中国水稻科学 ›› 2024, Vol. 38 ›› Issue (6): 604-616.DOI: 10.16819/j.1001-7216.2024.240103
冯向前1,2,#, 王爱冬1,#, 洪卫源1, 李子秋1, 覃金华1,2, 詹丽钏3, 陈里鹏4, 张运波2, 王丹英1,*(), 陈松1,*()
收稿日期:
2024-01-04
修回日期:
2024-07-01
出版日期:
2024-11-10
发布日期:
2024-11-15
通讯作者:
*email: wangdanying@caas.cn;chensong02@caas.cn
作者简介:
#共同第一作者
基金资助:
FENG Xiangqian1,2,#, WANG Aidong1,#, HONG Weiyuan1, LI Ziqiu1, QIN Jinhua1,2, ZHAN Lichuan3, CHEN Lipeng4, ZHANG Yunbo2, WANG Danying1,*(), CHEN Song1,*()
Received:
2024-01-04
Revised:
2024-07-01
Online:
2024-11-10
Published:
2024-11-15
Contact:
*email: wangdanying@caas.cn;chensong02@caas.cn
About author:
#These authors contributed equally to this work
摘要:
水稻作为主要的粮食作物之一,其产量估测对国家政策宏观调控、地方农情实时指导以及优良品种的定向培育都起着至关重要的作用。随着作物学科及其交叉学科的不断进步,估产的方法和模式也逐渐多样化。同时,随着遥感技术的发展,尤其是低空无人机的出现及其应用的普及,水稻智能遥感估产方法不断创新,估测精度不断提升,但针对基于无人机遥感的智能稻作产量估测缺乏系统和科学的归纳总结。鉴于此,本文在梳理目前主流水稻估产方法及其优缺点的基础上,聚焦探讨低空智能遥感技术在水稻产量估测中的应用及未来发展方向。围绕当前利用低空遥感技术获取的主要特征信息,探讨实现智能遥感水稻估产的模型开发。此外,还探讨了智能遥感技术在水稻产量估测中面临的挑战和问题,旨在深化并完善对低空遥感水稻的产量估测方法的理解,进而为水稻产量智能估计提供系统全面的参考和指导。
冯向前, 王爱冬, 洪卫源, 李子秋, 覃金华, 詹丽钏, 陈里鹏, 张运波, 王丹英, 陈松. 基于低空无人机遥感的水稻产量估测方法研究进展[J]. 中国水稻科学, 2024, 38(6): 604-616.
FENG Xiangqian, WANG Aidong, HONG Weiyuan, LI Ziqiu, QIN Jinhua, ZHAN Lichuan, CHEN Lipeng, ZHANG Yunbo, WANG Danying, CHEN Song. Research Progress in Rice Yield Estimation Method Based on Low-altitude Unmanned Aerial Vehicle Remote Sensing[J]. Chinese Journal OF Rice Science, 2024, 38(6): 604-616.
图1 WOS(web of science)上以遥感(remote sensing)、作物(crop)、产量(yield)为主题关键词的已发表论文数量(截至2023年12月31日)
Fig. 1. Number of published papers on web of science with remote sensing, crop, yield as subject keywords (Before 31 December 2023)
图2 WOS上以作物产量、植被指数为主题关键词的已发表论文数量(截至2023年12月31日)
Fig. 2. Number of published papers on web of science with crop yield and vegetation index as subject keywords (Before 31 December 2023)
纹理特征 Textures | 公式 Formula | 含义 Meaning |
---|---|---|
平均值Mean | 图像的平均灰度值 Average grayscale value of an image | |
同质性Homogeneity | 图像纹理局部变化的度量 Measurement of local texture variation in an image. | |
方差Variance | 图像中灰度变化的度量 Measurement of grayscale variation in an image. | |
对比度Contrast | 相邻像素之间像素值局部变化的度量 Measurement of local pixel value changes between adjacent pixels. | |
非相似度Dissimilarity | 图像灰度差异的度量 Measurement of grayscale intensity differences in an image. | |
熵Entropy | 表征图像的紊乱程度 Characterizing the degree of disorder in an image. | |
相关性Correlation | 相邻像素之间线性度的度量 Measurement of linearity between adjacent pixels. | |
角二阶矩 Angular Second Moment | 又称能量,图像灰度分布均匀性的度量 Also known as energy, Measurement of the uniformity of the image’s grayscale distribution. |
表1 基于灰度共生矩阵的纹理特征
Table 1. Textures based on GLCM
纹理特征 Textures | 公式 Formula | 含义 Meaning |
---|---|---|
平均值Mean | 图像的平均灰度值 Average grayscale value of an image | |
同质性Homogeneity | 图像纹理局部变化的度量 Measurement of local texture variation in an image. | |
方差Variance | 图像中灰度变化的度量 Measurement of grayscale variation in an image. | |
对比度Contrast | 相邻像素之间像素值局部变化的度量 Measurement of local pixel value changes between adjacent pixels. | |
非相似度Dissimilarity | 图像灰度差异的度量 Measurement of grayscale intensity differences in an image. | |
熵Entropy | 表征图像的紊乱程度 Characterizing the degree of disorder in an image. | |
相关性Correlation | 相邻像素之间线性度的度量 Measurement of linearity between adjacent pixels. | |
角二阶矩 Angular Second Moment | 又称能量,图像灰度分布均匀性的度量 Also known as energy, Measurement of the uniformity of the image’s grayscale distribution. |
