[1]Steele K A, Edwards G, Zhu J, et al. Markerevaluated selection in rice: Shifts in allele frequency among bulks selected in contrasting agricultural environments identify genomic regions of importance to rice adaptation and breeding. Theor Appl Genet, 2004, 109: 1247-1260.
[2]Stuber C W, Moll R H, Goodman M M, et al. Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.). Genetics, 1980, 95: 225-236.
[3]Luo Z W, Tao S H, Zeng Z B. Inferring linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Genetics, 2000, 156: 457-467.
[4]Li Z K, Fu B Y, Gao Y M, et al. Genomewide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice. Plant Mol Biol, 2005, 59: 33-52.
[5]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to diseaseresistance genes by bulked sergeant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
[6]Zhang Q, Shen B Z, Dai X K, et al. Using bulked extremes and recessive class to map genes for photoperiodsensitive genic male sterility in rice. Proc Natl Acad Sci USA,1994, 91: 8675-8679.
[7]Lebowita R J, Soller M, Beckmann S. Traitbased analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor Appl Genet, 1987, 73: 556-562.
[8]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
[9]Darvasi A, Soller M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics, 1994, 138: 1365-1373.
[10]Foolad M R, Jones R A. Mapping salttolerance genes in tomato (Lycopersicon esculentum) using traitbased marker analysis. Theor Appl Genet, 1993, 87: 184-192.
[11]Zhang L P, Lin G Y, NioLiu D, et al. Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum× L. hirsutum cross by selective genotyping. Mol Breeding, 2003, 12: 3-19.
[12]Wingbermuehle W J, Gustus C, Smith K P. Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley. Theor Appl Genet, 2004, 109: 1160-1168.
[13]Coque M, Gallais A. Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet, 2006, 112: 1205-1220.
[14]Luo Z W, Wu C I, Kearsey M J. Precision and highresolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161: 915-929.
[15]Li J X, Yu S B, Xu C G, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet, 2000, 101: 248-254.
[16]Xiao J, Li J, Grandillo S, et al. Identification of traitimproving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150: 899-909.
[17]Septiningsih E M, Prasetiyono J, Lubis E, et al. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107: 1419-1432.
[18]Zhuang J Y, Lin H X, Qian G R, et al. Analysis of QTL× environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808.
[19]Moncada P, Martinez C P, Borrero J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41-52.
[20]Li Z, Pinson S R M, Stansel J W, et al. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374-381.
[21]Yan J, Zhu J, He C, et al. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150:1257-1265.
[22]Li Z, Jakkula L, Hussey R S, et al. SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern rootknot nematode.Theor Appl Genet, 2001,103: 1167-1173.
[23]Fasoula V A, Harris D K, Bailey M A, et al. Identification, mapping, and confirmation of a soybean gene for bud blight resistance. Crop Sci, 2003, 43: 1754-1759.
[24]Wissuwa M, Ae N. Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil, 2001, 237: 275-286.
[25]Glover K D, Wang D, Arelli P R, et al. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI 88788 on linkage group J. Crop Sci, 2004, 44: 936-941.
[26]Xu J L, Lafitte H R, Gao Y M, et al. QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642-1650.
[27]Xu J L, Yu S B, Luo L J, et al. Molecular dissection of the primary sink size in rice (Oryza sativa L.).Plant Breeding, 2004, 123(1): 43-50.
[28]Manly K F, Olson J M. Overview of QTL mapping software and introduction to Map Manager QT. Mammalian Genome, 1999, 10: 327334.
[29]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996: 25-36.
[30]Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334.
[31]Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264.
[32]Larsen R J, Marx M L. Introduction to Mathematical Statistics and Its Applications. Englewood Cliffs, New Jersey: PrenticeHall, Inc., 1981: 335.
[33]Martinez O, Curnow R N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet, 1992, 85: 480-488.
[34]Wright F A, Kong A. Linkage mapping in experimental crosses: The robustness of singlegene models. Genetics, 1997, 146: 417-425.
[35]Tanksely S D. Mapping polygenes. Annu Rev Genet, 1993, 27: 205233.
[36]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971.
[37]Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors, using a complete linkage map of resistance fragment length polymorphisms. Nature, 1988, 335: 721-726.
[38]Ashikari M, Matsuoka M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci, 2006, 11: 344-350.
[39]Young N D. A cautiously optimistic vision for markerassisted breeding. Mol Breeding, 1999, 5: 505-510.
[40]Xu Y B, Crouch J H. Markerassisted selection in plant breeding: From publications to practice. Crop Sci, 2008, 48: 391-407
[41]Sharp P J, Johnston S, Brown G, et al. Validation of molecular markers for wheat breeding. Aust J Agric Res, 2001, 52: 1357-1366.
[42]Lander E S, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet, 1995, 11: 241-247.
[43]谢学文, 许美容, 藏金萍, 等. 水稻抗纹枯病QTL表达的遗传背景及环境效应.作物学报, 2008, 34(11): 1885-1893.
[44]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203. [45]黎志康. 我国水稻分子育种计划的策略. 分子植物育种, 2005, 3(5): 603-608. |