[1]Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901-908.
[2]郑相如, 王希善. 植物解剖结构显微图谱. 北京: 农业出版社, 1983: 186-190.
[3]Jones H G. Stomatal control of photosynthesis and transpiration. J Exp Bot, 1998, 49: 387-398.
[4]Bergmann D C. Integrating signals in stomatal development. Curr Opin Plant Biol, 2004, 7: 26-32.
[5]杨建昌, 朱庆森, 乔纳圣·威尔斯, 等. 水分胁迫对水稻叶片气孔频度、气孔导度及脱落酸含量的影响. 作物学报, 1995, 21(5): 532-539.
[6]王建林, 于贵瑞, 王伯伦, 等. 北方粳稻光合速率、气孔导度对光强和CO2浓度的响应. 植物生态学报, 2005, 29(1): 16-25.
[7]Ishihara K, Iida O, Hirasawa T. Relationship between nitrogen content in leaf blades and photosynthetic rate of rice plants with reference to stomatal aperture and conductance. Jpn J Crop Sci, 1979, 48: 551-556.
[8]陈温福, 徐正进, 张龙步, 等. 水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究. 中国水稻科学, 1990, 4(4): 163-168.
[9]Chen W F, Xu Z J, Qian T Y, et al. Comparative study of stomatal density and gas diffusion resistance in leaves of various types of rice. Korean J Crop Sci, 1995, 40: 125-132.
[10]Tsunoda S, Fukoshima M T. Leaf properties related to photosynthetic response to drought in upland and lowland varieties. Ann Bot, 1986, 58: 531-539.
[11]Weng J H, Chen C Y. Stomatal frequency associated with an esterase band in rice genotypes. Rice Genet Newsl, 1987, 15: 93-95.
[12]Maruyama S, Tajima K. Leaf conductance in japonica and indica rice varieties. Ⅰ. Size, frequency, and aperture of stomata. Jpn J Crop Sci, 1990, 59(4): 801-808.
[13]Kawamitsu Y, Agata W, Hiyane S, et al. Relation between leaf gas exchange rate and stomata. Jpn J Crop Sci, 1996, 65: 626-633.
[14]Yoshida T, Ono T. Environmental differences in leaf stomatal frequency of rice. Jpn J Crop Sci, 1978, 47: 515-528.
[15]Ishimaru K, Shirota K, Higa M, et al. Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. Plant Physiol Biochem, 2001, 39: 173-177.
[16]Ohsumi A, Kanemura T, Homma K, et al. Genotypic variation of stomatal conductance in relation to stomatal density and length in rice(Oryza sativa L.). Plant Prod Sci, 2007, 10: 322-328.
[17]毛艇, 徐海, 郭艳华, 等. 利用SSR分子标记进行水稻籼粳分类体系的初步构建. 华北农学报, 2009, 24(1): 119-124.
[18]陈凯, 李美, 徐海. 籼粳稻杂交后代的剑叶气孔性状与亚种特性的关系. 植物生理学通讯, 2009, 45(4): 313-317.
[19]Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90: 10972-10976.
[20]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
[21]McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[22]刘丽霞, 程红卫, 陈温福. 水稻剑叶气孔密度的研究. 辽宁农业科学, 2001(2): 8-11.
[23]刘丽霞, 程红卫, 陈温福. 水稻上三片功能叶气孔性状. 北华大学学报: 自然科学版, 2002, 3(1): 61-64.
[24]刘丽霞, 程红卫, 陈温福. 不同类型水稻剑叶气孔长、宽度与气孔密度的研究. 垦殖与稻作, 2001(2): 5-8.
[25]Laza M R C, Kondo M, Ideta O, et al. Quantitative trait loci for stomatal density and size in lowland rice. Euphytica, 2009, 172(2): 149-158.
[26]Teng S, Qian Q, Zeng D L, et al. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 2004, 135: 1-7. |