图3 基于遥感信息、统计模型和作物模型估测水稻产量的模型框架 RS为遥感数据,AD为农艺数据。
Fig. 3. Model framework for estimating rice yield based on remote sensing information, statistical models and crop models RS is remote sensing data; AD is agronomic data.
[1] | Food and Agriculture Organization, FAOSTAT agriculture data[EB/OL]. [2023-12-30]. http://www.faoorg/faostat/en. |
[2] | 朱炯, 杜鑫, 李强子, 张源, 王红岩, 赵云聪. 关键时相长势—环境和景观特征对河北省县级尺度冬小麦单产估算精度影响分析[J]. 遥感学报, 2022, 26(7): 1354-1367. |
Zhu J, Du X, Li Q Z, Zhang Y, Wang H Y, Zhao Y C. Analysis of the influence of key-phase growth-environment-landscape features on the accuracy of county-level winter wheat yield estimation in Hebei Province[J]. National Remote Sensing Bulletin, 2022, 26(7): 1354-1367. (in Chinese with English abstract) | |
[3] | Wang X, Jing Z H, He C, Liu Q Y, Jia H, Qi J Y, Zhang H L. Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources[J]. European Journal of Agronomy, 2021, 124: 126239. |
[4] | dela Torre D M G, Gao J, Macinnis N C. Remote sensing-based estimation of rice yields using various models: A critical review[J]. Geo-spatial Information Science, 2021, 24(4): 580-603. |
[5] | Yoshida S. Fundamentals of Rice Crop Science[M]. Philippines: International Rice Research Institute, 1981. |
[6] | 王伟妮, 鲁剑巍, 何予卿, 李小坤, 李慧. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响[J]. 中国水稻科学, 2011, 25(6): 645-653. |
Wang W N, Lu J W, He Y Q, Li X K, Li H. Effects of N,P,K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice[J]. Chinese Journal of Rice Science, 2011, 25(6): 645-653. (in Chinese with English abstract) | |
[7] | Namikawa M, Matsunami T, Yabiku T, Takahashi T, Matsunami M, Hasegawa T. Analysis of yield constraints and seasonal solar radiation and temperature limits for stable cultivation of dry direct-seeded rice in northeastern Japan[J]. Field Crops Research, 2023, 295: 108896. |
[8] | van Hung N, Maguyon-Detras M C, Migo M V, Quilloy R, Balingbing C, Chivenge P, Gummert M. Rice straw overview: Availability, properties, and management practices[M]. Cham: Springer International Publishing, 2020. |
[9] | Li G, Tang J, Zheng J, Chu C. Exploration of rice yield potential: Decoding agronomic and physiological traits[J]. The Crop Journal, 2021, 9(3): 577-589. |
[10] | 李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响[J]. 中国农业科学, 2011, 44(13): 2661-2672. |
Li J, Zhang H C, Dong Y Y, Ni X C, Yang B, Gong J L, Chang Y, Dai Q G, Huo Z Y, Xu K, Wei H Y. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions[J]. Scientia Agricultura Sinica, 2011, 44(13): 2661-2672. (in Chinese with English abstract) | |
[11] | Fermont A, Benson T. Estimating yield of food crops grown by smallholder farmers: A review in the Uganda context[M]. Finland: Agricultural and Food Sciences, 2011. |
[12] | 王帅, 郁志宏, 张文杰, 杨丽芳, 张泽鑫, 敖日格乐. 谷物联合收获机在线测产技术研究现状与进展[J]. 农业工程学报, 2021, 37(17): 58-70. |
Wang S, Yu Z H, Zhang W J, Yang L F, Zhang Z X, Aorigele. Review of recent advances in online yield monitoring for grain combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 58-70. (in Chinese with English abstract) | |
[13] | 刘峻明, 和晓彤, 王鹏新, 黄健熙. 长时间序列气象数据结合随机森林法早期预测冬小麦产量[J]. 农业工程学报, 2019, 35(6): 158-166. |
Liu J M, He X T, Wang P X, Huang J X. Early prediction of winter wheat yield with long time series meteorological data and random forest method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 158-166. (in Chinese with English abstract) | |
