中国水稻科学 ›› 2024, Vol. 38 ›› Issue (6): 604-616.DOI: 10.16819/j.1001-7216.2024.240103

• 综述与专论 • 上一篇    下一篇

基于低空无人机遥感的水稻产量估测方法研究进展

冯向前1,2,#, 王爱冬1,#, 洪卫源1, 李子秋1, 覃金华1,2, 詹丽钏3, 陈里鹏4, 张运波2, 王丹英1,*(), 陈松1,*()   

  1. 1中国水稻研究所 水稻生物育种全国重点实验室,杭州 311401
    2长江大学 农学院,湖北 荆州 434025
    3嵊州市农业技术推广中心,浙江 绍兴 312400
    4杭州富阳栋山农机服务专业合作社,杭州 311400
  • 收稿日期:2024-01-04 修回日期:2024-07-01 出版日期:2024-11-10 发布日期:2024-11-15
  • 通讯作者: *email: wangdanying@caas.cn;chensong02@caas.cn
  • 作者简介:#共同第一作者
  • 基金资助:
    国家重点研发计划资助项目(2022YFD2300700);国家水稻产业技术体系资助项目(CARS-01);中国农业科学院科技创新工程重大科研任务资助项目(CAAS-ZDRW202001);水稻生物育种全国重点实验室自主课题(2023ZZKT20402)

Research Progress in Rice Yield Estimation Method Based on Low-altitude Unmanned Aerial Vehicle Remote Sensing

FENG Xiangqian1,2,#, WANG Aidong1,#, HONG Weiyuan1, LI Ziqiu1, QIN Jinhua1,2, ZHAN Lichuan3, CHEN Lipeng4, ZHANG Yunbo2, WANG Danying1,*(), CHEN Song1,*()   

  1. 1State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China
    2College of Agriculture, Yangtze University, Jingzhou 434025, China
    3Shengzhou Agricultural Technology Extension Center, Shaoxing 312400, China
    4Hangzhou Fuyang Dongshan Agricultural Machinery Service Professional Cooperatives, Hangzhou 311400, China
  • Received:2024-01-04 Revised:2024-07-01 Online:2024-11-10 Published:2024-11-15
  • Contact: *email: wangdanying@caas.cn;chensong02@caas.cn
  • About author:#These authors contributed equally to this work

摘要:

水稻作为主要的粮食作物之一,其产量估测对国家政策宏观调控、地方农情实时指导以及优良品种的定向培育都起着至关重要的作用。随着作物学科及其交叉学科的不断进步,估产的方法和模式也逐渐多样化。同时,随着遥感技术的发展,尤其是低空无人机的出现及其应用的普及,水稻智能遥感估产方法不断创新,估测精度不断提升,但针对基于无人机遥感的智能稻作产量估测缺乏系统和科学的归纳总结。鉴于此,本文在梳理目前主流水稻估产方法及其优缺点的基础上,聚焦探讨低空智能遥感技术在水稻产量估测中的应用及未来发展方向。围绕当前利用低空遥感技术获取的主要特征信息,探讨实现智能遥感水稻估产的模型开发。此外,还探讨了智能遥感技术在水稻产量估测中面临的挑战和问题,旨在深化并完善对低空遥感水稻的产量估测方法的理解,进而为水稻产量智能估计提供系统全面的参考和指导。

关键词: 水稻, 产量估计, 遥感, 无人机

Abstract:

Rice is one of the primary staple crops. Its yield estimation plays a crucial role in the macro-control of national policies, real-time guidance according to local agricultural conditions, and targeted breeding of elite varieties. Therefore, estimating rice grain yield is of great significance. With the continuous advancement in crop science and interdisciplinary approaches, the methods and models for estimating rice yield have diversified greatly. Concurrently, the development of remote sensing technology, particularly the emergence and popularization of low-altitude Unmanned Aerial Vehicles (UAVs), has led to continuous improvements in intelligent remote sensing methods and their accuracy for rice yield estimation. However, there is a lack of systematic and scientific summarization of intelligent rice yield estimation, specifically utilizing UAV remote sensing. This work provides a comprehensive review of the current mainstream methodologies for estimating rice yield, critically evaluating their advantages and limitations. It then explores the application and future directions of intelligent low-altitude remote sensing technology in rice yield estimation. By analyzing the key characteristic information obtained through remote sensing, the article examines the development of primary yield estimation models. It discusses the challenges and limitations encountered when employing intelligent remote sensing for rice yield estimation. The ultimate goal is to enhance our understanding of rice yield estimation methods and provide a systematic and comprehensive reference for the development of intelligent rice yield estimation techniques.

Key words: rice, yield estimation, remote sensing, unmanned aerial vehicle