[1] Bush D S. Calcium regulation in plant cell and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 95-122.
[2] Reddy A S. Calcium: Silver bullet in signaling. Plant Sci, 2001, 160: 381-404.
[3] Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 97: 3730-3734.
[4] Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280: 1943-1945.
[5] Qiu Q S, Guo Y, Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99: 8436-8441.
[6] Quintero F J, Ohta M, Shi H, et al. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA, 2002, 99: 9061-9066.
[7] Kim B G, Waadt R, Cheong W H, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52: 473-484.
[8] Wang M Y, Gu D, Liu T S, et al. Overexpression of a putative maize calcineurin Blike protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 2007, 65: 733-746.
[9] Kudla J, Xu Q, Harter H, et al. Genes for calcineurin Blike proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA, 1999, 96: 4718-4723.
[10] Albrecht V, Weinl S, Balzevic D, et al. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36: 457-470.
[11] Pandey G K, Cheong Y H, Kim K N, et al. The calcium sensor calcineurin Blike 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004, 16: 1912-1924.
[12] MartinezAtienza J, Jiang X, Garciadeblas B, et al. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001-1012.
[13] Gu Z M, Ma B J, Jiang Y, et al. Expression analysis of the calcineurin Blike gene family in rice (Oryza sativa L.) under environmental stresses. Gene, 2008, 415: 1-12.
[14] 顾志敏. 水稻两个逆境胁迫相关基因家族的克隆与功能分析[D]. 南京: 南京农业大学, 2006.
[15] 应存山. 中国稻种资源. 北京:中国农业科技出版社, 1993: 530-539.
[16] Reece K S, Mcelroy D, Wu R. Genomic nucleotide sequence of four rice (Oryza sativa L.) actin genes. Plant Mol Biol, 1990, 14: 621-624.
[17] Yoshida S, Forno D A, Cock J H, et al. Laboratory Manual for Physiological Studies of Rice. Manila: IRRI, 1976: 38-42.
[18] 刘永军, 郭守华, 杨晓玲. 植物生理生化实验. 北京:中国农业科技出版社, 2002: 64-156.
[19] Gulati A, Jaiwal P K. Comparative salt responses of callus cultures of Vigna rudtata to various osmotic and ionic stresses. J Plant Physiol, 1992, 141: 120-124.
[20] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Boil, 1991, 42: 55-76.
[21] 宗会, 李明启. 钙信使在植物适应非生物逆境中的作用. 植物生理学通讯, 2001, 37(4): 330-335.
[22] Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000, 12: 431-434.
[23] Liang J, Zhang J, Wong M H. Stomatal conductance in relation to xylem sap ABA concentration in two tropical trees,Acacia confuse and Litsea glutinosa. Plant Cell Environ, 1996, 19: 93-100.
[24] Hanson A D, Nelsen C F, Peersen A R, et al. Capacity for proline accumulation during water stress in barley and its implication for breeding for drought resistance. Crop Sci, 1979, 19: 489-493.
[25] 孟 林, 毛培春, 张国芳, 等. 17 个苜蓿品种苗期抗旱性鉴定. 草业科学, 2008, 25(1): 21-25.
[26] 龚 明. 作物抗旱性鉴定方法与指标及其综合评价. 云南农业大学学报, 1989, 4(1): 73-81.
[27] 戴高兴, 彭克勤, 萧浪涛, 等. 聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响.中国水稻科学, 2006, 20(5): 557-559.
[28] Richards R A, Thurling N. Genetics analysis of drought stress response in rapeseed physiological characters. Euphytica, 1979, 28: 755-759.
[29] Moftah A E, Michel B E. The effect of sodium choloride on solute potential and proline accumulation in soybean leaves. Physiol Plant, 1987, 83: 238-240.
[30] 刘娥娥, 宗会, 郭振飞, 等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响. 热带亚热带植物学报, 2000, 8: 235-238.
[31] 宗会, 刘娥娥, 郭振飞, 李明启.干旱、盐胁迫下LaCl3 和CPZ 对稻苗脯氨酸积累的影响. 作物学报, 2001, 27(2):173-177.
[32] Cakmak I, Horst W J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxide activities in root tips of soybean. Physiol Plant, 1991, 83: 463-468. |