Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (1): 14-21.DOI: 10.3969/j.issn.1001-7216.2015.01.002
• Orginal Article • Previous Articles Next Articles
Qin-shu CHENG#, Bang-quan YE#, Can YUAN#, Wei-tao LI, Jun-jie YIN, Jing WANG, Min HE, Ji-chun WANG, Yu-ping WANG, Shi-gui LI, Xue-wei CHEN*()
Received:
2014-02-19
Revised:
2014-08-15
Online:
2015-01-10
Published:
2015-01-10
Contact:
Xue-wei CHEN
成钦淑#, 叶邦全#, 袁灿#, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟*()
通讯作者:
陈学伟
基金资助:
CLC Number:
Qin-shu CHENG, Bang-quan YE, Can YUAN, Wei-tao LI, Jun-jie YIN, Jing WANG, Min HE, Ji-chun WANG, Yu-ping WANG, Shi-gui LI, Xue-wei CHEN. Genetic Analysis and Gene Mapping of White Stripe Leaf Mutant st11 in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(1): 14-21.
成钦淑, 叶邦全, 袁灿, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟. 水稻白条纹叶突变体 st11的遗传分析与基因定位[J]. 中国水稻科学, 2015, 29(1): 14-21.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.01.002
分子标记 Marker | 正向引物 Forward primer | 反向引物 Reverse primer | 物理距离a Distance/Mba |
---|---|---|---|
I26 | ATTCAGAAGGTGATGCTCCG | GATATGTCGCCAGAGACCCT | 0.188 |
I10 | TGCAACGACGGGCATTTTG | GAGCTTCTTGATGTAGGCCG | 0.455 |
I14 | GGGGCTCAACATGGACCAAA | GGCATGTTGAAGCTGAGCAC | 0.689 |
RM10048 | CAAGCAGTGATCATACAGCCTTCC | GCCATGGCTGAGAACAGAGAGC | 0.744 |
RM10076 | CTAGCAGCTGTCTGCGACACACG | CCGAGGTGTTATGCCAATCTCTATGG | 1.351 |
Table 1 Some important primer pairs used for gene mapping.
分子标记 Marker | 正向引物 Forward primer | 反向引物 Reverse primer | 物理距离a Distance/Mba |
---|---|---|---|
I26 | ATTCAGAAGGTGATGCTCCG | GATATGTCGCCAGAGACCCT | 0.188 |
I10 | TGCAACGACGGGCATTTTG | GAGCTTCTTGATGTAGGCCG | 0.455 |
I14 | GGGGCTCAACATGGACCAAA | GGCATGTTGAAGCTGAGCAC | 0.689 |
RM10048 | CAAGCAGTGATCATACAGCCTTCC | GCCATGGCTGAGAACAGAGAGC | 0.744 |
RM10076 | CTAGCAGCTGTCTGCGACACACG | CCGAGGTGTTATGCCAATCTCTATGG | 1.351 |
Fig. 1. Photographs of the representative plants and leaves from the Kitaake (WT) and mutant st11 plants. A, At seedling stage; B, At tillering stage; C, Leaves during tillering stage; WT, Wild type; st11,Mutant. The same as below.
Fig. 3. Co-segregation analysis of the white stripe leaf phenotype with the gene hygromycin on the F2 mutant plants derived from the cross of Kitaake× st11. 1, Positive control of hygromycin; 2, Negative control of hygromycin; 3-24, Twenty-two F2 plants with the white stripe leaf phenotype.
组合 Cross | F1 | F2 | X2(3:1) | ||
---|---|---|---|---|---|
总株数 Total no. of plants | 正常植株 No. of normal plants | 突变体植株 No. of white strip plants | |||
st11/Jodan | 正常绿叶 Normal green leaf | 1035 | 791 | 244 | 0.589 |
st11/02428 | 正常绿叶 Normal green leaf | 599 | 453 | 146 | 0.054 |
st11/C418 | 正常绿叶 Normal green leaf | 448 | 343 | 105 | 0.502 |
C418/st11 | 正常绿叶 Normal green leaf | 421 | 324 | 97 | 0.863 |
Table 2 Genetic analysis of the white stripe leaf phenotype of the mutant st11.