[14] | 张轶, 刘布春, 杨晓娟, 刘园, 白薇, 董博超. 基于农作物灾情的长江中下游地区粮食产量损失评估[J]. 中国农业气象, 2018, 39(4): 280-291. |
Zhang Y, Liu B C, Yang X J, Liu Y, Bai W, Dong B C. Grain yield loss evaluation based on agro-meteorological disaster exposure in the middle-lower Yangtze plain[J]. Chinese Journal of Agrometeorology, 2018, 39(4): 280-291. (in Chinese with English abstract) | |
[15] | Sasane S A. Rice yield prediction using statistical regression models in the selected districts of Maharashtra[J]. Arabian Journal of Geosciences, 2023, 16(9): 528. |
[16] | Ha S, Kim Y T, Im E S, Hur J, Jo S, Kim Y S, Shim K M. Impacts of meteorological variables and machine learning algorithms on rice yield prediction in Korea[J]. International Journal of Biometeorology, 2023, 67(11): 1825-1838. |
[17] | de Wit A, Hendrik B, Davide F, Sander J, Rob K, van Daniet K, Iwan S, van der Raymend W, van Kees D. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167. |
[18] | 薛昌颖, 杨晓光, 邓伟, 张天一, 闫伟兄, 张秋平, 肉孜阿基, 赵俊芳, 杨婕, Bouman B A M. 利用ORYZA2000模型分析北京地区旱稻产量潜力及需水特征[J]. 作物学报, 2007(4): 625-631. |
Xang C Y, Yang X G, Deng W, Zhang T Y, Yan W X, Zhang Q P, Rouzi A, Zhang J F, Yang J, Bouman B A M. Yield potential and water requirement of aerobic rice in Beijing analyzed by ORYZA2000 model[J]. Acta Agronomica Sinica, 2007(4): 625-631. (in Chinese with English abstract) | |
[19] | Zhang J, Miao Y, Batchelor W D. Evaluation of the CERES-Rice Model for precision nitrogen management for rice in Northeast China[J]. Advances in Animal Biosciences, 2017, 8(2): 328-332. |
[20] | 崔颖, 蔺宏宏, 谢云, 刘素红. AquaCrop模型在东北黑土区作物产量预测中的应用研究[J]. 作物学报, 2021, 47(1): 159-168. |
Cui Y, Lin H H, Xie Y, Liu S H. Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China[J]. Acta Agronomica Sinica, 2021, 47(1): 159-168. (in Chinese with English abstract) | |
[21] | Wang X, Yi J, Guo J, Song Y, Lü J, Xu J, Yan W, Zhao J, Cai Q, Min H. A Review of image super-resolution approaches based on deep learning and applications in remote sensing[J]. Remote Sensing, 2022, 14(21): 5423. |
[22] | Liu Y, Feng H, Yue J, Fan Y, Bian M, Ma Y, Jin X, Song X, Yang G. Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements[J]. Computers and Electronics in Agriculture, 2023, 213: 108229. |
[23] | Van K T, Kassahun A, Catal C. Crop yield prediction using machine learning: A systematic literature review[J]. Computers and Electronics in Agriculture, 2020, 177: 105709. |
[24] | Deering D W. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors[M]. USA: Texas A&M University, 1978. |
[25] | Zhou X, Zheng H B, Xu X Q, He J Y, Ge X K, Yao X, Cheng T, Zhu Y, Cao W X, Tian Y C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255. |
[26] | Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1): 195-213. |
[27] | Liu H Q, Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 457-465. |
[28] | Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298. |
[29] | Kyratzis A C, Skarlatos D P, Menexes G C, Vamvakousis V F, Katsiotis A. Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed mediterranean environment[J]. Frontiers In Plant Science, 2017, 8: 1114. |
[30] | Su X, Wang J, Ding L, Lu J, Zhang J, Yao X, Cheng T, Zhu Y, Cao W, Tian Y. Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice[J]. Field Crops Research, 2023, 299: 108992. |
[31] | 高钰琪, 许桂玲, 冯跃华, 王晓珂, 任红军, 由晓璇, 韩志丽, 李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究[J]. 中国稻米, 2023, 29(5): 38-44. |
