Chinese Journal of Rice Science
• 综述与专论 • Next Articles
ZHAO Feng1,2, WANG Dan ying1, XU Chunmei 1, ZHANG Weijian2, ZHANG Xiufu 1,*
Received:
1900-01-01
Revised:
1900-01-01
Online:
2009-07-10
Published:
2009-07-10
赵 锋1,2, 王丹英1, 徐春梅1, 张卫建2, 章秀福1, *
ZHAO Feng,WANG Dan ying,XU Chunmei ,ZHANG Weijian,ZHANG Xiufu . Progress in Research on Physiological and Ecological Response of Rice to Oxygen Nutrition and Its Environment Effects [J]. Chinese Journal of Rice Science, DOI: 10.3969/j.issn.1001-7216.2009.04.01 .
赵 锋 王丹英, 徐春梅, 张卫建, 章秀福, . 水稻氧营养的生理、生态机制及环境效应研究进展
[J]. 中国水稻科学, DOI: 10.3969/j.issn.1001-7216.2009.04.01 .
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2009.04.01
[1]王镜岩, 朱圣庚, 徐长法. 生物化学. 北京: 高等教育出版社, 2002: 129-144.
[2]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice(Oryza sativa L.). Ann Bot, 2003, 91: 301-309.
[3]Matthieu N B, Fanny T, Martine L F, et al. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): A microcosm study. Plant & Soil, 2008, 312(1/2):207-218.
[4]章秀福, 王丹英, 屈衍艳, 等. 水稻垄畦栽培的植株形态和生理特性研究. 作物学报, 2005, 31(6): 742-748.
[5]章秀福, 王丹英, 邵国胜. 垄畦栽培水稻的产量、品质效应及其生理生态基础. 中国水稻科学, 2003, 17(4): 343-348.
[6]王丹英, 韩勃, 章秀福, 等. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34(5): 803-80.
[7]Shigeru M G. Agriculture Encyclopedia: Root Formation. Japan:Yangxian Hall, 1987.
[8]Ponnampernma F N. The chemistry of submerged soils. Advan Agron, 1972, 24: 29-96.
[9]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol, 2006, 170: 767-778.
[10]Colmer T D. Longdistance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ, 2003, 26: 17-36.
[11]Garthwaite A J, Armstrong W, Colmer T D. Physiology of the barrier to radial O2 loss in adventitious roots of Hordeum marinum assessed using modelling and experiments to manipulate O2 in the aerenchyma//Abstract of 8th Congress of International Society of Plant Anaerobiosis. Perth, Australia: Interational Society of Plant Anaerobiosis, 2004: 27-31.
[12]Groot T T, Bodegom P M, Meijer H A, Harren F J. Gas transport through the root shoot transition zone of rice tillers. Plant & Soil, 2005, 277: 107-116.
[13]Armstrong J, Armstrong W. Rice: Sulphideinduced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot, 2005, 96: 625-638.
[14]Claus L M, Kaj S J. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna. New Phytol, 2008, 179: 804-825.
[15]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol, 2003, 159: 185-194.
[16]汪晓丽, 司江英, 陈冬梅, 等. 低pH条件下不同氮源对水稻根通气组织形成的影响. 扬州大学学报: 农业与生命科学版, 2005, 26(2): 66-71.
[17]Amara W, Hank G, Campbell J T. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann Bot, 1996, 80: 115-123.
[18]Zhang Y S, Lin X Y, Luo A C . Chemical behavior of phosphorus in paddy soil as affected by O2 secretion from rice root. Chin J Rice Sci, 2000, 14(4): 208-212 .
[19]Frankenberger W T. Factors affecting the fate of urea peroxide added to soil. Bull Environ Contam Toxicol, 1997, 59: 50-57.
[20]Crawford R M M. Tolerance to anoxia and ethanol metabolism in germinating seeds. New Phytol, 1977, 79: 511-517.
[21]Webb T, Armstrong W. The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots。 J Exp Bot, 1983, 34: 579-603.
[22]Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology:2. Further development of the problem. Russ J Plant Physiol, 2007, 53(6): 711-738.
[23]Perata P, Alpi A. Plant responses to anaerobiosis. Plant Sci, 1993, 93: 1-17.
[24]Maslova I P, Chernyadeva I F, Vartapetian B B. Soluble proteins and alcohol dehydrogenase of rice seedlings in anoxia//Abstracts of Ⅻ International Botanical Congress. Vol. 2. Leningrad: Nauka, 1975: 365.
