Chinese Journal of Rice Science

• 研究报告 • Previous Articles     Next Articles

Research on Yield Estimation of Rice Based on Remote Sensing Using ModerateResolution Imaging Spectroradiometer(MODIS) Data: A Case Study of Jiangsu Province, China

DENG Rui1, 3, HUANG Jing-feng2, 3,*, WANG Fu-min1, 3, SUN Hua-sheng1, PENG Dai-liang1   

  1. 1Institute of Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, China;2Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education/College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310029, China;3Key Laboratory of Agricultural Remote Sensing and Information System, Zhejiang Province, Hangzhou 310029, China; *Corresponding author, E-mail: hjf@zju.edu.cn
  • Received:1900-01-01 Revised:1900-01-01 Online:2010-01-10 Published:2010-01-10

基于中分辨率成像光谱仪(MODIS)数据的水稻遥感估产研究——以江苏省为例

邓睿1,3;黄敬峰2, 3,*;王福民1, 3;孙华生1;彭代亮1   

  1. 1浙江大学 遥感与信息技术应用研究所, 浙江 杭州 310029; 2浙江大学 环境与资源学院/环境修复与生态健康教育部重点实验室, 浙江 杭州 310029; 3浙江省农业遥感与信息技术重点研究实验室, 浙江 杭州 310029; *通讯联系人, E-mail: hjf@zju.edu.cn

Abstract: Based on the unique characteristic of high soil moisture in the “flooding and transplanting” period of rice, rice pixels in Jiangsu Province, China were extracted by vegetation index algorithm. The unique characteristic could be reflected by relationship between different vegetation indexes derived from MODIS09 data. Then, the relationship between statistical yield data and vegetation index of rice extracted previously in 2004-2006 was analyzed. Finally, rice yield in 2007 was predicted. The results showed that the method based on MODIS data can estimate yield effectively. The accuracy of predicted yield of each city in 2007 was about 95% and the relative error was 0.38% at the provincial level.

Key words: moderateresolution imaging spectroradiometer, remote sensing, vegetation index, yield estimation, rice

摘要: 选择以水稻为传统优势粮食产业的江苏省作为研究区,采用MODIS09数据作为数据源,根据水稻移栽期稻田土壤湿度较大的特点,利用不同植被指数间的关系,按照一定的算法排除地表干扰像元,提取水稻像元,并在此基础上结合统计资料,分析水稻单产与提取的水稻植被指数之间的关系,并利用水稻植被指数预测全省水稻单产。研究表明,在条件时间序列插值算法(CTIF)处理的基础上提取水稻像元,并基于提取的水稻像元进行遥感估产的方法能取得较好的估算效果。拟合的2004-2006年单产平均精度高于99%,预测的2007年各地级市水稻单产精度在95%左右,全省平均单产相对误差为038%,精度较高,具有一定可行性,可利用该方法对不同年份和不同地区进行水稻产量估算。

关键词: 中分辨率成像光谱仪, 遥感, 植被指数, 产量估算, 水稻