[1]Coe E H, Polacco M. Gene list and working maps. Maize Genet Coop Newsl, 1995, 69: 157-191.
[2]Xu Y B. Global view of quantitative trait loci: Rice as a model//Kang M S. Quantitative Genetics, Genomics and Plant Breeding. Wallingford, Oxon: CABI Publishing, 2002: 109-134.
[3]Harushima Y, Masahiro Y, Ayahiko S, et al. A highdensity rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148(1): 479-494.
[4]Davis G L, McMullena M D, Baysdorferb C, et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736locus map. Genetics, 1999, 152(3): 1137-1172.
[5]Menz M A, Klein R R, Mullet J E, et al. A highdensity genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol, 2002, 48(5): 483-499.
[6]Ahn S N, Tanksley S D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA, 1993, 90(17): 7980-7984.
[7]Wilson W A, Harringtona S E, Woodmanb W L, et al. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics, 1999, 153(1): 453-473.
[8]Devos K M, Chao S, Li Q Y, et al. Relationship between chromosome 9 of maize and wheat homeologous group 7 chromosomes. Genetics, 1994, 138(4): 1287-1292.
[9]van Deynze A E, Nelson J C, O′Donoughue L S, et al. Comparative mapping in grasses. Oat relationships. Mol Gen Genet, 1995, 249(3): 349-356.
[10]Moore G, Devos K M, Wang Z, Gale M D. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol, 1995, 5(7): 737-739.
[11]Lin Y R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific Sorghum population. Genetics, 1995, 141(1): 391-411.
[12]McIntyre C L, Hermann S M, Casu R E, et al. Homologues of the maize rust resistance gene Rp1D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet, 2004, 109(4): 875-883.
[13]Paterson A H, Lin Y R, Li Z, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 1995, 269(5231): 1714-1718.
[14]Chardon F, Virlon B, Moreau L, et al. Genetic architecture of flowering time in maize as inferred from quantitative trait loci metaanalysis and synteny conservation with the rice genome. Genetics, 2004, 168(4): 2169-2185.
[15]Chen H L, Wang S P, Xing Y Z, et al. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA, 2003, 100(5): 2544-2549.
[16]Yan J B, Tang H, Huang Y Q, et al. Comparative analyses of QTL for important agronomic traits between maize and rice. Acta Genet Sin, 2004, 31(12): 1401-1407.
[17]Grivet L, D’Hont A, Dufour P, et al. Comparative genome mapping of sugarcane with other species within the andropogoneae tribe. Heredity, 1994, 73: 500-508.
[18]Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92-100.
[19]Whitelaw C A, Barbazuk W B, Pertea G, et al. Enrichment of genecoding sequences in maize by genome filtration. Science, 2003, 302(5653): 2118-2120.
[20]Fatokun C A, MenancioHautea D I, Danesh D, et al. Young evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics, 1992, 132(3): 841-846.
[21]Borner A, Korzun V, Worland A J. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica, 1998, 100(1/3): 245-248.
[22]Peng J R, Richards D E, Hartley N M, et al. “Green revolution” genes encode mutant gibberellin reponse modulators. Nature, 1999, 400(6741): 256-261.
[23]Palmer L E, Rabinowicz P D, O’Shaughnessy A L, et al. Maize genome sequencing by methylation filtration. Science, 2003, 302(5653): 2115-2117.
[24]Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565): 79-92.
[25]Kellogg E A. Evolutionary history of the grasses. Plant Physiol, 2001, 125(3): 11981205.
[26]Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94(13): 6809-6814.
[27]李雪华, 李新海, 郝转芳, 等. 干旱条件下玉米耐旱相关性状的QTL一致性图谱构建. 中国农业科学, 2005, 38(5): 882-890.
[28]Goffinet B, Gerber S. Quantitative trait loci: A metaanalysis. Genetics, 2000, 155(1): 463-473.
[29]王毅, 姚骥, 张征锋, 等. 基于玉米综合QTL图谱的比较分析及株高QTL的统合分析. 科学通报, 2006, 51(10): 1776-1786.
[30]Sawkins M C, Farmer A D, Hoisington D, et al. Comparative Map and Trait Viewer (CMTV): An integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments. Plant Mol Biol, 2004, 56(3): 465-480.
[31]Wang Y G, Deng Q Y, Liang F S, et al. Molecular marker assisted selection for yieldenhancing genes in the progeny of Minghui 63×O. rufipogon. Agric Sci China, 2004, 3(2): 75-83.
[32]Stuber C W. Mapping and manipulating quantitative traits in maize. Trends Genet, 1995, 11: 477-481.
[33]Romagosa I, Han F, Ullrich S E. Verification of yield QTL through realized molecular markerassisted selection responses in a barley cross. Mol Breeding, 1999, 5: 143-151. [34]Wight C P, Kibite S, Tinker N A. Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theor Appl Genet, 2006, 112(2): 222-231. |