[1]Shimizu M, Nakajima Y, Matsuya K, et al. Comparison of phospholipid fatty acid composition in percolating water, floodwater, and the plow layer soil during the rice cultivation period in a Japanese paddy field. Jpn Soc Soil Sci Plant Nutr, 2002, 48: 595-600.
[2]刘建军, 陈海滨, 田呈明, 等. 秦岭火地塘林区主要树种根际微生态系统土壤性状研究. 土壤侵蚀与水土保持学报, 1998, 4(3): 52-56.
[3]张淑香, 高子勤. 连作障碍与根际微生态研究:Ⅱ.根系分泌物与酚酸物质. 应用生态学报, 2000, 11(1): 152-156.
[4]张淑香, 高子勤, 刘海玲. 连作障碍与根际微生态研究: Ⅲ. 土壤酚酸物质及其生物学效应. 应用生态学报, 2000, 11(5): 741-744.
[5]刘涛, 刁治民, 祁永青, 等. 根际微生物及对植物生长效应的初步研究. 青海草业, 2008, 17(4): 41-44.
[6]Wieland G, Neumann R, Backhaus H. Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development. Appl Environ Microbiol, 2001, 67: 5849-5854.
[7]Bremer C, Braker G, Matthies D, et al. Impact of plant functional group, plant species and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol, 2007, 73: 6876-6884.
[8]Kandeler E, Marschner P, Tscherko D, et al. Microbial community composition and functional diversity in the rhizosphere of maize. Plant & Soil, 2002, 238: 301-312.
[9]Han X M, Wang R Q, Liu J, et al. Effects of vegetation types on soil microbial community composition and catabolic diversity assessed by polyphasic methods in North China. J Environ Sci, 2007, 19: 1228-1234.
[10]Arab H G D E, Vlich V, Sikora R A. The use of phospho-lipids fatty acids (PLFA) in the determination of rhizosphere specific microbial communities of two wheat cultivars. Plant & Soil, 2001, 228: 291-297.
[11]Kimura M, Asakawa S. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biol Fertil Soils, 2006, 43: 20-29.
[12]Frostegrd A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol, 1993, 59: 3605-3617.
[13]Kourtev P S, Ehrenfeld J G, Haggelom M. Exotic plant species alter the microbial community structure and function in the soil. Ecology, 2002, 83: 3152-3166.
[14]Tunlid A, Hoitink H A J, Low C. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Appl Environ Microbiol, 1991, 55(6): 1367-1374.
[15]白震, 何红波, 张威, 等. 磷脂脂肪酸技术及其在土壤微生物研究中的应用. 生态学报, 2006, 26(7): 2387-2395.
[16]Ohansen A, Olsson S. Using phospholipid fatty acid technique to study short term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere. Microb Ecol, 2005, 49: 272-281.
[17]White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 1979, 40: 51-62.
[18]Vestal J R, White D C. Lipid analysis in microbial ecology: Quantitative approaches to the study of microbial communities. Bioscience, 1989, 39: 535-541.
[19]Miethling R, Wieland G, Backhaus H, et al. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol, 2000, 41: 43-56.
[20]周桔, 雷霆. 土壤微生物多样性影响因素及其研究方法的现状与展望. 生物多样性, 2007, 15(3): 306-311.
[21]Innes L, Hobbs P J, Bardgett R D. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertil Soils, 2004, 40: 7-13.
[22]Steinberger Y, Zelles L, Bai Q Y, et al. Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert. Biol Fertil Soils, 1999, 28: 292-300.
[23]Frostegrd A, Bth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils, 1996, 22: 59-65.
[24]Joergensen R G, Potthoff M. Microbial reaction in activity, biomass and community structure after long-term continuous mixing of a grassland soil. Soil Biol Biochem, 2005, 37: 1249-1258.
[25]Zelles L, Bai Y Q, Rackwitz R, et al. Determination of phospholipid and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structure in soils. Biol Fertil Soils, 1995, 19: 115-123.
[26]Bth E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA based techniques. Soil Biol Biochem, 2003, 35: 955-963.
[27]Yu S, He Z L, Huang C Y. Advances in their search of soil microorganisms and their mediated processes under heavy metal stress. J Appl Ecol, 2003, 14: 618-622.
[28]时亚南, 张奇春, 王光火. 不同施肥处理对水稻土微生物生态特性的影响. 浙江大学学报:自然科学版, 2007, 33(5): 551-556.
[29]唐莉娜, 张秋芳, 刘波, 等. 有机肥与化肥对烤烟土壤微生物群落PLFAs动态的影响. 土壤肥料科学, 2008, 12(24): 260-266.
[30]Findlay R H, King G M, Watling L. Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl Environ Microbiol, 1989, 55: 2888-2893.
[31]Poerschmann J, Spijkerman E, Langer U. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol, 2004, 48: 79-89.
[32]王曙光, 侯彦林. 尿素肥斑扩散对土壤微生物群落结构的影响. 生态学报, 2004, 19(23): 2269-2275.
[33]喻曼, 曾光明, 陈耀宁, 等. PLFA法研究稻草固态发酵中的微生物群落结构变化. 环境科学, 2007, 28(11): 2603-2609.
[34]刘波, 郑雪芳, 朱昌雄, 等. 脂肪酸生物标记法研究零排放猪舍基质垫层微生物群落多样性. 生态学报, 2008, 28(12):1-11.
[35]张新慧, 张恩和. 不同植龄啤酒花根际微生物区系的变化及与产量和品质的关系. 草业学报, 2007, 16(5): 56-60.
[36]林瑞余, 戎红, 周军建, 等. 苗期化感水稻对根际土壤微生物群落及其功能多样性的影响. 生态学报, 2007, 29(9): 3644-3654.
[37]段红平, 张乃明, 李进学, 等. 超高产水稻根系微生物类群数目初探. 中国农学通报, 2007, 23(2): 285-289.
[38]Lu Y H, Rosencrantz D, Liesack W, et al. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microb, 2006, 8: 1351-1360.
[39]Ibekwe A M, Kennedy A C. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant & Soil, 1999, 206: 151-161.