Gao Y Q, Xu G L, Feng Y H, Wang X K, Ren H J, You X X, Han Z L, Li J L. Study on rice yield prediction model based on canopy hyperspectral vegetation index[J]. China Rice, 2023, 29(5): 38-44. (in Chinese with English abstract) | |
[32] | Duque A F, Patino D, Colorado J D, Petro E, Rebolledo M C, Mondragon I F, Espinosa N, Amezquita N, Puentes O D, Mendez D, Jaramillo B A. Characterization of rice yield based on biomass and SPAD-based leaf nitrogen for large genotype plots[J]. Sensors, 2023, 23(13): 5917. |
[33] | 黄璐, 包云轩, 郭铭淇, 朱凤, 杨荣明. 稻纵卷叶螟危害下水稻叶片光谱特征及产量估测[J]. 中国农业气象, 2023, 44(2): 154-164. |
Huang L, Bao Y X, Guo M Q, Zhu F, Yang R M. Hyperspectral characteristics of rice leaf and yield estimation under the infestation of Cnaphalocrocis medinalis Güenée[J]. Chinese Journal of Agrometeorology, 2023, 44(2): 154-164. (in Chinese with English abstract) | |
[34] | Sun L, Gao F, Anderson M C, Kustas W P, Alsina M M, Sanchez L, Sams B, McKee L, Dulaney W, White W A, Alfieri J G, Prueger J H, Melton F, Post K. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards[J]. Remote Sensing, 2017, 9(4): 317. |
[35] | Kato Z, Pong T C. A Markov random field image segmentation model for color textured images[J]. Image and Vision Computing, 2006, 24(10): 1103-1114. |
[36] | Jin J L, Zhou H Y, Sun S L, Tian Z, Ren H B, Feng J W, Jiang X P. Machine learning based gray-level co-occurrence matrix early warning system enables accurate detection of colorectal cancer pelvic bone metastases on MRI[J]. Frontiers in Oncology, 2023, 13: 1121594. |
[37] | Wang F, Yi Q, Hu J, Xie L, Yao X, Xu T, Zheng J. Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102397. |
[38] | Lu D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509-2525. |
[39] | Gebremedhin A, Badenhorst P, Wang J, Spangenberg G, Smith K. Prospects for measurement of dry matter yield in forage breeding programs using sensor technologies[J]. Agronomy, 2019, 9: 65. |
[40] | Yuan W, Meng Y, Li Y, Ji Z, Kong Q, Gao R, Su Z. Research on rice leaf area index estimation based on fusion of texture and spectral information[J]. Computers and Electronics in Agriculture, 2023, 211: 108016. |
[41] | Magney T S, Eitel J U H, Huggins D R, Vierling L A. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality[J]. Agricultural and Forest Meteorology, 2016, 217: 46-60. |
[42] | Ji Z, Pan Y, Zhu X, Wang J, Li Q. Prediction of crop yield using phenological information extracted from remote sensing vegetation index[J]. Sensors, 2021, 21(4): 1406. |
[43] | Tian H R, Wang P X, Tansey K, Zhang J Q, Zhang S Y, Li H M. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China[J]. Agricultural and Forest Meteorology, 2021, 310: 108629. |
[44] | Wolanin A, Mateo-García G, Camps-Valls G, Gómez-Chova L, Meroni M, Duveiller G, Liangzhi Y, Guanter L. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt[J]. Environmental Research Letters, 2020, 15(2): 024019. |
[45] | 张亚倩, 骆社周, 王成, 习晓环, 聂胜, 黎东, 李光辉. 联合无人机激光雷达和高光谱数据反演玉米叶面积指数[J]. 遥感技术与应用, 2022, 37(5): 1097-1108. |
Zhang Y Q, Luo S Z, Wang C, Xi X H, Nie S, Li D, Li G H. Combining uav lidar and hyperspectral data for retrieving maize leaf area index[J]. Remote Sensing Technology and Application, 2022, 37(5): 1097-1108. (in Chinese with English abstract) | |