组合 Cross | F1 | F2 | X2(3:1) | ||
---|---|---|---|---|---|
总株数 Total no. of plants | 正常植株 No. of normal plants | 突变体植株 No. of white strip plants | |||
st11/Jodan | 正常绿叶 Normal green leaf | 1035 | 791 | 244 | 0.589 |
st11/02428 | 正常绿叶 Normal green leaf | 599 | 453 | 146 | 0.054 |
st11/C418 | 正常绿叶 Normal green leaf | 448 | 343 | 105 | 0.502 |
C418/st11 | 正常绿叶 Normal green leaf | 421 | 324 | 97 | 0.863 |
Fig. 4. Genotype analysis of the 22 F2 plants with the white stripe leaf phenotype using the indel marker I10. 1-22 represent 22 individual plants derived from the cross of Jodan×Kitaake; 0 represent the parent Jodan.
交换单株号 No. of recombinant plants | 标记 Marker | ||||
---|---|---|---|---|---|
I26 | I10 | I14 | RM10048 | RM10076 | |
46 | 1 | 0 | 0 | 0 | 0 |
51 | 1 | 0 | 0 | 0 | 0 |
84 | 1 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 1 | 1 | 1 |
81 | 0 | 0 | 1 | 1 | 1 |
93 | 0 | 0 | 1 | 1 | 1 |
23 | 0 | 0 | 0 | 0 | 2 |
41 | 0 | 0 | 0 | 0 | 1 |
44 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 1 |
74 | 0 | 0 | 0 | 0 | 1 |
81 | 0 | 0 | 0 | 0 | 1 |
84 | 0 | 0 | 0 | 0 | 1 |
107 | 0 | 0 | 0 | 0 | 1 |
110 | 0 | 0 | 0 | 0 | 1 |
112 | 0 | 0 | 0 | 0 | 1 |
115 | 0 | 0 | 0 | 0 | 1 |
165 | 0 | 0 | 0 | 0 | 1 |
Table 3 Recombinant events of five molecular makers in the plants with white stripe leaf from F2 population of st11/Jodan.
交换单株号 No. of recombinant plants | 标记 Marker | ||||
---|---|---|---|---|---|
I26 | I10 | I14 | RM10048 | RM10076 | |
46 | 1 | 0 | 0 | 0 | 0 |
51 | 1 | 0 | 0 | 0 | 0 |
84 | 1 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 1 | 1 | 1 |
81 | 0 | 0 | 1 | 1 | 1 |
93 | 0 | 0 | 1 | 1 | 1 |
23 | 0 | 0 | 0 | 0 | 2 |
41 | 0 | 0 | 0 | 0 | 1 |
44 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 1 |
74 | 0 | 0 | 0 | 0 | 1 |
81 | 0 | 0 | 0 | 0 | 1 |
84 | 0 | 0 | 0 | 0 | 1 |
107 | 0 | 0 | 0 | 0 | 1 |
110 | 0 | 0 | 0 | 0 | 1 |
112 | 0 | 0 | 0 | 0 | 1 |
115 | 0 | 0 | 0 | 0 | 1 |
165 | 0 | 0 | 0 | 0 | 1 |
Fig. 5. Molecular mapping of gene st11 on chromosome 1. A, Molecular mapping of st11based on F2 population derived from the cross of st11/Jodan; B, Molecular mapping of st11based on F2 population derived from the cross of st11/02428; C, Molecular mapping of st11based on the results from A and B. N1, Plants with the white stripe leaf phenotype in F2 population derived from the cross of st11/Jodan; N2, plants with the white stripe leaf phenotype in F2 population derived from the cross of st11/02428.
