[1]Staskawicz B J. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol, 2001, 125(1): 73-76.
[2]Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol, 1999, 19(3): 1720-1730.
[3]Lee S W, Han S W, Bartley L E, et al. From the academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA, 2006, 103(49): 18395-18400.
[4]Ebbole D J. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol, 2007, 45: 437-456.
[5]O’Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250(10): 4007-4021.
[6]Asirvatham V S, Watson B S, Sumner L W. Analytical and biological variances associated with proteomic studies of Medicago truncatula by two-dimensional polyacrylamide gel electrophoresis. Proteomics, 2002, 2(8): 960-968.
[7]Alban A, David S O, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1): 36-44.
[8]Lilley K S, Friedman D B. Difference gel electrophoresis DIGE. Drug Discov Today: Technol, 2006, 3(3): 347-353.
[9]Baggerman G, Vierstraete E, De Loof A, et al. Gel-based versus gel-free proteomics: A review. Comb Chem High Throughput Screen, 2005, 8(8): 669-677.
[10]Molloy M P, Witzmann F A. Proteomics: Technologies and applications. Brief Funct Genomic Proteomics, 2002, 1(1): 23-29.
[11]Majeran W, Zybailov B, Ytterberg A J, et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics, 2008, 7(9): 1609-1638.
[12]孙言伟, 姜颖, 贺福初. 差异蛋白质组学的研究进展. 生命科学, 2005, 17(2): 137-140.
[13]陈功友, 邹丽芳, 王邢平, 等. 水稻白叶枯病菌致病性分子遗传学基础. 中国农业科学, 2004, 37(9): 1301-1307.
[14]Mahmood T, Jan A, Kakishima M, et al. Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics, 2006, 6(22): 6053-6065.
[15]Yu C L, Yan S P, Wang C C, et al. Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Phytochemistry, 2008, 69(10): 1989-1996.
[16]Chen F, Yuan Y X, Li Q, et al. Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics, 2007, 7(9): 1529-1539.
[17]陈芳育, 黄青云, 张红心, 等. 水稻品种“佳辐占”应答细菌性条斑病病原菌侵染的蛋白质组学分析. 作物学报, 2007, 33(7): 1051-1058.
[18]Kim S T, Cho K S, Yu S, et al. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics, 2003, 3(12): 2368-2378.
[19]Kim S T, Kim S G, Hwang D H, et al. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics, 2004, 4(11): 3569-3578.
[20]Kim S T, Kang Y H, Wang Y, et al. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics, 2009, 9(5): 1302-1313.
[21]Ventelon-Debout M, Delalande F, Brizard J P, et al. Proteome analysis of cultivar-specific degradation of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics, 2004, 4(1): 216-225.
[22]Brizard J P, Carapito C, Delalande F, et al. Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts. Mol Cell Proteomics, 2006, 5(12): 2279-2297.
[23]Pawson T, Scott J D. Protein phosphorylation in signaling: 50 years and counting. Trends Biochem Sci, 2005, 30(6): 286-290.
[24]Hubbard M J, Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci, 1993, 18(5): 172-177.
[25]Kersten B, Agrawal G K, Iwahashi H, et al. Plant phosphoproteomics: A long road ahead. Proteomics, 2006, 6(20): 5517-5528.
[26]黄珍玉, 于雁灵, 方彩云, 等. 质谱鉴定磷酸化蛋白研究进展. 质谱学报, 2003, 24(4): 494-500.
[27]Thingholm T E, Jensen O N, Larsen M R. Analytical strategies for phosphoproteomics. Proteomics, 2009, 9(6): 1451-1468.
[28]Peck S C, Nühse T S, Hess D, et al. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell, 2001, 13(6): 1467-1475.
[29]Nühse T S, Bottrill A R, Jones A M, et al. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J, 2007, 51(5): 931-940.
[30]Khan M, Takasaki H, Komatsu S. Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. J Proteome Res, 2005, 4(5): 1592-1599.
[31]Chitteti B R, Peng Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res, 2007, 6(5): 1718-1727.
[32]Whiteman S A, Nühse T S, Ashford D A, et al. A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J, 2008, 56(1): 146-156.
[33]Nakagami H, Sugiyama N, Mochida K, et al. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol, 153(3): 1161-1174. |