[1]Myers A M, Morell M K, James M G, et al. Recent progress toward understanding the biosynthesis of the amylopectin crystal. Plant Physiol, 2000, 122: 989-998.
[2]Smith A M. The biosynthesis of starch granules. Biomacromolecules, 2001, 2(2): 335-341.
[3]Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43(7): 718-725.
[4]Nakamura Y, Umemoto T, Takahata Y, et al. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm: Possible role of starch debranching enzyme (R enzyme) in amylopectin biosynthesis. Plant Physiol, 1996, 97: 491-498.
[5]Kubo A, Fujita N, Harada K, et al. The starchdebranching enzyme isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol, 1999, 121: 399-409.
[6]Mouille G, Maddelein M L, Libessart N, et al. Preamylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell, 1996, 8: 1353-1366.
[7]Zeeman S C, Umemoto T, Lue W L, et al. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell, 1998, 10: 1699-1712.
[8]James M G, Robertson D S, Myers A M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell, 1995, 7: 417-429.
[9]Wattebled F, Dong Y, Dumez S, et al. Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol, 2005, 138: 184-195.
[10]Burton R A, Jenner H, Carrangis L, et al. Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J, 2002, 31: 97-112.
[11]Kubo A, Rahman S, Utsumi Y, et al. Complementation of sugary1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiol, 2005, 137: 43-56.
[12]Ohdan T, Francisco P B, Sawada T, et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005, 56: 3229-3244.
[13]Duan M J, Sun S M. Profiling the expression of genes controlling rice grain quality. Plant Mol Biol, 2005, 59: 165-178.
[14]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 43214325.
[15]郑霏琴, 王宗阳, 高继平. 水稻胚乳中核糖核酸的分离. 植物生理学通讯, 1993, 29(6): 438-440.
[16]Fujita N, Kubo A, Francisco P B Jr, et al. Purification, characterization, and cDNA structure of isoamylase from developing endosperm of rice. Planta, 1999, 208: 283-293.
[17]Rahman S, Nakamura Y, Li Z, et al. The sugarytype isoamylase gene from rice and Aegilops tauschii: Characterization and comparison with maize and Arabidopsis. Genome, 2003, 46 (3): 496-506.
[18]李钱峰, 蒋美艳, 于恒秀, 等. 水稻胚乳总RNA定量RTPCR研究中参照基因的选择. 扬州大学学报:农业与生命科学版,2008, 29(2): 198-204.
[19]蔡毅, 谢冬绿, 王宗阳, 洪孟民. 水稻淀粉分支酶基因5′上游区缺失对基因表达的影响. 植物生理与分子生物学学报, 2002, 28(1): 23-27.
[20]刘巧泉, 陈秀花, 顾铭洪, 等. 水稻sbe1启动子驱动的反义sbeGUS融合基因在转基因水稻中的表达. 植物生理与分子生物学报, 2003, 29(4): 332-336.
[21] Hfgen R, Willmitzer L. Storage of competent cell for Agrobacterium transformation. Nucl Acids Res, 1988, 16(21): 9877.
[22]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989.
[23]刘巧泉, 王宗阳, 顾铭洪, 等. 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998, 24: 259-271.
[24]Jefferson R A.Assaying chimeric genes in plants:The GUS gene fusion system.Plant Mol Biol Rep, 1987, 5: 387-405.
[25]Bradford H M.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding.Anal Biochem, 1976, 72: 248-254.
[26]Dinges J R, Colleoni C, James M G, et al. Mutational analysis of the pullulanasetype debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 2003, 15: 666-680.
[27]Washida H, Wu C Y, Suzuki A, et al. Identification of cisregulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB1. Plant Mol Biol, 1999, 40: 1-12.
[28]Wu C, Washida H, Onodera Y, et al. Quantitative nature of the prolaminbox, ACGT and AACA motifs in a rice glutelin gene promoter: Minimal ciselement requirements for endospermspecific gene expression. Plant J, 2000, 23: 415-421.
[29]Foster R, Izawa T, Chua N H. Plant bZIP proteins gather at ACGT elements. FASEB J, 1994, 8: 192-200.
[30]Siberil Y, Benhamron S, Memelink J, et al. Catharanthus roseus Gbox binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol, 2001, 45: 477-488.
[31]Hwang Y S, Karrer E E, Thomas B R, et al. Three ciselements required for rice alphaamylase Amy3D expression during sugar starvation. Plant Mol Biol, 1998, 36: 331-341.
[32]Morita A, Umemura T, Kuroyanagi M, et al. Functional dissection of a sugarrepressed alphaamylase gene (Ramy1A) promoter in rice embryos. FEBS Lett, 1998, 423: 81-85.
[33]刘巧泉, 辛世文, 顾铭洪. 基因工程改良作物籽粒蛋白品质的策略及其研究进展. 分子植物育种, 2007, 5(3): 301-308.