交换单株号 No. of recombinant plants | 引物 Marker | 交换单株号 No. of recombinant plants | 引物 Marker | ||
---|---|---|---|---|---|
I10 | RM10076 | I10 | RM10076 | ||
1 | 0 | 1 | 249 | 0 | 1 |
2 | 0 | 1 | 256 | 0 | 1 |
10 | 0 | 1 | 260 | 0 | 1 |
36 | 0 | 1 | 266 | 0 | 1 |
39 | 0 | 1 | 269 | 0 | 1 |
55 | 0 | 1 | 287 | 0 | 1 |
59 | 0 | 1 | 288 | 1 | 1 |
60 | 0 | 1 | 297 | 0 | 1 |
63 | 1 | 1 | 299 | 0 | 1 |
67 | 0 | 1 | 317 | 0 | 1 |
68 | 1 | 1 | 320 | 0 | 1 |
90 | 0 | 1 | 322 | 0 | 1 |
93 | 0 | 1 | 332 | 0 | 1 |
97 | 0 | 1 | 338 | 0 | 1 |
102 | 0 | 1 | 340 | 0 | 1 |
129 | 0 | 1 | 344 | 0 | 1 |
136 | 0 | 1 | 353 | 0 | 1 |
141 | 0 | 1 | 361 | 0 | 1 |
172 | 0 | 1 | 372 | 0 | 1 |
183 | 0 | 1 | 379 | 0 | 1 |
190 | 0 | 1 | 382 | 0 | 1 |
193 | 0 | 1 | 385 | 0 | 1 |
199 | 0 | 1 | 388 | 0 | 1 |
209 | 0 | 1 | 402 | 0 | 1 |
211 | 0 | 1 | 409 | 0 | 1 |
221 | 0 | 1 | 412 | 0 | 1 |
222 | 1 | 2 | 414 | 0 | 1 |
228 | 0 | 1 | 420 | 0 | 1 |
236 | 0 | 1 | 429 | 0 | 1 |
238 | 0 | 1 | 441 | 0 | 1 |
246 | 0 | 1 | 445 | 0 | 1 |
248 | 0 | 1 | 450 | 0 | 1 |
464 | 0 | 1 |
Table 4 Recombinant events of two molecular makers in the plants with white stripe leaf from F2 population of st11/02428.
交换单株号 No. of recombinant plants | 引物 Marker | 交换单株号 No. of recombinant plants | 引物 Marker | ||
---|---|---|---|---|---|
I10 | RM10076 | I10 | RM10076 | ||
1 | 0 | 1 | 249 | 0 | 1 |
2 | 0 | 1 | 256 | 0 | 1 |
10 | 0 | 1 | 260 | 0 | 1 |
36 | 0 | 1 | 266 | 0 | 1 |
39 | 0 | 1 | 269 | 0 | 1 |
55 | 0 | 1 | 287 | 0 | 1 |
59 | 0 | 1 | 288 | 1 | 1 |
60 | 0 | 1 | 297 | 0 | 1 |
63 | 1 | 1 | 299 | 0 | 1 |
67 | 0 | 1 | 317 | 0 | 1 |
68 | 1 | 1 | 320 | 0 | 1 |
90 | 0 | 1 | 322 | 0 | 1 |
93 | 0 | 1 | 332 | 0 | 1 |
97 | 0 | 1 | 338 | 0 | 1 |
102 | 0 | 1 | 340 | 0 | 1 |
129 | 0 | 1 | 344 | 0 | 1 |
136 | 0 | 1 | 353 | 0 | 1 |
141 | 0 | 1 | 361 | 0 | 1 |
172 | 0 | 1 | 372 | 0 | 1 |
183 | 0 | 1 | 379 | 0 | 1 |
190 | 0 | 1 | 382 | 0 | 1 |
193 | 0 | 1 | 385 | 0 | 1 |
199 | 0 | 1 | 388 | 0 | 1 |
209 | 0 | 1 | 402 | 0 | 1 |
211 | 0 | 1 | 409 | 0 | 1 |
221 | 0 | 1 | 412 | 0 | 1 |
222 | 1 | 2 | 414 | 0 | 1 |
228 | 0 | 1 | 420 | 0 | 1 |
236 | 0 | 1 | 429 | 0 | 1 |
238 | 0 | 1 | 441 | 0 | 1 |
246 | 0 | 1 | 445 | 0 | 1 |
248 | 0 | 1 | 450 | 0 | 1 |
464 | 0 | 1 |
[1] | 金怡, 刘合芹, 汪得凯, 等. 一个水稻苗期白条纹叶及抽穗期白穗突变体的鉴定和基因定位. 中国水稻科学, 2011, 25(5): 461-466. |
[2] | 张洪征, 程治军, 万建民, 等. 水稻白化突变体研究进展. 生物技术通报, 2013, 1(11): 1-7. |
[3] | 施勇烽, 魏彦林, 奉保华, 等. 水稻淡绿叶突变体HM14的遗传分析与基因定位. 中国水稻科学, 2013, 27(6): 585-590. |
[4] | Liu W, Fu Y, Hu G, et al.Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.).Planta, 2007, 226(3): 785-795. |
[5] | 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素合成的研究进展. 西北植物学报, 2009, 29(3): 629-636. |
[6] | Jung K H, Hur J, Ryu C H, et al.Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.Plant Cell Physiol, 2003, 44(5): 463-463. |
[7] | Zhang H, Li J, Yoo J H, et al.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development.Plant Mol Biol, 2006, 62(3): 325-337. |
[8] | Lee S, Kim J H, Yoo E S, et al.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57(6): 805-818. |