[25]Costes C, Vartapetian B B. Plant grown in a vacuum: The ultrastructure and functions of mitochondria. Plant & Sci, 1978, 11: 115-119.
[26]Jacob D L, Otte M L. Longterm effects of submergence and wetland vegetation on metals in a 90year old abandoned PbZn mine tailings pond. Environ Pollut, 2004, 130: 337-345.
[27]Maria S, Kapuganti J G, Robert D H. Nitritedriven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226: 465-474.
[28]Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress: Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant, 2003, 117: 508 -520.
[29]Xu K, Xu X, Ronald P C, et al. A highresolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet, 2000, 263: 681-689.
[30]Nandi S, Subudhi P K. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selection gene typing. Mol Gen Genet, 1997, 225: 1-8.
[31]Nakazomo M, Tsuji H, Li Y, et al. Expression of a gene encoding mitochondria aldehyde dehydrogenases in rice increase under submerged conditions. Plant Physiol, 2000, 16(1):45-51.
[32]龚红兵, 周义文, 刁立平, 等. 几个杂交稻组合的适应性分析. 江苏农业科学, 2006(6): 25-28.
[33]Haque Q A, Lambers D H R, Tepora N M. Inheritance of submergence tolerance in rice. Euphytica, 1989, 41(3): 247-251.
[34]Revsbech N P, Pedersen O W, Reichardt A. Briones microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fert Soils, 1999, 29: 379-385.
[35]Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies. FEMS Microbiol Rev, 2000, 24: 625-645.
[36]Weis J S, Weis P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ Int, 2004, 30: 685-700.
[37]Armstrong J, Armstrong W. Rice and Phragmites: Effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot, 2001, 88(8): 1359-1370.
[38]Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River. Pedosphere, 1996, 6(2):111-119.
[39]Jia Z J, Cai Z C, Xu H. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil. Plant & Soil, 2001, 23(1): 211-221.
[40]何胜德, 林贤青, 朱德峰. 杂交水稻根际供氧对土壤氧化还原电位和产量的影响. 杂交水稻, 2006, 21(3): 78-80.
[41]Lu Y H, Dirk R, Werner L. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol, 2006, 8(8): 1351-1360.
[42]Banker B C, Kludze H K, Alford D P. Methane sources and sinks in paddy rice soils: Relationship to emissions. Agric EcOsyst Environ, 1995, 53: 243-251.
[43]李香兰, 徐华, 曹金留, 等. 水分管理对水稻生长期CH4排放的影响. 土壤, 2007, 39(2): 238-240.
[44]Butterbach B K, Papen H, Rermenberg H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ, 1997, 20: 1175-1183.
[45]King G M. Ecological aspects of methan oxidation, a key determinant of global methane dynamics. Adv Microb Ecol, 1992, 12: 431-468.
[46]丁维新, 蔡祖聪. 植物在CH4产生、氧化和排放中的作用. 应用生态学报. 2003, 14(8): 1379-1384.
[47]傅志强, 黄璜, 何保良, 等. 水稻植株通气系统与稻田CH4排放相关性研究. 作物学报, 2007, 33(9): 1458-1467.
[48]Arah J R M, Kirk G J D. Modelling rice plantmediated methane emission. Nutr Cycl AgroEcosys, 2000, 58(13): 221230.
[49]陈永华, 赵 森, 柳 俊, 等. 水稻耐淹涝性状的遗传分析和SSR标记的研究, 遗传, 2006, 28(12): 15621566.
[50]陈永华, 赵森, 柳俊, 等. 利用差异显示法研究水稻耐淹涝相关基因. 农业生物技术学报, 2006, 14(6): 894-898.
[51]李阳生, 李玉昌, 周建林, 等. 水稻新材料耐淹涝能力的比较研究. 应用与环境生物学报, 2000, 6(3): 211-217.
[52]唐建军, 王永锐, 傅家瑞. 水稻对渍水稻田土壤缺氧胁迫的反应. 中国稻米, 1995(1): 29-31.
[53]张祖德. 水稻垄畦半旱式栽培的增产原因和技术. 中国稻米, 1999(2): 15-17. [54]Baker A M, Hatton W. Calcium peroxide as a seed coating material for padi rice: Ⅲ. Glasshouse trials. Plant & Soil, 1987, 99: 379-386. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||