, Bruene A, Altmann T.Analysis of phosphate acquisition efficiency in different Arabidopsis accessions.Plant Physiol, 2000, 124: 1786-1799. |
[6] | Malamy J E.Intrinsic and environmental response pathways that regulate root system architecture.Plant Cell Environ, 2005, 28: 67-77. |
[7] | López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L.The role of nutrient availability in regulating root architecture.Curr Opin Plant Biol, 2003, 6: 280-287. |
[8] | Raghothanma K G.Phosphate acquisition.Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693. |
[9] | 黄荣, 孙虎威, 刘尚俊, 等. 低磷胁迫下水稻根系的发生及生长素的响应. 中国水稻科学, 2012, 26(5): 563-568. |
[10] | Friml J, Vieten A, Sauer M, et al.Efflux-dependent auxin gradients establish the apical-basal axis ofArabidopsis. Nature, 2003, 426: 47-53. |
[11] | Benkova E, Michniewicz M, Sauer M, et al.Local, efflux-dependent auxin gradients as a common module for plant organ formation.Cell, 2003, 115: 591-602. |
[12] | Mattsson J, Ckurshumova W, Berleth T.Auxin signaling in Arabidopsis leaf vascular development.Plant Physiol, 2003, 131: 1327-1339. |
[13] | Blakeslee J J, Bandyopadhyay A, Peer W A, et al.Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses.Plant Physiol, 2004, 134: 28-31. |
[14] | Palme K, Dovzhenko A, Ditengou F A.Auxin transport and gravitational research: Perspectives.Protoplasma, 2006, 229: 175-181. |
[15] | Vanneste S, Friml J.Auxin: A trigger for change in plant development.Cell, 2009, 136: 1005-1016. |
[16] | Zhi G E, Ge L, Wang L.Molecular mechanism of adventitious root formation in rice.Plant Growth Regul, 2012, 68: 325-331. |
[17] | Yamamoto Y, Kamiya N, Morinaka Y, et al.Auxin biosynthesis by the YUCCA genes in rice.Plant Physiol, 2007, 143: 1362-1371. |
[18] | Morita Y, Kyozuka J.Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport.Plant Cell Physiol, 2007, 48: 540-549. |
[19] | Dong L, Wang L, Zhang Y, et al.An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis.Plant Mol Biol, 2006, 60: 599-615. |
[20] | Lee S H, Cho H T.PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells.Plant Cell, 2006, 18: 1604-1616. |
[21] | Duan Q H, Kita D, Li C, et al.FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development.PNAS, 2010, 107(41): 17821-17826. |
[22] | Shen C J, Wang S K, Zhang S N, et al.OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant, Cell,Environ, 2013, 36: 607-620. |
[23] | Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, et al.An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis.Plant Physiol, 2005, 137: 681-691. |
[24] | Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, et al.Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.Plant Physiol, 2002, 129: 244-256. |
[25] | Pérez-Torres C A, Lo’pez-Bucio J, Cruz-Ramı’rez A, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor.Plant Cell, 2008, 20: 3258-3272. |
[26] | Nacry P, Canivenc G, Muller B, et al.A role for auxin redistribution in the responses of the root system architecture to phosphate starvation inArabidopsis. Plant Physiol, 2005, 138: 2061-2074. |
[27] | Chen Y N, Fan X R, Song W J, et al.Over-experssion of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1.Plant Biol, 2012, 10: 139-149. |
[28] | 陈泉, 施蕴渝. 小泛素相关修饰SUMO研究进展. 生命科学, 2004, 16(1): 1-6. |
[29] | 徐庞连, 曾棉炜, 黄丽霞,等. 植物SUMO化修饰及其生物学功能.植物学通报, 2008, 25(5): 608-615. |
[30] | Miura K, Rus A, Sharkhuu A, et al.Arabidopsis SUMO E3 ligase SIZl controls phosphate deficiency responses.PNAS, 2005, 102: 7760-7765. |
[31] | Miura K, Jin J B, Hasegawa P M.Sumoylation, a post-translational regulatory process in plants.Curr Opin Plant Biol, 2007, 10: 495-502. |
[32] | Yoo C Y, Miura K, Jin J B, et al.SIZl small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid.Plant Physiol, 2006, 142: 1548-1558. |
[33] | Catala R, Ouyang J, Abreu I A, et al.The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses.Plant Cell, 2007, 19: 2952-2966. |
[34] | Saminathan T, Guo C L, Chuang M H.Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence.New Phytol, 2011, 189(3): 869-882. |
[35] | Miura K, Rus A, Sharkhuu A, et al.The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses.PNAS, 2005, 102: 7760-7765. |
[36] | Miura K, Lee J, Gong Q.SIZ1 Regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.Plant Physiol, 2011, 155: 1000-1012. |
[37] | Wang H D, Makeen K, Yan Y.OsSIZ1 regulates the vegetative growth and reproductive development in rice.Plant Mol Biol Rep, 2010, 29: 411-417. |
[38] | 鲍士旦. 土壤农化分析.北京:中国农业出版社, 1999. |
[39] | Beemster G T, De Vusser K, De Tavernier E, et al.Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-typecyclin-dependent kinase activity.Plant Physiol, 2002, 129: 854-864. |
[40] | Mouchel C F, Briggs G C, Hardtke C S.Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root.Genes Dev, 2004, 18: 700-714. |
[41] | Zhu Y, Dong A, Meyer D, et al.Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth.Plant Cell, 2006, 18: 2879-2892. |
[42] | Jia L, Zhang B, Mao C, et al.OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.).Planta, 2008, 228: 51-59. |
[43] | Miura K, Lee J, Miura T, Hasegawa PM.SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid.Plant Cell Physiol, 2010, 51: 103-113. |
[44] | Huang L, Yang S, Zhang S, et al.The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root.Plant J, 2009, 60: 666-678. |
[45] | 郭朝晖, 张杨珠, 黄见良, 等.磷对杂交水稻根系特性与养分吸收的影响. 湖南农业大学学报.自然科学版, 2001, 27(5):350-354. |
[46] | 郭再华, 贺立源, 徐才国.水稻耐低磷特性研究.应用与环境生物学报, 2004, 10(6):681-685. |
[47] | 郭再华, 贺立源, 徐才国.磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响. 应用与环境生物学报, 2006, 12(4):449-452. |
[48] | Sasaki O, Yamazaki K, Kawata S.The relationship between the diameters and the structures of lateral roots in rice plants.Jpn J Crop Sci, 1984, 53: 169-175. |
[49] | Rebouillat J, Dievart A, Verdeil J L.Molecular genetics of rice root development.Rice, 2009, 2: 15-34. |
[50] | Zhu Z X, Liu Y, Liu S J, et al.A gain-of-function mutation in OsIAA11 affects lateral root development in rice.Mol Plant, 2012, 5: 154-161. |
[51] | Grierson C, Schiefelbein J.Root Hairs// The Arabidopsis Book. Roekville MD: Ameriean Society of Plant Biologists, 2002. |
[52] | Peret B, De Rybel B, Casimiro I, et al.Arabidopsis lateral root development: An emerging story.Trends Plant Sci, 2009, 14: 399-408. |
[53] | Benkova E, Bielach A.Lateral root organogenesis-from cell to organ.Curr Opin Plant Biol, 2010, 13: 677-683. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||