[46] | Zhu W, Sun Z, Yang T, Li J, Peng J, Zhu K, Li S, Gong H, Lü Y, Li B, Liao X. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales[J]. Computers and Electronics in Agriculture, 2020, 178: 105786. |
[47] | Marino S, Alvino A. Detection of spatial and temporal variability of wheat cultivars by high-resolution vegetation indices[J]. Agronomy, 2019, 9(5): 226. |
[48] | Hill J D, Strommen N D, Sakamoto C M, LeDuc S K. LACIE - an application of meteorology for United States and foreign wheat assessment[J]. Journal of Applied Meteorology, 1980, 19(1): 22-34. |
[49] | Ball S, Konzak C. Relationship between grain yield and remotely-sensed data in wheat breeding experiments[J]. Plant Breeding, 1993, 110: 277-282. |
[50] | Liu J, Goering C, Tian L F. A neural network for setting target corn yields[J]. Transactions of the ASAE, 2001, 44(3): 705. |
[51] | 张杰, 徐波, 冯海宽, 竞霞, 王娇娇, 明世康, 傅友强, 宋晓宇. 基于集成学习的水稻氮素营养及籽粒蛋白含量监测[J]. 光谱学与光谱分析, 2022, 42(6): 1956-1964. |
Zhang J, Xu B, Feng H K, Jing X, Wang J J, Ming S K, Fu Y Q, Song X Y. Monitoring nitrogen nutrition and grain protein content of rice based on ensemble learning[J]. Spectroscopy and Spectral Analysis, 2022, 42(6): 1956-1964. (in Chinese with English abstract) | |
[52] | Cao J, Zhang Z, Luo Y, Zhang L, Zhang J, Li Z, Tao F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine[J]. European Journal of Agronomy, 2021, 123: 126204. |
[53] | Zhang Q, Zhao X, Han Y, Yang F, Pan S, Liu Z, Wang K, Zhao C. Maize yield prediction using federated random forest[J]. Computers and Electronics in Agriculture, 2023, 210: 107930. |
[54] | Huber F, Yushchenko A, Stratmann B, Steinhage V. Extreme gradient boosting for yield estimation compared with Deep Learning approaches[J]. Computers and Electronics in Agriculture, 2022, 202: 107346. |
[55] | Wang J, Wu B, Kohnen M V, Lin D, Yang C, Wang X, Qiang A, Liu W, Kang J, Li H, Shen J, Yao T, Su J, Li B, Gu L. Classification of rice yield using UAV-based hyperspectral imagery and lodging feature[J]. Plant Phenomics, 2021, 2021: 1-14 |
[56] | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[57] | Yli-Heikkilä M, Wittke S, Luotamo M, Puttonen E, Sulkava M, Pellikka P, Heiskanen J, Klami A. Scalable crop yield prediction with sentinel-2 time series and temporal convolutional network[J]. Remote Sensing, 2022, 14: 4193. |
[58] | Cao J, Zhang Z, Tao F, Zhang L, Luo Y, Zhang J, Han J, Xie J. Integrating multi-source data for rice yield prediction across china using machine learning and deep learning approaches[J]. Agricultural and Forest Meteorology, 2021, 297: 108275. |
[59] | Jeong S, Ko J, Yeom J M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea[J]. Science of the Total Environment, 2022, 802: 149726. |
[60] | Mutanga O, Masenyama A, Sibanda M. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 297-309. |
[61] | Wiegand C L, Richardson A J, Escobar D E, Gerbermann AH. Vegetation indices in crop assessments[J]. Remote Sensing of Environment, 1991, 35(2): 105-119. |
[62] | Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P J, Asner G P, François C, Ustin S L. PROSPECT+SAIL models: A review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113: S56-S66. |
[63] | Yuan W, Chen Y, Xia J, Dong W, Magliulo V, Moors E, Olesen J E, Zhang H. Estimating crop yield using a satellite-based light use efficiency model[J]. Ecological Indicators, 2016, 60: 702-709. |
