[1]Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol, 1992, 30: 369-389.
[2]Zhao J, Davis L C, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 2005, 23: 283-333.
[3]Boudet A M, Lapierre C, Grima-Pettenati J. Biochemistry and molecular biology of lignification. New Phytol, 1995, 129: 203-236.
[4]Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol, 1994, 106: 53-60.
[5]Prats E, Bazzalo M E, Léon A, et al. Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum. Euphytica, 2003, 132: 321-329.
[6]Kováik J, Bakor M. Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water Air Soil Pollut, 2007, 185: 185-193.
[7]Kováik J, Grúz J, Bakor M, et al. Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot, 2008, 62: 145-152.
[8]Tolrà R P, Poschenrieder C, Luppi B, et al. Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environ Exp Bot, 2005, 54: 231-238.
[9] 王海华, 汪琼, 肖用森, 等. 硝酸镍诱导水稻白叶枯病抗性与防卫反应酶活性的变化. 杂交水稻, 2003, 18(6): 47-50.
[10]Singleton V L, Orthofer R, Lamuela-Raventos R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol, 1999, 299: 152-178.
[11]Butsat S, Weerapreeyakul N, Siriamornpun S. Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development. J Agric Food Chem, 2009, 57(11): 4566-4571.
[12]Müsel G, Bergfeld R, Ruel K, et al. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta, 1997, 201: 146-159.
[13]Snchez M, Pea M J, Revilla G, et al. Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinasfer hypocotyl. Plant Physiol, 1996, 111: 941-946.
[14]Grison R, Pile P M. Properties of syringaldazine oxidase/peroxidase in maize roots. J Plant Physiol, 1985, 118: 201-208.
[15]Sahoo M R, Kole P C, Dasgupta M, et al. Changes in phenolics, polyphenol oxidase and its isoenzyme patterns in relation to resistance in taro against Phytophthora colocasiae. J Phytopathology, 2009, 157: 145-153.
[16]Mikuli Petkovek M, Usenik V, tampar F. The role of chlorogenic acid in the resistance of apples to apple scab (Venturia inaequalis (Cooke) G. Wind. Aderh.). Zb Bioteh Fak Univ Ljublj Kmet, 2003, 81: 233-242.
[17] 李云锋, 王振中, 贾显禄. 稻瘟菌激发子CSBⅠ诱导水稻防御性相关酶的活性变化. 作物学报, 2004, 30(6): 613-617.
[18]Niggeweg R, Michael A J, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol, 2004, 22: 746-754.
[19]Bily A C, Reid L M, Taylor J H, et al. Dehydromers of ferulic acid in maize pericarp and aleurone: Resistance factors to Fusarium gramineum. Phytopathology, 2003, 93: 712-719.
[20]Sarma B K, Singh U P. Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii. World J Microbiol Biotechnol, 2003, 19: 123-127.
[21]Wang H, Feng T, Peng X, et al. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Safe, 2009, 72: 1354-1362.
[22]Klessig D F, Malamy J. The salicylic acid signal in plants. Plant Mol Biol, 1994, 26: 1439-1451.
[23]Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul, 2007, 26: 290-300.
[24]王海华, 曹赐生, 康健, 等. 水杨酸诱导的水稻对白叶枯病的系统抗性与未处理叶酶活性的变化. 中国水稻科学, 2002, 16(3): 252-256.
[25] 王海华, 曾富华, 康健, 等. 镍处理对水稻叶片H2O2积累和抗病的诱导效应.植物生理学报, 2001, 27(1): 61-65.
[26]Goldberg R, Catesson A M, Czaninski Y. Some properties of syringaldazine oxidase, a peroxidase specifically involved in lignification process. Z Pflanzenphysiol, 1983, 110: 267-279.
[27]Reimers P J, Leach J E. Race-specific resistance to Xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oryza sativa) involves accumulation of a lignin-like substance in host tissues. Physiol Mol Plant Pathol, 1991, 38: 39-55.
[28]Reimers P J, Guo A, Leach J E. Increased activity of a cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv. oryzae and rice (Oryza sativa). Plant Physiol, 1992, 99: 1044-1050.
[29]Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud, 2006, 15(4): 523-530.
[30]Sgherri C, Cosi E, Navari-Izzo F. Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant, 2003, 118: 21-28. |