[9] | Wang P, Gao J, Wan C, et al.Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.Plant Physiol, 2010, 153(3): 994-1003. |
[10] | Wu Z, Zhang X, He B, et al.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145(1): 29-40. |
[11] | Park S Y, Yu J W, Park J S, et al.The senescence-induced stay green protein regulates chlorophyll degradation.Plant Cell, 2007, 19(5): 1649-1664. |
[12] | Kusaba M, Ito H, Morita R, et al.Rice NON-YELLOW COLOR COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence.Plant Cell, 2007, 19(4): 1362-1375. |
[13] | Sato Y, Morita R, Katsuma S, et al.Two short-chain dehydrogenasereductases, NON-YELLOW COLORING 1 and NYC1-LIKE are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice.Plant J, 2009, 57(1): 120-131. |
[14] | Morita R, Sato Y, Masuda Y, et al.Defect in non-yellow coloring 3, an αβ hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice.Plant J, 2009, 59(6): 940-952. |
[15] | Kusumi K, Sakata C, Nakamura T, et al.A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions.Plant J, 2011, 68(6): 1039-1050. |
[16] | Sugimoto H, Kusumi K, Tozawa Y, et al.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation.Plant Cell Physiol, 2004, 45(8): 985-996. |
[17] | Yoo S C, Cho S H, Sugimoto H, et al.Rice virescent 3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development.Plant Physiol, 2009, 150(1): 388-401. |
[18] | Gothandam K M, Kim E S, Cho H, et al.OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis.Plant Mol Biol, 2005, 58(3): 421-433. |
[19] | Rogers S O, Bendich A J.Extraction of DNA from plant tissues.Plant Mol Biol Manual, 1988, 6(1):1-10. |
[20] | Michelmore R W, Paran I, Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. |
[21] | 杨麟, 罗大刚. 水稻叶色突变体的研究进展. 安徽农业科学, 2013, 41(8): 3341-3342. |
[22] | Nagata N, Tanaka R, Satoh S, et al.Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species.Plant Cell, 2005, 17(1): 233-240. |
[23] | Maekawa M.Studies oil gen etieal difference between distantly related dee varieties.Memoirs Res Fac Agric Hokk Univ, 1982, 13(2): 146-177. |
[24] | 刘少奎, 张启军, 漆庆明, 等. 水稻白条纹新基因st9(t)的初步定位. 江苏农业学报, 2012, 28(5): 928-923. |
[25] | Nagao S.Genie analysis and linkage relationship of characters in rice.Adv Genet, 1951, 4(1): 181-211. |
[26] | Maekawa M.A new leaf stripe genest-5, its linkage with d2 and the location of gene P in the second linkage group.Rice Genet Newsl, 1988, 5(1): 85-87. |
[27] | Maekawa M, Inukai T, Shinbashi N.A new gene for leaf stripe (st-6) fund in linkage group 3.Rice Genet Newsl, 1990, 7(1): 108-109. |
[28] | 谭振华. 水稻白条纹叶基因OsPPR3的图位克隆及功能分析. 长沙: 湖南大学, 2012. |
[29] | 何颖红, 邹国兴, 饶玉春等. 水稻白条叶突变体(st10)的遗传分析与基因定位. 分子植物育种, 2011, 9(2): 136-142. |
[30] | Su N, Hu M, Wu D, et al.Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production.Plant Physiol, 2012, 159(1): 227-238. |
[31] | 曹立勇, 钱前, 朱旭东, 等. 紫叶标记籼型光温敏核不育系中紫S的选育及其配组的杂种优势. 作物学报, 1999, 25(1): 44-49. |
[32] | Oud J S N, Schneiders H, Koo A J, et al. Breeding of transgenic orange Petunia hybrid varieties.Euphytica, 1995, 84(3): 175-181. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||