[64] | Kanning M, Kühling I, Trautz D, Jarmer T. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction[J]. Remote Sensing, 2018, 10: 2000. |
[65] | 冯伟, 朱艳, 田永超, 姚霞, 郭天财, 曹卫星. 基于高光谱遥感的小麦籽粒产量预测模型研究[J]. 麦类作物学报, 2007(6): 1076-1084. |
Feng W, Zhu Y, Tian Y C, Yao X, Guo T C, Cao W X. Model for predicting grain yield with canopy hyperspectal remote sensing in wheat[J]. Journal of Triticeae Crops, 2007(6): 1076-1084. (in Chinese with English abstract) | |
[66] | 谭先明, 张佳伟, 王仲林, 谌俊旭, 杨峰, 杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
Tan X M, Zhang J W, Wang Z L, Zhan J X, Yang F, Yang W Y. Prediction of maize yield in relay strip intercropping under different water and nitrogen conditions based on PLS[J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. (in Chinese with English abstract) | |
[67] | Gong Y, Yang K, Lin Z, Fang S, Wu X, Zhu R, Peng Y. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season[J]. Plant Methods, 2021, 17(1): 88. |
[68] | Zhou L F, Meng R, Yu X, Liao Y G, Huang Z H, Lü Z G, Xu B Y, Yang G D, Peng S B, Xu L. Improved yield prediction of ratoon rice using unmanned aerial vehicle-based multi-temporal feature method[J]. Rice Science, 2023, 30(3): 247-256. |
[69] | 马驿. 基于无人机影像的水稻长势监测和产量估计[D]. 武汉: 武汉大学, 2022. |
Ma Y. Monitoring rice growth parameters and estimating yield based on UAV images[D]. Wuhan: Wuhan University, 2022. (in Chinese) | |
[70] | Chen P, Li Y, Liu X, Tian Y, Zhu Y, Cao W, Cao Q. Improving yield prediction based on spatio-temporal deep learning approaches for winter wheat: A case study in Jiangsu Province, China[J]. Computers and Electronics in Agriculture, 2023, 213: 108201. |
[71] | Maestrini B, Mimić G, van Oort P A J, Jindo K, Brdar S, Athanasiadis I N, van Evert F K. Mixing process-based and data-driven approaches in yield prediction[J]. European Journal of Agronomy, 2022, 139: 126569. |
[72] | Li J, Li G, Wang L, Li D, Li H, Gao C, Zhuang M, Zhuang J, Zhou H, Xu S, Hu Z, Wang E. Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning[J]. Field Crops Research, 2023, 302: 109102. |
[73] | Jin X, Kumar L, Li Z, Feng H, Xu X, Yang G, Wang J. A review of data assimilation of remote sensing and crop models[J]. European Journal of Agronomy, 2018, 92: 141-152. |
[74] | Zhuo W, Fang S, Wu D, Wang L, Li M, Zhang J, Gao X. Integrating remotely sensed water stress factor with a crop growth model for winter wheat yield estimation in the North China Plain during 2008-2018[J]. The Crop Journal, 2022, 10(5): 1470-1482. |
[75] | Bouras E H, Olsson P O, Thapa S, Díaz J M, Albertsson J, Eklundh L. Wheat yield estimation at high spatial resolution through the assimilation of sentinel-2 data into a crop growth model[J]. Remote Sensing, 2023, 15(18): 4425. |
[76] | Yao F, Tang Y, Wang P, Zhang J. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain[J]. Physics and Chemistry of the Earth, 2015, 87-88: 142-152. |
[77] | 黄健熙, 黄海, 马鸿元, 卓文, 黄然, 高欣然, 刘峻明, 苏伟, 李俐, 张晓东, 朱德海. 遥感与作物生长模型数据同化应用综述[J]. 农业工程学报, 2018, 34(21): 144-156. |
Huang J X, Huang H, Ma H Y, Zhuo W, Huang R, Gao X R, Liu J M, Su W, LI L, Zhang X D, Zhu D H. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 144-156. (in Chinese with English abstract) | |
[78] | 赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277-293. |
Zhao C J. Advances of research and application in remote sensing for agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 277-293. (in Chinese with English abstract) | |
