[1]李玉昌, 李阳生, 李绍清. 淹涝胁迫对水稻生长发育危害与耐淹性机理研究的进展. 中国水稻科学, 1998, 12(增刊): 70-76.
[2]Drew M C, Jackson M B, Giffard S. Ethylenepromoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta, 1979, 147(1): 83-88.
[3]Jackson M B. Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol, 1985, 36: 145-174.
[4]王高鸿, 王辉, 黄久常. 乙烯利诱导玉米根皮层通气组织的形成与程序化细胞死亡的关系. 华中师范大学学报:自然科学版, 2000, 34(4): 463-467.
[5]Arunika H L, Gunawardena A N, Pearce D M, et al. Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize. Planta, 2001, 212(2): 205-214.
[6]He C J, Morgan P W, Drew M C. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol, 1996, 112(2): 463-472.
[7]王文泉, 郑永战, 梅鸿献, 等. 厌氧诱导木葡聚糖转葡糖苷酶(XET)基因在芝麻和小麦根中的表达. 农业生物技术学报, 2004, 12(3): 258-263.
[8]Muhlenbock P, Plaszczyca M, Plaszczyca M, et al. Lysigenous aerenchyma formation in Arabidopsis is controlled by lesion simulating disease. Plant Cell, 2007, 19(11): 3819-3830.
[9]Colmer T D, Cox M C H, Voesenek L A C J. Root aeration in rice (Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol, 2006, 170(4): 767-778.
[10]Visser E J W, Bgemann G M. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol, 2006, 171(2): 305-314.
[11]Justin S H F W, Armstrong W. Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol, 1991, 118: 49-62.
[12]Jackson M B, Fenning T M, Jenkins W. Aerenchyma (Gasspace) formation in adventitious roots of rice (Oryza sativa L.) is not controlled by ethylene or small partial pressures of oxygen. J Exp Bot, 1985, 36(10): 1566-1572.
[13]邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 163-165.
[14]Genovesi V, Fornale S, Fry S C, et al. ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana. J Exp Bot, 2008, 59(4): 875-889.
[15]Saab I N, Sachs M M. A floodinginduced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol, 1996, 112 (1): 385-391.
[16]王金祥, 严小龙, 潘瑞炽.不定根形成与植物激素的关系.植物生理学通讯, 2005, 41(2): 133-141.
[17]Campbell R, Drew M C. Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. Planta, 1983, 157(4): 350-357.
[18]Drew M C, He C J, Morgan P W. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci, 2000, 5(3): 123-127.
[19]魏和平, 利容千, 王建波, 等. 受淹玉米根内通气组织形成时纤维素酶活性超微细胞化学定位. 作物学报, 2006, 32(1): 84-87.
[20]Kawai M, Samarajeewal P K, Barrerol R A, et al. Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta, 1998, 204: 277-287.
[21]Kim H M, Ahn J W. Activation of the programmed cell death pathway by inhibition of proteasome function in plants. Biol Chem, 2003, 278(21): 19406-19415.
[22]Voesenek L A C J, Colmer T D, Pierik R, et al. How plants cope with complete submergence. New Phytol, 2006, 170(2): 213-226.
[23]田敏, 饶龙兵, 李纪元. 植物细胞中的活性氧及其生理作用. 植物生理学通讯, 2005, 41(2): 235-241.
[24]樊明寿, 张福锁. 植物通气组织的形成过程和生理生态学意义. 植物生理学通讯, 2002, 38(6): 615-618. |