[79] | Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice[J]. Neurocomputing, 2020, 415: 295-316. |
[80] | Lorenc A, Ballard S P, Bell R S, Ingleby N B, Andrews P L F, Barker D, Bray J R, Clayton A M, Dalby T, Li D, Payne T J, Saunders F W. The Met. Office global three-dimensional variational data assimilation scheme[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126: 2991-3012. |
[81] | Ge H, Ma F, Li Z, Du C. Estimating rice yield by assimilating UAV-derived plant nitrogen concentration into the DSSAT model: Evaluation at different assimilation time windows[J]. Field Crops Research, 2022, 288: 108705. |
[82] | Guo C, Tang Y, Lu J, Zhu Y, Cao W, Cheng T, Zhang L, Tian Y. Predicting wheat productivity: Integrating time series of vegetation indices into crop modeling via sequential assimilation[J]. Agricultural and Forest Meteorology, 2019, 272-273: 69-80. |
[83] | Xie Y, Wang P, Bai X, Khan J, Zhang S, Li L, Wang L. Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model[J]. Agricultural and Forest Meteorology, 2017, 246: 194-206. |
[84] | Han J, Shi L, Yang Q, Chen Z, Yu J, Zha Y. Rice yield estimation using a CNN-based image-driven data assimilation framework[J]. Field Crops Research, 2022, 288: 108693. |
[85] | Han J, Shi L, Yang Q, Chen Z, Yu J, Zha Y. GPT-aided diagnosis on agricultural image based on a new light YOLOPC[J]. Computers and Electronics in Agriculture, 2023, 213: 108168. |
[86] | Jiang H, Hu H, Zhong R, Xu J, Xu J, Huang J, Wang S, Ying Y, Lin T. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US corn belt at the county level[J]. Global Change Biology, 2020, 26(3): 1754-1766. |
[87] | Zhang J. Multi-source remote sensing data fusion: Status and trends[J]. International Journal of Image and Data Fusion, 2010, 1(1): 5-24. |
[88] | Paudel D, Boogaard H, de Wit A, Janssen S, Osinga S, Pylianidis C, Athanasiadis I N. Machine learning for large-scale crop yield forecasting[J]. Agricultural Systems, 2021, 187: 103016. |
[89] | Habibi L N, Matsui T, Tanaka T S T. Critical evaluation of the effects of a cross-validation strategy and machine learning optimization on the prediction accuracy and transferability of a soybean yield prediction model using UAV-based remote sensing[J]. Journal of Agriculture and Food Research, 2024, 16: 101096. |
[1] | 叶苗, 毛雨欣, 张德海, 康钰莹, 袁榕, 张祖建. 高光效水稻品种的叶片和冠层生理生态特征及其氮素调控机制研究进展[J]. 中国水稻科学, 2024, 38(6): 617-626. |
[2] | 汪晴, 王艳茹, 张秀丽, 吕启明. 水稻孤雌生殖诱导基因BBM1序列变异分析[J]. 中国水稻科学, 2024, 38(6): 627-637. |
[3] | 钟智慧, 秦璐, 黎志力, 杨珍, 贺晓鹏, 蔡怡聪. 水稻IDD基因家族的全基因组鉴定及综合分析[J]. 中国水稻科学, 2024, 38(6): 638-652. |
[4] | 杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正. 利用QTL-Seq结合分子标记定位粳稻垩白粒率控制位点qChalk8[J]. 中国水稻科学, 2024, 38(6): 665-671. |
[5] | 毋翔, 张义凯, 张鹏, 马昕伶, 陈玉林, 陈惠哲, 张玉屏, 向镜, 王亚梁, 王志刚, 李良涛. 2,4-表油菜素内酯对生物炭基质育秧水稻秧苗根系生长及生理特性的影响[J]. 中国水稻科学, 2024, 38(6): 685-694. |
[6] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[7] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[8] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[9] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[10] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[11] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[12] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[13] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[14] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[15] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||